COPYRIGHTED MATERIAL 2 Concepts
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Introduction to Early Main Group Organometallic Chemistry and Catalysis
1 1 Introduction to Early Main Group Organometallic Chemistry and Catalysis Sjoerd Harder University Erlangen-Nürnberg, Inorganic and Organometallic Chemistry, Egerlandstrasse 1, 91058 Erlangen, Germany 1.1 Introduction Although organometallic complexes of the early main groups are well known for their very high reactivity and challenging isolation, they are among the first stud- ied during the pioneering beginnings of the field. Their high nucleophilicity and Brønsted basicity have made them to what they are today: strong polar reagents that are indispensible in modern organic synthesis. It is exactly this high reactivity that has made them potent catalysts for organic transformations that are gener- ally catalyzed by transition metal complexes. Despite their lack of partially filled d-orbitals and their inability to switch reversibly between oxidation states, the scope of their application in catalysis is astounding. As the early main group metal catalysis only started to become popular since the beginning of this century, it is still a young field with ample opportunities for further development. This intro- ductory chapter is specifically written for new graduate students in the field. It gives a very compact overview of the history of early main group organometallic chemistry, synthetic methods, bonding and structures, analytical methods, solu- tion dynamics, and some preliminary low-valent chemistry. This forms the basis for understanding their use in catalysis for which the basic steps are described in the second part of this chapter. For further in-depth information, the reader is referred to the individual chapters in this book. 1.2 s-Block Organometallics 1.2.1 Short History The organometallic chemistry of the highly electropositive early main group metals could not have started without the isolation of these elements in the metallic state. -
A Powerful Framework for the Chemical Design of Molecular Nanomagnets Yan Duan†,1,2, Joana T
Data mining, dashboards and statistics: a powerful framework for the chemical design of molecular nanomagnets Yan Duan†,1,2, Joana T. Coutinho†,*,1,3, Lorena E. Rosaleny†,*,1, Salvador Cardona-Serra1, José J. Baldoví1, Alejandro Gaita-Ariño*,1 1 Instituto de Ciencia Molecular (ICMol), Universitat de València, C/ Catedrático José Beltrán 2, 46980 Paterna, Spain 2 Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel 3 Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal *e-mail: [email protected], [email protected], [email protected] Abstract Three decades of intensive research in molecular nanomagnets have brought the magnetic memory in molecules from liquid helium to liquid nitrogen temperature. The enhancement of this operational temperature relies on a wise choice of the magnetic ion and the coordination environment. However, serendipity, oversimplified theories and chemical intuition have played the main role. In order to establish a powerful framework for statistically driven chemical design, we collected chemical and physical data for lanthanide-based nanomagnets to create a catalogue of over 1400 published experiments, developed an interactive dashboard (SIMDAVIS) to visualise the dataset, and applied inferential statistical analysis to it. We found that the effective energy barrier derived from the Arrhenius equation displays an excellent correlation with the magnetic memory, and that among all chemical families studied, only terbium bis-phthalocyaninato sandwiches and dysprosium metallocenes consistently present magnetic memory up to high temperature, but that there are some promising strategies for improvement. -
1 Introduction
