Pubertal Development in Healthy Children Is Mirrored by DNA
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bioinformatic Analysis of Structure and Function of LIM Domains of Human Zyxin Family Proteins
International Journal of Molecular Sciences Article Bioinformatic Analysis of Structure and Function of LIM Domains of Human Zyxin Family Proteins M. Quadir Siddiqui 1,† , Maulik D. Badmalia 1,† and Trushar R. Patel 1,2,3,* 1 Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada; [email protected] (M.Q.S.); [email protected] (M.D.B.) 2 Department of Microbiology, Immunology and Infectious Disease, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive, Calgary, AB T2N 4N1, Canada 3 Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada * Correspondence: [email protected] † These authors contributed equally to the work. Abstract: Members of the human Zyxin family are LIM domain-containing proteins that perform critical cellular functions and are indispensable for cellular integrity. Despite their importance, not much is known about their structure, functions, interactions and dynamics. To provide insights into these, we used a set of in-silico tools and databases and analyzed their amino acid sequence, phylogeny, post-translational modifications, structure-dynamics, molecular interactions, and func- tions. Our analysis revealed that zyxin members are ohnologs. Presence of a conserved nuclear export signal composed of LxxLxL/LxxxLxL consensus sequence, as well as a possible nuclear localization signal, suggesting that Zyxin family members may have nuclear and cytoplasmic roles. The molecular modeling and structural analysis indicated that Zyxin family LIM domains share Citation: Siddiqui, M.Q.; Badmalia, similarities with transcriptional regulators and have positively charged electrostatic patches, which M.D.; Patel, T.R. -
The Human Gene Connectome As a Map of Short Cuts for Morbid Allele Discovery
The human gene connectome as a map of short cuts for morbid allele discovery Yuval Itana,1, Shen-Ying Zhanga,b, Guillaume Vogta,b, Avinash Abhyankara, Melina Hermana, Patrick Nitschkec, Dror Friedd, Lluis Quintana-Murcie, Laurent Abela,b, and Jean-Laurent Casanovaa,b,f aSt. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065; bLaboratory of Human Genetics of Infectious Diseases, Necker Branch, Paris Descartes University, Institut National de la Santé et de la Recherche Médicale U980, Necker Medical School, 75015 Paris, France; cPlateforme Bioinformatique, Université Paris Descartes, 75116 Paris, France; dDepartment of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; eUnit of Human Evolutionary Genetics, Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Institut Pasteur, F-75015 Paris, France; and fPediatric Immunology-Hematology Unit, Necker Hospital for Sick Children, 75015 Paris, France Edited* by Bruce Beutler, University of Texas Southwestern Medical Center, Dallas, TX, and approved February 15, 2013 (received for review October 19, 2012) High-throughput genomic data reveal thousands of gene variants to detect a single mutated gene, with the other polymorphic genes per patient, and it is often difficult to determine which of these being of less interest. This goes some way to explaining why, variants underlies disease in a given individual. However, at the despite the abundance of NGS data, the discovery of disease- population level, there may be some degree of phenotypic homo- causing alleles from such data remains somewhat limited. geneity, with alterations of specific physiological pathways under- We developed the human gene connectome (HGC) to over- come this problem. -
Namyoung Jung
EPIGENETIC BASIS OF STEM CELL IDENTITY IN NORMAL AND MALIGNANT HEMATOPOIETIC DEVELOPMENT by Namyoung Jung A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July, 2015 © 2015 Namyoung Jung All Rights Reserved Abstract Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy characterized by subpopulations of leukemia-initiating or leukemia stem cells (LSC) that give rise to clonally related non-stem leukemic blasts. The LSC model proposes that since LSC and their blast progeny are clonally related, their functional properties must be due to epigenetic differences. In addition, the cell of origin of LSC among normal hematopoietic stem and progenitor cells (HSPCs) has yet to be clearly demonstrated. In order to investigate the role of epigenetics in LSC function and hematopoietic development, we profiled DNA methylation and gene expression of CD34+CD38-, CD34+CD38+ and CD34- cells from 15 AML patients, along with 6 well-defined HSPC populations from 5 normal bone marrows using Illumina Infinium HumanMethylation450 BeadChip and Affymetrix Human Genome U133 Plus 2.0 Array. To define LSC and blast functionally, we performed engraftment assays on the three subpopulations from 15 AML patients and defined 20 LSCs and 24 blast samples. We identified the key functional LSC epigenetic signature able to distinguish LSC from blasts that consisted of 84 differential methylations regions (DMRs) in 70 genes that correlated with differential gene expression. HOXA cluster genes were enriched within the LSC epigenetic signature. We found that most of these DMRs involve epigenetic alteration independent of underlying mutations, although several are downstream targets of genetic mutation in epigenome modifying enzymes and upstream regulators. -
