And Effective Population Size

Total Page:16

File Type:pdf, Size:1020Kb

And Effective Population Size 1/25/2019 Lineage Sorting is a function of time (in Coalescent analyses of genome-scale indel (insertion- generations) and deletion) data provide a unique source of information effective population about avian species tree and ancestral population sizes size (Ne) Edward Braun - University of Florida smaller populations tend to Peter Houde & Nitish Narula - New Mexico State University have more recent common Siavash Mirarab - University of California San Diego ancestors PAG, January 2019 Preview Probability of concordance with species tree For a rooted three-taxon species tree the probability that a gene Background tree matches the species tree is simple: −푡 Indel data 2 2푁e 푃 = 1 − 3 Estimating species trees with indels (Pamilo and Nei 1988 Mol Biol Evol 5:568-583) Avian demography at the K-Pg boundary Where P is the probability that a gene tree matches the species tree, t is the internal branch length (in generations), and Ne is the effective population size Lineage Sorting Hemiplasy Evidence of Hemiplasy and ILS - Time-dependent process - Alleles can have evolutionary by which species lose histories that differ from the ancestral polymorphissm species tree Incongruent gene trees - Result of incomplete lineage through via genetic drift - problem: apparent gene tree incongruence can result sorting (ILS) from incorrect gene phylogenies (will cause the amount ancestral of incongruence to be overestimated) polymorphism ancestral polymorphism the shorter the time Incongruent genetic markers, e.g., transposable elements complete between speciations, - problem: too few and unequally distributed to be free of the more ILS, sampling artifacts complete the more complete hemiplasy Indels improve on these shortcomings because they are a very large data set with limited true homoplasy Robinson et al 2008 PNAS 105:14477-14481 1 1/25/2019 Jarvis et al 2014 Insertion/Deletion (Indel) Data Set1 Available estimates… (from Jarvis et al. 2014) Numbers of Indels ____________________Indel Size Classes_____________________ >1bp >1bp >10bp >100bp <30bp1 Intron Indels 3,918, 322 2,894,642 881,372 75,724 this- study UCE Indels 1,308,980 963,012 333,722 19,745 - Exon Indels - - - - 157,632 Total 5,384,934 3,857,654 1,215,094 95,469 - 1scored from 48 genomes representing all avian orders 2exon indels >30bp were omitted to avoid mis-scoring of transcript variants Indel Frequency and Homoplasy as Function of Length ASTRAL intron tree (nt gene trees) similar and Putative Mutational Origin to Jarvis MP-EST* TENT Medium_ground-finch Zebra_finch American_crow Golden-collared_manakin Indel Rifleman Budgerigar Kea Peregrine_falcon Red-legged_seriema 0.89 Carmine_bee-eater Downy_woodpecker Consistency (%RI = 1.0) = (%RI Consistency Rhinoceros_hornbill Transposable Elements Bar-tailed_trogon Cuckoo-roller Speckled_mousebird White-tailed_eagle Bald_eagle Turkey_vulture Barn_owl Little_egret Dalmatian_pelican Crested_ibis 0.99 Great_cormorant Emperor_penguin Adelie_penguin 0.98 Northern_fulmar Unequal Crossing Over Red-throated_loon 0.54 Sunbittern White-tailed_tropicbird 0.98 0.94 Grey-crowned_crane 0.47 0.46 Killdeer Hoatzin Annas_hummingbird # total indels (log scale) (log indels total # Chimney_swift Replication Slippage Chuck-wills-widow 0.84 MacQueens_bustard Common_cuckoo Red-crested_turaco Brown_mesite 0.8 Yellow-throated_sandgrouse Pigeon 1 2 3 American_flamingo 10 10 10 Great-crested_grebe Chicken Turkey Pekin_duck Common_ostrich indel length (log scale) White-throated_tinamou ASTRAL intron tree (indel gene trees) also Estimating indel species trees similar to Jarvis MP-EST* TENT Medium_ground-finch Zebra_finch American_crow Golden-collared_manakin Rifleman Budgerigar Kea Peregrine_falcon 1. Indel gene trees – generate gene trees using binary Red-legged_seriema 0.98 Carmine_bee-eater Downy_woodpecker 0.97 coded indel data and combine gene trees using a Rhinoceros_hornbill 0.49 Bar-tailed_trogon Cuckoo-roller Speckled_mousebird standard coalescent method (e.g., ASTRAL) White-tailed_eagle Bald_eagle Turkey_vulture Barn_owl 0.97 Crested_ibis