1 Field-control, phase-transitions, and life’s emergence 2 3 4 Gargi Mitra-Delmotte 1* and A.N. Mitra 2* 5 6 7 139 Cite de l’Ocean, Montgaillard, St.Denis 97400, REUNION. 8 e.mail : [email protected] 9 10 2Emeritius Professor, Department of Physics, Delhi University, INDIA; 244 Tagore Park, 11 Delhi 110009, INDIA; 12 e.mail : [email protected] 13 14 15 16 17 18 19 *Correspondence: 20 Gargi Mitra-Delmotte 1 21 e.mail : [email protected] 22 23 A.N. Mitra 2 24 e.mail : [email protected] 25 26 27 28 29 30 31 32 33 34 35 Number of words: ~11748 (without Abstract, references, tables, and figure legends) 36 7 figures (plus two figures in supplementary information files). 37 38 39 40 41 42 43 44 45 46 47 Abstract 48 49 Critical-like characteristics in open living systems at each organizational level (from bio- 50 molecules to ecosystems) indicate that non-equilibrium phase-transitions into absorbing 51 states lead to self-organized states comprising autonomous components. Also Langton’s 52 hypothesis of the spontaneous emergence of computation in the vicinity of a critical 53 phase-transition, points to the importance of conservative redistribution rules, threshold, 54 meta-stability, and so on. But extrapolating these features to the origins of life, brings up 55 a paradox: how could simple organics-- lacking the ‘soft matter’ response properties of 56 today’s complex bio-molecules--have dissipated energy from primordial reactions 57 (eventually reducing CO 2) in a controlled manner for their ‘ordering’? Nevertheless, a 58 causal link of life’s macroscopic irreversible dynamics to the microscopic reversible laws 59 of statistical mechanics is indicated via the ‘functional-takeover’ of a soft magnetic 60 scaffold by organics (c.f. -
Peter Agre, 2003 Nobel Prize Winner in Chemistry
SPECIAL COMMENTARY J Am Soc Nephrol 15: 1093–1095, 2004 Peter Agre, 2003 Nobel Prize Winner in Chemistry MARK A. KNEPPER,* and SOREN NIELSEN† National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland; and †Water and Salt Research Center, University of Aarhus, Aarhus, Denmark. Abstract. Peter C. Agre, an American Society of Nephrology somes after the incorporation of the purified protein. These member, is the recipient of the 2003 Nobel Prize in Chemistry findings sparked a veritable explosion of work that affects for his discovery of the aquaporin water channels. The function several long-standing areas of investigation such as the bio- of many cells requires that water move rapidly into and out of physics of water permeation across cell membranes, the struc- them. There was only indirect evidence that proteinaceous tural biology of integral membrane proteins, the physiology of channels provide this vital activity until Agre and colleagues fluid transport in the kidney and other organs, and the patho- purified aquaporin-1 from human erythrocytes and reported its physiological basis of inherited and acquired disorders of water cDNA sequence. They proved that aquaporin-1 is a specific balance. Agre’s discovery of the first water channel has water channel by cRNA expression studies in Xenopus oocytes spurred a revolution in animal and plant physiology and in and by functional reconstitution of transport activity in lipo- medicine. American Society of Nephrology member, Peter Agre of ing duct, revealed that the increase in water permeability was Johns Hopkins University, received the 2003 Nobel Prize in associated with the appearance of membrane particle aggre- Chemistry for his discovery of the aquaporins, a family of gates in the apical plasma membrane. -
Page 1 of 13 Pleasersc Do Not Advances Adjust Margins
RSC Advances This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/advances Page 1 of 13 PleaseRSC do not Advances adjust margins RSC Advances REVIEW Applications of supramolecular capsules derived from resorcin[4]arenes, calix[n]arenes and metallo-ligands: from Received 00th January 20xx, Accepted 00th January 20xx biology to catalysis a a,b a DOI: 10.1039/x0xx00000x Chiara M. A. Gangemi, Andrea Pappalardo* and Giuseppe Trusso Sfrazzetto* www.rsc.org/ Supramolecular architectures developed after the initial studies of Cram, Lehn and Pedersen have become structurally complexes but fascinating. In this context, supramolecular capsules based on resorcin[4]arenes, calix[n]arenes or metal- ligand structures are dynamic assemblies inspired to biological systems. -