The Human Gene Connectome As a Map of Short Cuts for Morbid Allele Discovery
The human gene connectome as a map of short cuts for morbid allele discovery Yuval Itana,1, Shen-Ying Zhanga,b, Guillaume Vogta,b, Avinash Abhyankara, Melina Hermana, Patrick Nitschkec, Dror Friedd, Lluis Quintana-Murcie, Laurent Abela,b, and Jean-Laurent Casanovaa,b,f aSt. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065; bLaboratory of Human Genetics of Infectious Diseases, Necker Branch, Paris Descartes University, Institut National de la Santé et de la Recherche Médicale U980, Necker Medical School, 75015 Paris, France; cPlateforme Bioinformatique, Université Paris Descartes, 75116 Paris, France; dDepartment of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; eUnit of Human Evolutionary Genetics, Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Institut Pasteur, F-75015 Paris, France; and fPediatric Immunology-Hematology Unit, Necker Hospital for Sick Children, 75015 Paris, France Edited* by Bruce Beutler, University of Texas Southwestern Medical Center, Dallas, TX, and approved February 15, 2013 (received for review October 19, 2012) High-throughput genomic data reveal thousands of gene variants to detect a single mutated gene, with the other polymorphic genes per patient, and it is often difficult to determine which of these being of less interest. This goes some way to explaining why, variants underlies disease in a given individual. However, at the despite the abundance of NGS data, the discovery of disease- population level, there may be some degree of phenotypic homo- causing alleles from such data remains somewhat limited. geneity, with alterations of specific physiological pathways under- We developed the human gene connectome (HGC) to over- come this problem. -
CREB-Dependent Transcription in Astrocytes: Signalling Pathways, Gene Profiles and Neuroprotective Role in Brain Injury
CREB-dependent transcription in astrocytes: signalling pathways, gene profiles and neuroprotective role in brain injury. Tesis doctoral Luis Pardo Fernández Bellaterra, Septiembre 2015 Instituto de Neurociencias Departamento de Bioquímica i Biologia Molecular Unidad de Bioquímica y Biologia Molecular Facultad de Medicina CREB-dependent transcription in astrocytes: signalling pathways, gene profiles and neuroprotective role in brain injury. Memoria del trabajo experimental para optar al grado de doctor, correspondiente al Programa de Doctorado en Neurociencias del Instituto de Neurociencias de la Universidad Autónoma de Barcelona, llevado a cabo por Luis Pardo Fernández bajo la dirección de la Dra. Elena Galea Rodríguez de Velasco y la Dra. Roser Masgrau Juanola, en el Instituto de Neurociencias de la Universidad Autónoma de Barcelona. Doctorando Directoras de tesis Luis Pardo Fernández Dra. Elena Galea Dra. Roser Masgrau In memoriam María Dolores Álvarez Durán Abuela, eres la culpable de que haya decidido recorrer el camino de la ciencia. Que estas líneas ayuden a conservar tu recuerdo. A mis padres y hermanos, A Meri INDEX I Summary 1 II Introduction 3 1 Astrocytes: physiology and pathology 5 1.1 Anatomical organization 6 1.2 Origins and heterogeneity 6 1.3 Astrocyte functions 8 1.3.1 Developmental functions 8 1.3.2 Neurovascular functions 9 1.3.3 Metabolic support 11 1.3.4 Homeostatic functions 13 1.3.5 Antioxidant functions 15 1.3.6 Signalling functions 15 1.4 Astrocytes in brain pathology 20 1.5 Reactive astrogliosis 22 2 The transcription -
Functional Genomic Annotation of Genetic Risk Loci Highlights Inflammation and Epithelial Biology Networks in CKD
BASIC RESEARCH www.jasn.org Functional Genomic Annotation of Genetic Risk Loci Highlights Inflammation and Epithelial Biology Networks in CKD Nora Ledo, Yi-An Ko, Ae-Seo Deok Park, Hyun-Mi Kang, Sang-Youb Han, Peter Choi, and Katalin Susztak Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania ABSTRACT Genome-wide association studies (GWASs) have identified multiple loci associated with the risk of CKD. Almost all risk variants are localized to the noncoding region of the genome; therefore, the role of these variants in CKD development is largely unknown. We hypothesized that polymorphisms alter transcription factor binding, thereby influencing the expression of nearby genes. Here, we examined the regulation of transcripts in the vicinity of CKD-associated polymorphisms in control and diseased human kidney samples and used systems biology approaches to identify potentially causal genes for prioritization. We interro- gated the expression and regulation of 226 transcripts in the vicinity of 44 single nucleotide polymorphisms using RNA sequencing and gene expression arrays from 95 microdissected control and diseased tubule samples and 51 glomerular samples. Gene expression analysis from 41 tubule samples served for external validation. 