Dalmatian_pelican 0.36 Little_egret 2. Direct analysis of indels – treat binary codes for indels Great_cormorant Emperor_penguin Adelie_penguin as bipartitions from gene trees and in the multispecies 0.65 Northern_fulmar Red-throated_loon 0.74 0.51 Sunbittern 0.54 White-tailed_tropicbird coalescent framework Hoatzin 0.8 Grey-crowned_crane 0.63 Killdeer Annas_hummingbird Chimney_swift Chuck-wills-widow 0.47 MacQueens_bustard Common_cuckoo Red-crested_turaco Brown_mesite 0.48 Yellow-throated_sandgrouse 0.99 Pigeon American_flamingo Great-crested_grebe Chicken Turkey Pekin_duck Common_ostrich White-throated_tinamou 2 1/25/2019 ASTRAL UCE tree (nt gene trees) differs… Indel species tree conclusions Medium_ground-finch Zebra_finch American_crow Golden-collared_manakin Rifleman Budgerigar Kea ASTRAL tree generated using UCE nt gene trees 0.85 Peregrine_falcon Red-legged_seriema Speckled_mousebird differs Carmine_bee-eater Downy_woodpecker Rhinoceros_hornbill Bar-tailed_trogon Columbea is not monophyletic Cuckoo-roller 0.96 White-tailed_eagle Bald_eagle Flamingos+grebes sister to all other Neoaves 0.96 Turkey_vulture Barn_owl Little_egret Topology identical to concatenated UCE analyses Dalmatian_pelican 0.62 Crested_ibis Accipitriforms+owl clade sister to Cavitaves Great_cormorant Emperor_penguin Adelie_penguin 0.99 Northern_fulmar Red-throated_loon 0.68 Sunbittern White-tailed_tropicbird ASTRAL tree generated using UCE indel gene even 0.47 Annas_hummingbird 0.79 Chimney_swift Chuck-wills-widow more incongruent (albeit poorly-supported) 0.5 Killdeer 0.98 Hoatzin Grey-crowned_crane Brown_mesite Columbea is not monophyletic 0.78 Yellow-throated_sandgrouse 0.91 Pigeon 0.93 MacQueens_bustard Pigeon sister to all other Neoaves Red-crested_turaco Common_cuckoo Flamingos+grebes sister to “expanded” waterbird clade American_flamingo Great-crested_grebe Chicken Accipitriforms+owl clade sister to most other landbirds Turkey Pekin_duck But seriemas sister to accipitriforms+owls Common_ostrich White-throated_tinamou ASTRAL UCE tree (indel gene trees) differs even more… Direct indel analysis: Quartet scores Medium_ground-finch Zebra_finch American_crow Golden-collared_manakin Rifleman Budgerigar Kea Reflect from the percentage of consistent alleles per tree Peregrine_falcon Carmine_bee-eater Downy_woodpecker branch (in rooted taxon triplets) 0.99 0.97 Rhinoceros_hornbill 0.55 Bar-tailed_trogon Cuckoo-roller Speckled_mousebird White-tailed_eagle Bald_eagle 0.8 Estimated using a novel implementation of ASTRAL for 0.5 Turkey_vulture Barn_owl Red-legged_seriema 1 0.91 Crested_ibis binary data Dalmatian_pelican 0.55 Little_egret Great_cormorant Emperor_penguin Adelie_penguin 0.65 Northern_fulmar Red-throated_loon 100% = complete lineage sorting 0.53 Sunbittern 0.4 White-tailed_tropicbird 0.37 Grey-crowned_crane 33% = random segregation (zero length branch) 0.82 0.41 Killdeer Hoatzin American_flamingo 0.54 Great-crested_grebe Annas_hummingbird Chimney_swift Chuck-wills-widow 1 0.85 MacQueens_bustard see theorem 2 in Sayyari & Mirarab 2016. “Fast Coalescent-Based 0.87 Red-crested_turaco 0.37 Common_cuckoo Brown_mesite Computation of Local Branch Support from Quartet Frequencies.” Yellow-throated_sandgrouse Pigeon Chicken Molecular Biology and Evolution 33 (7): 1654–68 Turkey Pekin_duck Common_ostrich White-throated_tinamou TENT RAxML Phylogram >100bp Indel Quartet Scores Indel species tree conclusions ASTRAL tree generated using intron nt gene trees is similar to Jarvis MP-EST* TENT Division of Neoaves into Columbea and Passerea Accipitriforms+owl clade sister to all other landbirds ASTRAL tree generated using intron indel gene trees also similar to Jarvis MP-EST* TENT Same basal division and positions for accipitriforms + owls 3 1/25/2019 Origin of Neoavian Orders Various N Estimation Analyses Performed e approximately coincident with ASTRAL coalescent quartet scores – calculated from rooted triplets (on which theory of Ne calculation is premised) the K/Pg boundary Using Ancestral State Reconstruction of Generation Lengths • all indels • >1bp indels • >10bp indels • >100bp indels – today’s focus Using Uniform Generation Length • >100bp indels Parsimony %Retention Index (RI)=1.0 – optimized on whole tree • >100bp indels Comparison of Ne Estimates Coalescent >100bp indels Effective Population Sizes through deep time fails to recover 9 clades (due to zero length branches) based on indels1 range = 86,695 to 5,059,926 (same min/max clades all analyses) Coalescent all indels 10,000,000 ) Cretaceous Paleogene e 8,000,000 fails to recover 4 clades N estimates far higher than all other analyses 6,000,000 range = 292,525 to 40,567,438 4,000,000 2,000,000 Parsimony >100bp indels ( Population 0 fails to recover 2 clades 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 estimates closest to >100bp coalescent Millions of Years Ago range = 39,941 to 9,864,422 1example shown derived from parsimony-scored %RI=1.0 Largest Ne estimates (based on >100bp indels) Ecological Theory of Adaptive Radiation dove/mesite/sandgrouse 5,059,926 parrots/passerines (Psittacopasserae) 2,153,483 Ecological Opportunity bee-eater/woodpecker 1,881,362 (e.g., increased habitat or resources , absence of heterospecific antagonists, relaxation of directional or stabilizing selection) Australaves 1,784,165 crane/shorebird 1,207,281 coly/coural/trogon/hornbill/bee-eater/woodpecker 1,203,717 Ecological Release flamingo/grebe/dove/mesite/sandgrouse
Recommended publications
  • Dense Sampling of Bird Diversity Increases Power of Comparative Genomics
    Article Dense sampling of bird diversity increases power of comparative genomics https://doi.org/10.1038/s41586-020-2873-9 A list of authors and affiliations appears at the end of the paper. Received: 9 August 2019 Whole-genome sequencing projects are increasingly populating the tree of life and Accepted: 27 July 2020 characterizing biodiversity1–4. Sparse taxon sampling has previously been proposed Published online: 11 November 2020 to confound phylogenetic inference5, and captures only a fraction of the genomic Open access diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird Check for updates families—including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confdently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specifc variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will ofer new perspectives on evolutionary processes in cross-species comparative analyses and assist in eforts to conserve species.
    [Show full text]
  • Prezentace Aplikace Powerpoint
    PTÁCI 1.část Systém ptáků Systém ptáků -zatím stále velmi nestabilní Passerimorphae - Psittaciformes, Passeriformes Falconiformes - Coliiformes, Trogoniformes, Coraciimorphae Bucerotiformes, Strigiformes Piciformes, Coraciiformes Accipitrimorphae - Accipitriformes - Pelecaniformes Suliformes Pelecanimorphae Ciconiiformes Procellariimorphae - Sphenisciformes, Procellariiformes Gaviimorphae - Gaviiformes Phaethontimorphae Cursorimorphae - Gruiformes, Charadriiformes Passerea Opisthocomiformes - Caprimulgiformes, Neoaves Caprimulgimorphae Apodiformes - Cuculiformes, Musophagifomes, Otidimorphae Otidiformes Columbimorphae - Columbiformes, Pterocliformes, Columbea Mesitornithiformes Phoenicopterimorphae - Podicipediformes, Phoenicopteriformes PTÁCI • opeření, přední končetiny- křídla, kostrční žláza • pneumatizace kostí, heterocélní obratle • bipední pohyb (palec dozadu, ostatní prsty dopředu) • srůsty kostí, srůsty na lebce, zobák (ramfotéka) • srůst klíčních kostí (furcula) • zvětšení koncového mozku, zdokonalení oka a ucha • malé plíce se vzdušnými vaky, endotermie • vejce s vápenitou skořápkou, péče o mláďata Avifauna ČR • dnes známo asi 10 000 druhů (druhá nejpočetnější „třída“) • u nás 403 druhů ptáků (k 12.12.2018) • u nás asi 200 hnízdících druhů • Česká společnost ornitologická (www.birdlife.cz) Létaví - Neognathae Řád: HRABAVÍ (Galliformes) - zavalití ptáci, pozemní (ale spí na větvích) - noha anizodaktylní (kráčivá), silná – hrabavá, silné tupé drápy, často ostruha - krátký zobák, na hlavě časté kožené výrůstky - pohlaví často odlišně
    [Show full text]
  • Dieter Thomas Tietze Editor How They Arise, Modify and Vanish
    Fascinating Life Sciences Dieter Thomas Tietze Editor Bird Species How They Arise, Modify and Vanish Fascinating Life Sciences This interdisciplinary series brings together the most essential and captivating topics in the life sciences. They range from the plant sciences to zoology, from the microbiome to macrobiome, and from basic biology to biotechnology. The series not only highlights fascinating research; it also discusses major challenges associated with the life sciences and related disciplines and outlines future research directions. Individual volumes provide in-depth information, are richly illustrated with photographs, illustrations, and maps, and feature suggestions for further reading or glossaries where appropriate. Interested researchers in all areas of the life sciences, as well as biology enthusiasts, will find the series’ interdisciplinary focus and highly readable volumes especially appealing. More information about this series at http://www.springer.com/series/15408 Dieter Thomas Tietze Editor Bird Species How They Arise, Modify and Vanish Editor Dieter Thomas Tietze Natural History Museum Basel Basel, Switzerland ISSN 2509-6745 ISSN 2509-6753 (electronic) Fascinating Life Sciences ISBN 978-3-319-91688-0 ISBN 978-3-319-91689-7 (eBook) https://doi.org/10.1007/978-3-319-91689-7 Library of Congress Control Number: 2018948152 © The Editor(s) (if applicable) and The Author(s) 2018. This book is an open access publication. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
    [Show full text]
  • Modern Birds Classification System Tinamiformes
    6.1.2011 Classification system • Subclass: Neornites (modern birds) – Superorder: Paleognathae, Neognathae Modern Birds • Paleognathae – two orders, 49 species • Struthioniformes—ostriches, emus, kiwis, and allies • Tinamiformes—tinamous Ing. Jakub Hlava Department of Zoology and Fisheries CULS Tinamiformes • flightless • Dwarf Tinamou • consists of about 47 species in 9 genera • Dwarf Tinamou ‐ 43 g (1.5 oz) and 20 cm (7.9 in) • Gray Tinamou ‐ 2.3 kg (5.1 lb) 53 cm (21 in) • small fruits and seeds, leaves, larvae, worms, and mollusks • Gray Tinamou 1 6.1.2011 Struthioniformes Struthioniformes • large, flightless birds • Ostrich • most of them now extinct • Cassowary • chicks • Emu • adults more omnivorous or insectivorous • • adults are primarily vegetarian (digestive tracts) Kiwi • Emus have a more omnivorous diet, including insects and other small animals • kiwis eat earthworms, insects, and other similar creatures Neognathae Galloanserae • comprises 27 orders • Anseriformes ‐ waterfowl (150) • 10,000 species • Galliformes ‐ wildfowl/landfowl (250+) • Superorder Galloanserae (fowl) • Superorder Neoaves (higher neognaths) 2 6.1.2011 Anseriformes (screamers) Anatidae (dablling ducks) • includes ducks, geese and swans • South America • cosmopolitan distribution • Small group • domestication • Large, bulky • hunted animals‐ food and recreation • Small head, large feet • biggest genus (40‐50sp.) ‐ Anas Anas shoveler • mallards (wild ducks) • pintails • shlhovelers • wigeons • teals northern pintail wigeon male (Eurasian) 3 6.1.2011 Tadorninae‐
    [Show full text]
  • AOU Classification Committee – North and Middle America
    AOU Classification Committee – North and Middle America Proposal Set 2016-C No. Page Title 01 02 Change the English name of Alauda arvensis to Eurasian Skylark 02 06 Recognize Lilian’s Meadowlark Sturnella lilianae as a separate species from S. magna 03 20 Change the English name of Euplectes franciscanus to Northern Red Bishop 04 25 Transfer Sandhill Crane Grus canadensis to Antigone 05 29 Add Rufous-necked Wood-Rail Aramides axillaris to the U.S. list 06 31 Revise our higher-level linear sequence as follows: (a) Move Strigiformes to precede Trogoniformes; (b) Move Accipitriformes to precede Strigiformes; (c) Move Gaviiformes to precede Procellariiformes; (d) Move Eurypygiformes and Phaethontiformes to precede Gaviiformes; (e) Reverse the linear sequence of Podicipediformes and Phoenicopteriformes; (f) Move Pterocliformes and Columbiformes to follow Podicipediformes; (g) Move Cuculiformes, Caprimulgiformes, and Apodiformes to follow Columbiformes; and (h) Move Charadriiformes and Gruiformes to precede Eurypygiformes 07 45 Transfer Neocrex to Mustelirallus 08 48 (a) Split Ardenna from Puffinus, and (b) Revise the linear sequence of species of Ardenna 09 51 Separate Cathartiformes from Accipitriformes 10 58 Recognize Colibri cyanotus as a separate species from C. thalassinus 11 61 Change the English name “Brush-Finch” to “Brushfinch” 12 62 Change the English name of Ramphastos ambiguus 13 63 Split Plain Wren Cantorchilus modestus into three species 14 71 Recognize the genus Cercomacroides (Thamnophilidae) 15 74 Split Oceanodroma cheimomnestes and O. socorroensis from Leach’s Storm- Petrel O. leucorhoa 2016-C-1 N&MA Classification Committee p. 453 Change the English name of Alauda arvensis to Eurasian Skylark There are a dizzying number of larks (Alaudidae) worldwide and a first-time visitor to Africa or Mongolia might confront 10 or more species across several genera.
    [Show full text]
  • Wqfm: Statistically Consistent Genome-Scale Species Tree Estimation from Weighted Quartets
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.30.403352; this version posted December 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. wQFM: Statistically Consistent Genome-scale Species Tree Estimation from Weighted Quartets Mahim Mahbub1;y, Zahin Wahab1;y, Rezwana Reaz1;y, M. Saifur Rahman1, and Md. Shamsuzzoha Bayzid1,* 1Department of Computer Science and Engineering Bangladesh University of Engineering and Technology Dhaka-1205, Bangladesh yThese authors contributed equally to this work *Corresponding author: shams [email protected] Abstract Motivation: Species tree estimation from genes sampled from throughout the whole genome is complicated due to the gene tree-species tree discordance. Incom- plete lineage sorting (ILS) is one of the most frequent causes for this discordance, where alleles can coexist in populations for periods that may span several speciation events. Quartet-based summary methods for estimating species trees from a collec- tion of gene trees are becoming popular due to their high accuracy and statistical guarantee under ILS. Generating quartets with appropriate weights, where weights correspond to the relative importance of quartets, and subsequently amalgamating the weighted quartets to infer a single coherent species tree allows for a statistically consistent way of estimating species trees. However, handling weighted quartets is challenging. Results: We propose wQFM, a highly accurate method for species tree es- timation from multi-locus data, by extending the quartet FM (QFM) algorithm to a weighted setting.
    [Show full text]
  • Birds of Madagascar and Their Conservation
    Birds of Madagascar and Their Conservation byMichael S. Putnam Department ofZoology University of Wisconsin tl Madison, Wisconsin I 100 plus Ecstatic Testimonials Striding up a steep hillside with the Council for Bird Preservation (Collar loud whisper of a rushing stream in and Stuart, 1985), 28 species of Warm, nurturing foods. the background, I stepped into a Malagasy birds are threatened and 14 mist-net lane I had cut a week before. species are considered as near­ Cook monthly, As I entered the clearing, a medium­ threatened. These species represent freeze in packets, sized brown bird squawked and flew between one-fifth and one-third of off from eye-level. Carefully search­ the island's endemic bird species. serve in seconds. ing the nearby vegetation, I became one of a lucky handful of foreigners The primary threats to Madagas­ At fine stores, orcall... to ever find a nest of the Brown car's birds today, habitat loss and Mesite (Mesitornis unicolor), a rare overhunting, have already eliminated 1(800) BIRD YUM forest-dwelling relative of rails. The many unique Malagasy creatures. 1 (800) 247-3986 large egg, delicately colored in sal­ Since people first arrived on Mada­ mon with liver-colored spots, rested gascar 1500 to 2000 years ago, much 13330 Bessemer Street precariously in a frail, dove-like nest of the island has been deforested, Van Nuys, CA91401-3000 positioned at the end of a sloping leaving the red lateritic soil exposed (818) 997-0598 sapling. This encounter with the and eroding, with little chance for Brown Mesite is just one of many forest regeneration.
    [Show full text]
  • Attempting to See One Member of Each of the World's Bird Families Has
    Attempting to see one member of each of the world’s bird families has become an increasingly popular pursuit among birders. Given that we share that aim, the two of us got together and designed what we believe is the most efficient strategy to pursue this goal. Editor’s note: Generally, the scientific names for families (e.g., Vireonidae) are capital- ized, while the English names for families (e.g., vireos) are not. In this article, however, the English names of families are capitalized for ease of recognition. The ampersand (&) is used only within the name of a family (e.g., Guans, Chachalacas, & Curassows). 8 Birder’s Guide to Listing & Taxonomy | October 2016 Sam Keith Woods Ecuador Quito, [email protected] Barnes Hualien, Taiwan [email protected] here are 234 extant bird families recognized by the eBird/ Clements checklist (2015, version 2015), which is the offi- T cial taxonomy for world lists submitted to ABA’s Listing Cen- tral. The other major taxonomic authority, the IOC World Bird List (version 5.1, 2015), lists 238 families (for differences, see Appendix 1 in the expanded online edition). While these totals may appear daunting, increasing numbers of birders are managing to see them all. In reality, save for the considerable time and money required, finding a single member of each family is mostly straightforward. In general, where family totals or family names are mentioned below, we use the eBird/Clements taxonomy unless otherwise stated. Family Feuds: How do world regions compare? In descending order, the number of bird families supported by con- tinental region are: Asia (125 Clements/124 IOC), Africa (122 Clem- ents/126 IOC), Australasia (110 Clements/112 IOC), North America (103 Clements/IOC), South America (93 Clements/94 IOC), Europe (73 Clements/74 IOC ), and Antarctica (7 Clements/IOC).
    [Show full text]
  • Volume 2 Book with NUMBER 1-402
    FLORA OF KARNATAKA A Checklist Volume - 2 : Gymnosperms & Angiosperms CITATION Karnataka Biodiversity Board, 2019. FLORA OF KARNATAKA, A Checklist, Volume – 2: Gymnosperms and Angiosperms. 1 - 1002 (Published by Karnataka Biodiversity Board) Published: December, 2019. ISBN - 978-81-939228-1-1 © Karnataka Biodiversity Board, 2019 ALL RIGHTS RESERVED • No part of this book, or plates therein, may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying recording or otherwise without the prior permission of the publisher. • This book is sold subject to the condition that it shall not, by way of trade, be lent, re-sold, hired out or otherwise disposed of without the publisher’s consent, in any form of binding or cover other than that in which it is published. • The correct price of this publication is the price printed on this page. Any revised price indicated by a rubber stamp or by a sticker or by any other means is incorrect and should be unacceptable. DISCLAIMER • THE CONTENTS INCLUDING TEXT, PLATES AND OTHER INFORMATION GIVEN IN THE BOOK ARE SOLELY THE AUTHOR’S RESPONSIBILITY AND BOARD DOES NOT HOLD ANY LIABILITY. PRICE: ` 2000/- (Two thousand rupees only). Printed by : Peacock Advertising India Pvt Ltd. # 158 & 159, 3rd Main, 7th Cross, Chamarajpet, Bengaluru – 560 018 | Ph: 080 - 2662 0566 Web: www.peacockgroup.in FOREWORD About 60% of the Western Ghats is present in Karnataka State, with this large part of the peninsular green cover coupled with inland forest plateau enriched by the seven river systems, the State of Karnataka showcases a wider floral wealth harboring highest number of apex predators all of which is conserved by a framework of various statutes.
    [Show full text]
  • A Community Effort to Annotate the Chicken Genome
    bioRxiv preprint doi: https://doi.org/10.1101/012559; this version posted December 12, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Submitted to Cytogenetic and Genome Research as part of the Third Report on Chicken Genes and Chromosomes The Avian RNAseq Consortium: a community effort to annotate the chicken genome (Prepared by Jacqueline Smith, David W. Burt and the Avian RNAseq Consortium) Publication of the chicken genome sequence in 2004 (International Chicken Genome Sequencing Consortium 2004) highlighted the beginning of a revolution in avian genomics. Progression of DNA sequencing technologies and data handling capabilities has also meant that genome sequencing and assembly is now a relatively simple, fast and inexpensive procedure. The success seen with the chicken genome was soon followed by the completion of the zebra finch genome (Warren et al., 2010), an important model for neurobiology (Clayton et al., 2009), again based on Sanger sequencing. In recent years the rapid advances in Next Generation Sequencing (NGS) technologies, hardware and software have meant that many more genomes can now be sequenced faster and cheaper than ever before (Metzker, 2010). The first avian genome to be sequenced by NGS methods was the turkey (Dalloul et al., 2010), which was also integrated with genetic and physical maps thus providing an assembly of high quality, even at the chromosome level. Recently, NGS has been used to sequence the genomes of a further 42 avian species, as part of the G10K initiative (Genome 10K Community of Scientists, 2009).
    [Show full text]
  • Verbalizing Phylogenomic Conflict: Representation of Node Congruence Across Competing Reconstructions of the Neoavian Explosion
    bioRxiv preprint doi: https://doi.org/10.1101/233973; this version posted December 14, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Tempe, December 12, 2017 RESEARCH ARTICLE (1st submission) Verbalizing phylogenomic conflict: Representation of node congruence across competing reconstructions of the neoavian explosion Nico M. Franz1*, Lukas J. Musher2, Joseph W. Brown3, Shizhuo Yu4, Bertram Ludäscher5 1 School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America 2 Richard Gilder Graduate School and Department of Ornithology, American Museum of Natural History, New York, New York, United States of America 3 Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom 4 Department of Computer Science, University of California at Davis, Davis, California, United States of America 5 School of Information Sciences, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America * Corresponding author E-mail: [email protected] Short title: Verbalizing phylogenomic conflict Abstract Phylogenomic research is accelerating the publication of landmark studies that aim to resolve deep divergences of major organismal groups. Meanwhile, systems for identifying and integrating the novel products of phylogenomic inference – such as newly supported clade concepts – have not kept pace. However, the ability to verbalize both node concept congruence and conflict across multiple, (in effect) simultaneously endorsed phylogenomic hypotheses, is a critical prerequisite for building synthetic data environments for biological systematics, thereby also benefitting other domains impacted by these (conflicting) inferences.
    [Show full text]
  • ECDC/EFSA Joint Report: Avian Influenza Overview October
    SCIENTIFIC REPORT APPROVED: 29 September 2017 doi: 10.2903/j.efsa.2017.5018 Avian influenza overview October 2016–August 2017 European Food Safety Authority, European Centre for Disease Prevention and Control, European Union Reference Laboratory for Avian influenza, Ian Brown, Paolo Mulatti, Krzysztof Smietanka, Christoph Staubach, Preben Willeberg, Cornelia Adlhoch, Denise Candiani, Chiara Fabris, Gabriele Zancanaro, Joana Morgado and Frank Verdonck Abstract The A(H5N8) highly pathogenic avian influenza (HPAI) epidemic occurred in 29 European countries in 2016/2017 and has been the largest ever recorded in the EU in terms of number of poultry outbreaks, geographical extent and number of dead wild birds. Multiple primary incursions temporally related with all major poultry sectors affected but secondary spread was most commonly associated with domestic waterfowl species. A massive effort of all the affected EU Member States (MSs) allowed a descriptive epidemiological overview of the cases in poultry, captive birds and wild birds, providing also information on measures applied at the individual MS level. Data on poultry population structure are required to facilitate data and risk factor analysis, hence to strengthen science-based advice to risk managers. It is suggested to promote common understanding and application of definitions related to control activities and their reporting across MSs. Despite a large number of human exposures to infected poultry occurred during the ongoing outbreaks, no transmission to humans has been identified. Monitoring the avian influenza (AI) situation in other continents indicated a potential risk of long-distance spread of HPAI virus (HPAIV) A(H5N6) from Asia to wintering grounds towards Western Europe, similarly to what happened with HPAIV A(H5N8) and HPAIV A(H5N1) in previous years.
    [Show full text]