Channel Hoppers Land Chemistry Nobel Jim Giles Two Structural Biologists Credited With
news Channel hoppers land chemistry Nobel Jim Giles Two structural biologists credited with A. ABBOTT transforming our understanding of how cells work have been awarded the 2003 R. BOREA/AP Nobel Prize in Chemistry. Peter Agre of Johns Hopkins University in Baltimore and Roderick MacKinnon of the Rockefeller University in New York share the prize for experiments that revealed the intri- cate workings of the channels that allow ions and water to enter and leave cells. MacKinnon is perhaps the most widely tipped Nobel winner of recent years.In a land- mark 1998 paper (D. A. Doyle et al. Science 280, 69–77; 1998), he and his colleagues pro- vided the first detailed three-dimensional Roderick MacKinnon (left) and Peter Agre’s work on cell-membrane proteins has won them recognition. picture of a protein that acts as a channel to control the flow of potassium ions across cell deserved a Nobel.“His work is a tour de force,” Kuhajda and P. Agre J. Biol. Chem. 263, membranes. This channel is immensely says John Walker, a structural biologist at the 15634–15642; 1988). “No one had seen it important to neuroscientists, as the flow of University of Cambridge, UK. “The award is before,but we found that it was the fifth most potassium ions helps to generate the voltage absolutely spot on and richly deserved.” abundant protein in the cell,” says Agre. pulses that brain cells use to communicate. MacKinnon was on holiday when the “That’s like coming across a big town that’s Before MacKinnon’s paper, many biolo- prize was announced, and couldn’t be not on the map.It gets your attention.” gists had questioned whether the technique informed directly by the Nobel prize com- The protein, now known as aquaporin 1, he used — X-ray crystallography — could be mittee. -
Nobel Laureates Endorse Joe Biden
Nobel Laureates endorse Joe Biden 81 American Nobel Laureates in Physics, Chemistry, and Medicine have signed this letter to express their support for former Vice President Joe Biden in the 2020 election for President of the United States. At no time in our nation’s history has there been a greater need for our leaders to appreciate the value of science in formulating public policy. During his long record of public service, Joe Biden has consistently demonstrated his willingness to listen to experts, his understanding of the value of international collaboration in research, and his respect for the contribution that immigrants make to the intellectual life of our country. As American citizens and as scientists, we wholeheartedly endorse Joe Biden for President. Name Category Prize Year Peter Agre Chemistry 2003 Sidney Altman Chemistry 1989 Frances H. Arnold Chemistry 2018 Paul Berg Chemistry 1980 Thomas R. Cech Chemistry 1989 Martin Chalfie Chemistry 2008 Elias James Corey Chemistry 1990 Joachim Frank Chemistry 2017 Walter Gilbert Chemistry 1980 John B. Goodenough Chemistry 2019 Alan Heeger Chemistry 2000 Dudley R. Herschbach Chemistry 1986 Roald Hoffmann Chemistry 1981 Brian K. Kobilka Chemistry 2012 Roger D. Kornberg Chemistry 2006 Robert J. Lefkowitz Chemistry 2012 Roderick MacKinnon Chemistry 2003 Paul L. Modrich Chemistry 2015 William E. Moerner Chemistry 2014 Mario J. Molina Chemistry 1995 Richard R. Schrock Chemistry 2005 K. Barry Sharpless Chemistry 2001 Sir James Fraser Stoddart Chemistry 2016 M. Stanley Whittingham Chemistry 2019 James P. Allison Medicine 2018 Richard Axel Medicine 2004 David Baltimore Medicine 1975 J. Michael Bishop Medicine 1989 Elizabeth H. Blackburn Medicine 2009 Michael S. -
Organometallic Catalysts in Synthetic Organic Chemistry: from Reactions in Aqueous Media to Gold Catalysis*
Pure Appl. Chem., Vol. 80, No. 5, pp. 831–844, 2008. doi:10.1351/pac200880050831 © 2008 IUPAC Organometallic catalysts in synthetic organic chemistry: From reactions in aqueous media to gold catalysis* Jean-Pierre Genêt‡, Sylvain Darses, and Véronique Michelet Selective Organic Synthesis and Natural Products Laboratory, Ecole Nationale Supérieure de Chimie de Paris, UMR CNRS 7573, 11 rue P. et M. Curie, 75231 Paris Cedex 05, France Abstract: Water has attracted significant attention as an alternative solvent for transition- metal-catalyzed reactions. The use of water as solvent allows simplified procedures for sep- aration of the catalyst from the products and recycling of the catalyst. Water is an inexpen- sive reagent for the formation of oxygen-containing products such as alcohols. The use of water as a medium for promoting organometallic and organic reactions is also of great po- tential. This chapter will focus on old and recent developments in the design and applications of some catalytic reactions using aqueous-phase Pd, Rh, Pt, and Au complexes. Keywords: water; catalysis; palladium; gold; rhodium; potassium organotrifluoroborates; asymmetric 1,4-addition; recycling. INTRODUCTION Over the past few years, significant research has been directed toward the development of new tech- nologies for environmentally benign processes. The use of water as solvent in homogeneous metal-cat- alyzed reactions has gained increasing attention because of the potential environmental and economic benefits of replacing organic solvents with water. Indeed, water is an attractive solvent because it is in- expensive and nontoxic; the most attractive feature is its utility in the development of green and envi- ronmentally safe processes [1]. -
Part III Project 2016/17 Professor Chris Hunter Physical Organic
Department of Chemistry: Part III Project 2016/17 Professor Chris Hunter Physical Organic Chemistry or Synthetic Supramolecular Chemistry EMAIL [email protected] Group web site http://www-hunter.ch.cam.ac.uk/ Contact details: I will be available to discuss projects on Monday 15th May (please email to make an appointment) The success of synthetic chemistry in the last century was built on the development of a set of design rules that allowed the quantitative prediction of reactivity and conformation based simply on chemical structure. The goal of our research is to establish a comparable set of rules that can be used for the design of non-covalent systems with equal reliability. Research projects are available in different areas and can be tailored to involve combinations of different techniques: organic synthesis; coordination chemistry; structural and thermodynamic characterisation of intermolecular complexes using NMR spectroscopy, mass spectrometry, X-ray crystallography; high-throughput physical organic chemistry; molecular design and molecular modelling. Physical Organic Chemistry: Quantitative Non-Covalent Chemistry Synthetic supramolecular systems are ideally suited for the systematic study and quantitative determination of the thermodynamic properties of non-covalent interactions. We are developing new experimental methods for quantifying the relative contributions of different factors that influence the behaviour of complex systems. By characterising the relationship between chemical structure and thermodynamic properties, we aim to develop rules of thumb (and software) for predicting the properties of molecular systems based on a quantitative fundamental understanding of non-covalent interactions. This project will involve some synthetic chemistry, but the focus will be on quantitative physical measurements using a variety of spectroscopic techniques and instrumentation as well as mathematical model building. -
Nobel Week Stockholm 2018 – Detailed Information for the Media
Nobel Week Stockholm • 2018 Detailed information for the media December 5, 2018 Content The 2018 Nobel Laureates 3 The 2018 Nobel Week 6 Press Conferences 6 Nobel Lectures 8 Nobel Prize Concert 9 Nobel Day at the Nobel Museum 9 Nobel Week Dialogue – Water Matters 10 The Nobel Prize Award Ceremony in Stockholm 12 Presentation Speeches 12 Musical Interludes 13 This Year’s Floral Decorations, Concert Hall 13 The Nobel Banquet in Stockholm 14 Divertissement 16 This Year’s Floral Decorations, City Hall 20 Speeches of Thanks 20 End of the Evening 20 Nobel Diplomas and Medals 21 Previous Nobel Laureates 21 The Nobel Week Concludes 22 Follow the Nobel Prize 24 The Nobel Prize Digital Channels 24 Nobelprize org 24 Broadcasts on SVT 25 International Distribution of the Programmes 25 The Nobel Museum and the Nobel Center 25 Historical Background 27 Preliminary Timetable for the 2018 Nobel Prize Award Ceremony 30 Seating Plan on the Stage, 2018 Nobel Prize Award Ceremony 32 Preliminary Time Schedule for the 2018 Nobel Banquet 34 Seating Plan for the 2018 Nobel Banquet, City Hall 35 Contact Details 36 the nobel prize 2 press MeMo 2018 The 2018 Nobel Laureates The 2018 Laureates are 12 in number, including Denis Mukwege and Nadia Murad, who have been awarded the Nobel Peace Prize Since 1901, the Nobel Prize has been awarded 590 times to 935 Laureates Because some have been awarded the prize twice, a total of 904 individuals and 24 organisations have received a Nobel Prize or the Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel -
Comprehensive Organometallic Chemistry II a Review of the Literature 1982-1994
Comprehensive Organometallic Chemistry II A Review of the Literature 1982-1994 Editors-in-Chief Edward W. Abel University ofExeter, UK F. Gordon A. Stone Baylor University, Waco, TX, USA Geoffrey Wilkinson Imperial College of Science, Technology and Medicine, London, UK Volume 1 LITHIUM, BERYLLIUM, AND BORON GROUPS Volume Editor Catherine E. Housecroft Institut für Anorganische Chemie der Universität Basel, Switzerland PERGAMON Contents of All Volumes Volume 1 Lithium, Beryllium, and Boron Groups 1 Alkali Metals 2 Beryllium 3 Magnesium, Calcium, Strontium and Barium 4 Compounds with Three- or Four-coordinate Boron, Emphasizing Cyclic Systems 5 Boron Rings Ligated to Metals 6 Polyhedral Carbaboranes 7 Main-group Heteroboranes 8 Metallaboranes 9 Transition Metal Metallacarbaboranes 10 Aluminum 11 Gallium, Indium and Thallium, Excluding Transition Metal Derivatives 12 Transition Metal Complexes of Aluminum, Gallium, Indium and Thallium Author Index Subject Index Volume 2 Silicon Group, Arsenic, Antimony, and Bismuth 1 Organosilanes 2 Carbacyclic Silanes 3 Organopolysilanes 4 Silicones 5 Germanium 6 Tin 7 Lead 8 Arsenic, Antimony and Bismuth Author Index Subject Index Volume 3 Copper and Zinc Groups 1 Gold 2 Copper and Silver 3 Mercury 4 Cadmium and Zinc Author Index Subject Index Volume 4 Scandium, Yttrium, Lanthanides and Actinides, and Titanium Group 1 Zero Oxidation State Complexes of Scandium, Yttrium and the Lanthanide Elements 2 Scandium, Yttrium, and the Lanthanide and Actinide Elements, Excluding their Zero Oxidation State Complexes -
Coordination Chemistry (See Chapter 20, H&S 3Rd Ed.)
Coordination Chemistry (see Chapter 20, H&S 3rd Ed.) Transition metal elements, particularly ions, have a strong tendency to form compounds with Lewis bases. Why? Lewis base: electron pair donor egs. H2O, NH3 n+ Lewis acid: electron pair acceptor egs. M , BH3 ‘low lying’ empty orbitals: lower in energy than HOMO of Lewis case Lewis acidity enhanced by positive charge so TM ions are good Lewis bases 2+ 3+ familiar examples: AlCl3, BF3 from main group and M , M in TM series Type of bonding in these compounds? ‘coordinative’ or ‘dative’ bonds to form Lewis base ‘adducts’ L→M TM-Lewis base ‘adducts’ are often referred to as (i) TM ‘complexes’ OR (ii) coordination complexes NB: still polar covalent bonds – this just defines where the pair of electrons came from Some more definitions: ligand: molecule or ion that can act as a Lewis base to a metal - egs. Cl , PR3, ROR (R = generic term for an alkyl) donor atoms: atoms that are in direct contact with the metal ion O in R2O→M denticity: number of donor atoms per ligand; range from 1 to >6 unidentate bidentate tridentate O H O H2N NH2 2 O O water en diglyme N O O O N N O O N porphin 15-C-5 tetradentate pentadentate chelate: multidentate ligands forms rings; M tend to be very stable, OO especially 5 and 6 member chelate rings acac ‘bite’ or ‘bite angle’: a measure of the span or size of a chelate ligand; depends on M-L distance M OO acac coordination complex MLn generic terms commonly used: L neutral Lewis base (electron pair donor) X anionic donor (eg.