92 transcripts in the tubule compartment and 34 transcripts in glomeruli showed statistically significant correlation with eGFR. Many novel genes, including ACSM2A/2B, FAM47E, and PLXDC1, were identified. We observed that the expression of multiple genes in the vicinity of any single CKD risk allele correlated with renal function, potentially indicating that genetic variants influence multiple transcripts. Network analysis of GFR-correlating transcripts highlighted two major clusters; a positive correlation with epithelial and vascular functions and an inverse correlation with inflammatory gene cluster. -
Dual Role of the PTPN13 Tyrosine Phosphatase in Cancer Soha Mcheik, Leticia Aptecar, Peter Coopman, Véronique D’Hondt, Gilles Freiss
Dual Role of the PTPN13 Tyrosine Phosphatase in Cancer Soha Mcheik, Leticia Aptecar, Peter Coopman, Véronique D’hondt, Gilles Freiss To cite this version: Soha Mcheik, Leticia Aptecar, Peter Coopman, Véronique D’hondt, Gilles Freiss. Dual Role of the PTPN13 Tyrosine Phosphatase in Cancer. Biomolecules, MDPI, 2020, 10, 10.3390/biom10121659. hal-03116270 HAL Id: hal-03116270 https://hal.archives-ouvertes.fr/hal-03116270 Submitted on 20 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. biomolecules Review Dual Role of the PTPN13 Tyrosine Phosphatase in Cancer 1, 1, , 1,2 1 Soha Mcheik y, Leticia Aptecar y z, Peter Coopman ,Véronique D’Hondt and Gilles Freiss 1,* 1 IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, F-34298 Montpellier, France; [email protected] (S.M.); [email protected] (L.A.); [email protected] (P.C.); [email protected] (V.D.) 2 CNRS—Centre National de la Recherche Scientifique, 1919 Route de Mende, 34293 Montpellier, France * Correspondence: [email protected]; Tel.: +33-(0)4-67-61-24-33 These authors contributed equally to this work. -
A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression
Supplementary Materials A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression Table S1. Statistically significant DEGs (Adj. p-value < 0.01) derived from meta-analysis for samples irradiated with high doses of HZE particles, collected 6-24 h post-IR not common with any other meta- analysis group. This meta-analysis group consists of 3 DEG lists obtained from DGEA, using a total of 11 control and 11 irradiated samples [Data Series: E-MTAB-5761 and E-MTAB-5754]. Ensembl ID Gene Symbol Gene Description Up-Regulated Genes ↑ (2425) ENSG00000000938 FGR FGR proto-oncogene, Src family tyrosine kinase ENSG00000001036 FUCA2 alpha-L-fucosidase 2 ENSG00000001084 GCLC glutamate-cysteine ligase catalytic subunit ENSG00000001631 KRIT1 KRIT1 ankyrin repeat containing ENSG00000002079 MYH16 myosin heavy chain 16 pseudogene ENSG00000002587 HS3ST1 heparan sulfate-glucosamine 3-sulfotransferase 1 ENSG00000003056 M6PR mannose-6-phosphate receptor, cation dependent ENSG00000004059 ARF5 ADP ribosylation factor 5 ENSG00000004777 ARHGAP33 Rho GTPase activating protein 33 ENSG00000004799 PDK4 pyruvate dehydrogenase kinase 4 ENSG00000004848 ARX aristaless related homeobox ENSG00000005022 SLC25A5 solute carrier family 25 member 5 ENSG00000005108 THSD7A thrombospondin type 1 domain containing 7A ENSG00000005194 CIAPIN1 cytokine induced apoptosis inhibitor 1 ENSG00000005381 MPO myeloperoxidase ENSG00000005486 RHBDD2 rhomboid domain containing 2 ENSG00000005884 ITGA3 integrin subunit alpha 3 ENSG00000006016 CRLF1 cytokine receptor like -
Host Protein Interactions
scientificscientificreport report Structure homology and interaction redundancy for discovering virus–host protein interactions Benoıˆt de Chassey 1,Laure`ne Meyniel-Schicklin 2,3, Anne Aublin-Gex 2,3, Vincent Navratil 2,3,w, Thibaut Chantier 2,3, Patrice Andre´1,2,3 &VincentLotteau2,3+ 1Hospices Civils de Lyon, Hoˆpital de la Croix-Rousse, Laboratoire de virologie, Lyon , 2Inserm, U1111, Lyon , and 3Universite´ de Lyon, Lyon, France Virus–host interactomes are instrumental to understand global purification coupled to mass spectrometry, led to the publication perturbations of cellular functions induced by infection and of the first virus–host interactomes [3–4]. Although incorporation discover new therapies. The construction of such interactomes is, of data from different methods or variation of the same method [5] however, technically challenging and time consuming. Here we has improved the quality of the data sets, diversification of describe an original method for the prediction of high-confidence methods is still clearly needed to generate high-quality interactions between viral and human proteins through comprehensive virus–host interactomes. In addition, regarding a combination of structure and high-quality interactome data. the size of host genome and the huge diversity of viruses, millions Validation was performed for the NS1 protein of the influenza of binary interactions remain to be tested. Therefore, accurate and virus, which led to the identification of new host factors that rapid methods for the identification of cellular interactors control viral replication. controlling viral replication is a major issue and a crucial step Keywords: interactome; prediction; protein interaction; towards the selection of original therapeutic targets and drug structure; virus development. -
Distinct Transcriptomes Define Rostral and Caudal 5Ht Neurons
DISTINCT TRANSCRIPTOMES DEFINE ROSTRAL AND CAUDAL 5HT NEURONS by CHRISTI JANE WYLIE Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Dissertation Advisor: Dr. Evan S. Deneris Department of Neurosciences CASE WESTERN RESERVE UNIVERSITY May, 2010 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of ______________________________________________________ candidate for the ________________________________degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. TABLE OF CONTENTS TABLE OF CONTENTS ....................................................................................... iii LIST OF TABLES AND FIGURES ........................................................................ v ABSTRACT ..........................................................................................................vii CHAPTER 1 INTRODUCTION ............................................................................................... 1 I. Serotonin (5-hydroxytryptamine, 5HT) ....................................................... 1 A. Discovery.............................................................................................. -
TTPAL Promotes Colorectal Tumorigenesis by Stabilizing TRIP6 To
Author Manuscript Published OnlineFirst on April 24, 2019; DOI: 10.1158/0008-5472.CAN-18-2986 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. TTPAL promotes colorectal tumorigenesis by stabilizing TRIP6 to activate Wnt/β-catenin signaling Hongyan Gou1,2, Jessie Qiaoyi Liang2#, Lijing Zhang2, Huarong Chen2, Yanquan Zhang2, Rui Li2, Xiaohong Wang3, Jiafu Ji3, Joanna H. Tong4, Ka-Fai To4, Joseph JY Sung2, Francis KL Chan2, Jing-Yuan Fang1, Jun Yu2* 1 Diversion of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes; Shanghai Institute of Digestive Disease; Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China. 2Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong 3Department of Surgery, Peking University Cancer Hospital and Institute, Beijing, China 4Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, The Chinese University of Hong Kong, Hong Kong # Co-first author. Running title: Role of TTPAL in Colorectal Cancer 1 Downloaded from cancerres.aacrjournals.org on September 25, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on April 24, 2019; DOI: 10.1158/0008-5472.CAN-18-2986 Author -
Original Article Genetic Variants of BIRC3 and NRG1 in the NLRP3 Inflammasome Pathway Are Associated with Non-Small Cell Lung Cancer Survival
Am J Cancer Res 2020;10(8):2582-2595 www.ajcr.us /ISSN:2156-6976/ajcr0117016 Original Article Genetic variants of BIRC3 and NRG1 in the NLRP3 inflammasome pathway are associated with non-small cell lung cancer survival Dongfang Tang1,2,3, Hongliang Liu2,3, Yuchen Zhao2,3, Danwen Qian2,3, Sheng Luo4, Edward F Jr Patz2,5, Li Su6, Sipeng Shen6, David C ChristianI6,7, Wen Gao1, Qingyi Wei2,3,8 1Department of Thoracic Oncology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; 2Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA; 3Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA; 4Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA; 5Department of Radiology and Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA; 6Department of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA; 7Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; 8Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA Received June 27, 2020; Accepted July 5, 2020; Epub August 1, 2020; Published August 15, 2020 Abstract: The nod-like receptor protein 3 (NLRP3) is one of the most characterized inflammasomes, and its genetic variation and functional dysregulation are involved in pathogenesis of several cancers. To systematically evaluate the role of NLRP3 in predicting outcomes of patients with non-small cell lung cancer (NSCLC), we performed a two-phase analysis for associations between genetic variants in NLRP3 inflammasome pathway genes and NSCLC survival by using a published genome-wide association study (GWAS) dataset from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial.