Petrology and Geochemistry of Metamorphosed Ultramafic Bodies

Total Page:16

File Type:pdf, Size:1020Kb

Petrology and Geochemistry of Metamorphosed Ultramafic Bodies American Mineralogist, Volume 6E, pages 78-94, 1983 Petrologyand geochemistryof metamorphosedultramafic bodiesin a portion of the Blue Ridge of North Carolina and Virginia Devro M. ScorroRD AND JBrpney R. Wrr-llnnasr Department of Geology Miami University Oxford, Ohio 45056 Abstract Seventeen metamorphosed ultramafic bodies in the Precambrian Ashe Formation exposedalong a northeast-trendingbelt from near West Jefferson,North Carolina to near Floyd, Virginia in the Blue Ridge, were investigated.The mineral assemblagesin individual samplesconstitute subgroupsdrawn from the larger group consistingofolivine, enstatite, tremolite, anthophyllite, antigorite, talc, chlorite, magnetite, and dolomite. Although the ultramafic bodies occur in the garnet, staurolite, and kyanite zones recognized in the country rock, no correlation exists betweenthe mineral assemblagesin the ultramafic rock and the metamorphic zones. Modal analysesand quantitative chemical analysesfor Mg, Al, Ca, Fe, Ni, Mn, Cu, Co, K, andZn lead to the recognitionof two distinct types of metamorphosedultramafic bodies based on the degree of metasomatic alteration. The metasomaticexchange with the country rock involves the loss of magnesiumand nickel and the introduction of aluminum, calcium, iron, manganese,and potassium into the ultramafic bodies. The less altered bodies are more massiveand contain relict olivine and rare relict enstatite plus tremolite, anthophyllite, chlorite, and antigorite whereasthe more altered bodies are more strongly foliated with abundant tremolite and chlorite and less common relict olivine. Textural evidence, notably the pseudomorphouspartial replacement of tremolite by serpentine,combined with that provided by the geochemicalstudy provides the basis for understandingthe recrystallization history and the calculation of massbalance equations. A retrograde hydration of the ultramafic protolith produced the tremolite-chlorite-talc anthophyllite assemblagewith relict olivine. In a second stageof this hydration serpentine replaced some of the tremolite and olivine. A later partial dehydration led to the more strongly foliated and, in someplaces, mylonitized tremolite--chlorite-talcschist or phyllon- ite. Introduction as probably originally ultramafic although they are now largely chlorite-tremolite schists and gneisses Alpine ultramafic bodies occur throughout the and were mapped by Rankin, Espenshade, and length of the Appalachian Mountains from euebec Newman (1972)as generally small lens-shapedbod- to Alabama. These typically peridotitic or dunitic ies in the PrecambrianAshe Formation. plutons and their serpentinized equivalents have The bodies investigated are typically elongate in received considerable attention from petrologists map view rangingin sizefrom 0.6 km by 0.2 km to (Misra and Keller, 1978),but a group of metamor- 8.0 km by 1.5 km. They are exposedin a northeast phosed and metasomatized ultramafic rocks ex- trending belt from southwest of West Jefferson in posed in the eastern Blue Ridge of North Carolina Ashe County, North Carolina to near Floyd in and Virginia (Fig. 1) have not been investigated in Floyd County, Virginia, a distanceof 150 km. A any detailed way. These petrographically rather total of fifteen bodies were sampledfor petrograph- uncommonrocks were recognizedby Keith (1903) ic and geochemicalstudy (Table l). The study was designedto answer four principal I Presentaddress: 6709 Hopewell Avenue, Springfield,Virgin- questions. (1) What was the nature of the protolith ia 22151. from which these extensivelv altered rocks were 0003-004)v83/0I 02-0078$02.00 SCOTFORD AND WILLIAMS: METAMORPHOSED ULTRAMAFIC BODIES 79 [Illuo.n"t Zone llTlr.ouroriteZone [Ilrvonite Zone Fig. l. Location of ultramafic bodies in easternBlue Ridge in North Carolina and Virginia southeastof Fries fault. pee-Elk Park Plutonic Group, pec{rossnor Plutonic Group, pea-Ashe Formation, p€m-Mount Rodgers Formation, ab-Alligator Back Formation, +Cambrian Sediments,Pza-Spruce Pine Plutonic Group. After Rankinet al. (1972).Thearea of kyanite zone shown in the northeast corner of the map was mapped only as "Amphibolite facies" by Rankin et al, (1972). derived? (2) What relationship exists between the chemical mass transfer between the country rock presentmineralogy of theserocks and the metamor- and the ultramafic intrusives. The mineral assem- phic grade of the country rock which changesalong blagesof individual specimensare subgroupsdrawn the trend of the exposuresof ultramafic rock (Fig. from the larger suite which comprises olivine, en- 1) from the garnet zone through the staurolite zone statite, tremolite, anthophyllite, chlorite, talc, ser- to the kyanite zone basedon the mapping of Rankin pentine, magnetite, and dolomite. et al. (1972). (3) What metasomatic changes have occuned during recrystallization of these rocks Previous investigations based on the present concentrations of the major Evans (1977)provided a valuable review of the elements Mg, Fe, Ca, and Al, and the trace ele- petrology of metamorphosed peridotites and ser- mentsMn, Co, Cu, K, Ni, and Zn? (4) What is the pentinites. Trommsdorf and Evans (1974)described recrystallization history of these bodies? the development of mineralogy similar to that ob- The size, shape,and geologicoccurrence ofthese served in this study in ultramafics subjected to bodies in deformed Precambrian metasediments alpine regional and contact metamorphism, except and volcanics strongly suggests that they were that in their study olivine is the dominant mineral alpine ultramafic intrusives (as defined by Jackson rather than tremolite or chlorite. and Thayer, 1972)and probably emplaced tectoni- The textural relationships in the study by cally in a non-liquid state (see Misra and Keller, Trommsdorf and Evans persuasivelydemonstrate a 1978).What is not clear is whether theserocks were prograde metamorphism from serpentinite to peri- originally harzburgites or dunites, common among dotite in response to a regional metamorphic epi- the unaltered ultramafic bodies of the Appala- sode. As is discussedbelow, the texture observed chians, or were another ultramafic rock type. in the ultramafic bodies described here is quite The alteration history of these rocks is undoubt- different and is not interpreted as indicating a single edly complex, involving retrogressiverecrystalliza- prograde metamorphism. tion from the original ultramafic assemblageplus Some recent studies of ultramafic rocks in the SCOTFORD AND WILLIAMS: METAMORPHOSED ULTRAMAFIC BODIES Table 1. Division of ultramafic bodies into Todd-type and The rocks in both of these studies have been Edmonds-type interpreted as the result of partial serpentinization during or after the implacement of dunite, but Todd-type bodies Edmonds-typebodies neither has been extensively recrystallized since (T) Todd (ED) Edmonds emplacement. (W)Warrensville (GR)Grayson (HN) ltigger Mountain (EN)Enni ce Petrolog5r (WB) WoodrowBare (B) BrushCreek Generalstatement (L) Little PeakCreek In outcrop these metamorphosedultramafic bod- (SS) ShatleySprings ies are grayish-greenwith a distinct schistosefolia- tion which typically parallelsthat of the amphibolite (P) PhoenixMountain or biotite muscovite gneissesof the Ashe Formation (C) Cranbemy with which they are in contact. The foliation is (RR) RockyRidge expressed microscopically by the parallelism of such platy or prismatic minerals as chlorite, tremo- (T0) Twin 0aks lite, and talc and the elongation of such non-platy (WL)Woodlawn minerals as olivine and dolomite in the foliation plane. (DG)Dugspur In places the foliation planes are deformed into small irregular folds. Larger olivine (up to 5 (PK) ParkwayI mm diameter)and someof the less common ensta- (PK) Parkway2 tite crystals are wrapped by the foliation indicating their relict status. Although all of the rock bodies have a similar megascopicappearance, they can be divided readily SouthernAppalachians are pertinent to this investi- into two principal petrographic groups (Table 1) on gation. Swanson(1980) described dunite, harzbur- the basis of mineral associationand major and trace gite, and orthopyroxenite from two small bodies in element concentrations (Tables 2 and 3). The first the Ashe Formation on Rich Mountain in North group, designatedthe "Todd-type" after the largest Carolina. The metamorphic mineralogy of these body representativeof this group, is characterized rocks included tremolite, talc, and anthophyllite, by high concentrations of tremolite and chlorite chlorite, serpentine, and magnesite. Textural rela- with lesser talc and minor amounts of olivine. The tionships indicate the rocks have undergone two, second group is called the "Edmonds-type" be- and possibly three, deformations. Swanson con- causethat large body is typical ofthe group. These cluded that the olivine and pyroxene in these rocks bodies are characterized by higher concentrations are metamorphic products and not relicts of the of olivine, antigorite, anthophyllite, and talc and primary igneous mineralogy. Although these rocks lesseramounts of tremolite and chlorite. The Todd- occur in the Ashe Formation approximately 15 type bodies characteristically have lower abun- kilometers to the southwestof the belt of ultramafic dances of magnesiumand nickel and higher abun- bodies described here, they are significantly differ- dancesof calcium,aluminum, manganese, and zinc ent mineralogically and texturally. Most notably as compared to the Edmonds-type bodies. Iron is they contain much higher concentrations of olivine
Recommended publications
  • Chemographic Exploration of Amphibole Assemblages from Central Massachusetts and Southwestern New Hampshire
    Mineral. Soc. Amer, Spec. Pap. 2, 251-274 (1969). CHEMOGRAPHIC EXPLORATION OF AMPHIBOLE ASSEMBLAGES FROM CENTRAL MASSACHUSETTS AND SOUTHWESTERN NEW HAMPSHIRE PETER ROBINSON AND HOWARD W. JAFFE Department of Geology, University of Massachusetts, Amherst, Massachusetts 01002 ABSTRACT Fourteen wet chemical and forty electron-probe analyses were made of amphiboles from critical assemblages in the kyanite and sillimanite zones of central Massachusetts and southwestern New Hampshire. The rocks studied in- clude plagioclase amphibolites that are metamorphosed mafic lavas and tuffs, aluminous anthophyllite rocks of uncertain derivation, quartz-garnet-amphibole granulites that are metamorphosed ferruginous cherts, and pods of ultramafic amphibolite. The rocks contain the following associations: hornblende-anthophyllite, hornblende-cummingtonite, anthophyllite-cummingtonite, hornblende-anthophyllite-cummingtonite, anthophyllite-cordierite, and anthophyllite- kyanite-sillimanite-staurolite_garnet. The following generalizations are made: 1) The cummingtonites are compositionally simple, containing neither sig- nificant AI/AI, NaJAI, nor Ca substitution. 2) The hornblendes are high in AI/AI substitution. Those coexisting with cummingtonite in the kyanite zone or in retrograded rocks have a higher Al content than those coexisting with cum- mingtonite in the sillimanite zone, in close agreement with the prograde reaction tschermakitic hornblende -7 cumming- tonite + plagioclase + H20 proposed by Shido. The Na content of hornblende is considerably less than that of the theoretical edenite end member and is relatively insensitive to variation in the Na content of coexisting plagioclase. 3) Anthophyllites coexisting with hornblende contain about 1as much AI/AI substitution and 1as much Na substitution as coexisting hornblendes. Ca is negligible. Anthophyllites with cordierite, aluminosilicates, or garnet equal or surpass hornblende in AI/AI and Na substitution.
    [Show full text]
  • Geochemistry of an Ultramafic-Rodingite Rock Association in the Paleoproterozoic Dixcove Greenstone Belt, Southwestern Ghana
    Journal of African Earth Sciences 45 (2006) 333–346 www.elsevier.com/locate/jafrearsci Geochemistry of an ultramafic-rodingite rock association in the Paleoproterozoic Dixcove greenstone belt, southwestern Ghana Kodjopa Attoh a,*, Matthew J. Evans a,1, M.E. Bickford b a Department of Earth and Atmospheric Sciences, Cornell University, Snee Hall, Ithaca, NY 14853, USA b Department of Earth Sciences, Syracuse University, Syracuse, NY 13244, USA Received 11 January 2005; received in revised form 20 February 2006; accepted 2 March 2006 Available online 18 May 2006 Abstract Rodingite occurs in ultramafic rocks within the Paleoproterozoic (Birimian) Dixcove greenstone belt in southwestern Ghana. U–Pb analyses of zircons from granitoids intrusive into the greenstone belt constrain the age of the rodingite-ultramafic association to be older than 2159 Ma. The ultramafic complex consists of variably serpentinized dunite and harzburgite overlain by gabbroic rocks, which together show petrographic and geochemical characteristics consistent with their formation by fractional crystallization involving olivine and plagioclase cumulates. Major and trace element concentrations and patterns in the ultramafic–mafic cumulate rocks and associated plagiogranite are similar to rocks in ophiolitic suites. The rodingites, which occur as irregular pods and lenses, and as veins and blocks in the serpentinized zones, are characterized by high Al2O3 and CaO contents, which together with petrographic evidence indicate their formation from plagioclase-rich protoliths. The peridotites are highly depleted in REE and display flat, chondrite-normalized REE pat- terns with variable, but mostly small, positive Eu anomalies whereas the rodingites, which are also highly depleted, with overall REE contents from 0.04 to 1.2 times chondrite values, display distinct large positive Eu anomalies.
    [Show full text]
  • Crystal Structure of Protoamphibole
    Mineral. Soc. Amer. Spec. Pap. 2, 101-109 (1969). CRYSTAL STRUCTURE OF PROTOAMPHIBOLE G. V. GIBBS Department of Geological Sciences, Virginia Polytechnic Institute Blacksburg, Virginia 24061 ABSTRACT The structure proposed for protoamphibole (Gibbs et al., 1960) has been verified and refined by three-dimensional Fourier and least-squares methods using data collected with a Weissenberg single crystal counter-diffractometer. The symmetry is Pnmn with a = 9.330, b = 17.879 and c = 5.288 A and the unit-cell content is 2(Nao.03Li",oMg, ••) (Si r. ,.Alo.040,1.71) (OHo.15F,.14). The structure consists of layers of interlocking chains of fluorine-centered hexagonal rings of SiO. groups. The layers are bound together by Mg.Li cations which are coordinated between the chains, the coordination being effected by a ~(cI3) stagger between adjacent layers. An additional stagger of ~(-cI3) in the sequence along a gives an overall displacement of zero between alternate layers, accounting for the 9.33 A a cell edge and the orthogonal geometry. The direction of stagger can be related to the placement of the cations in the octahedral layer. The M -cation coordination groups are nearly regular octahedra with the exception of M(4) which is similar to Mg(l) in protoenstatite. The M(3), M(1) and M(2) sites are occupied principally by Mg. In addition to being randomly distributed around the cavity walls of the A-site, Li ions are also segregated in about 25% of the M(4) sites, the others being occupied by Mg ions. The individual Si-O bond distances in the chains are consistent with Cruickshank's d-p -n: bonding model: Si-O(non- bridging) bonds [Si(1)-O(1) = 1.592; Si(2)-0(4) = 1.592; Si(2)-0(2) = 1.605 AJ are significantly shorter, on the average, than the Si-O(bridging) bonds [Si(1)-0(5) = 1.616; Si(1)-0(6) = 1.623; Si(1)-0(7) = 1.624; Si(2)-0(5) = 1.626; Si(2)-0(6) = 1.655 AJ.
    [Show full text]
  • PRELIMINARY EVALUATION of BEDROCK POTENTIAL for NATURALLY OCCURRING ASBESTOS in ALASKA by Diana N
    Alaska Division of Geological & Geophysical Surveys MISCELLANEOUS PUBLICATION 157 PRELIMINARY EVALUATION OF BEDROCK POTENTIAL FOR NATURALLY OCCURRING ASBESTOS IN ALASKA by Diana N. Solie and Jennifer E. Athey Tremolite (UAMES 34960) displaying the soft, friable fibers of asbestiform minerals. Sample collected from the Cosmos Hills area, Kobuk District, Alaska, by Eskil Anderson. Image courtesy of the University of Alaska Museum Earth Sciences Department. June 2015 Released by STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES Division of Geological & Geophysical Surveys 3354 College Road, Fairbanks, Alaska 99709-3707 907-451-5020 dggs.alaska.gov [email protected] $2.00 (text only) $13.00 (per map sheet) TABLE OF CONTENTS Abstract ................................................................................................................................................................................................................................. 1 Introduction ........................................................................................................................................................................................................................ 1 General geology of asbestos ......................................................................................................................................................................................... 2 Naturally occurring asbestos potential in Alaska ..............................................................................................................................................
    [Show full text]
  • ANTHOPHYLLITE Revised: Published by A.E
    FROM: Robinson, G.W., 2004 Mineralogy of Michigan by E.W. Heinrich updated and ANTHOPHYLLITE revised: published by A.E. Seaman Mineral Mg7Si8O22(OH)2 Museum, Houghton, MI, 252p. The only common orthorhombic member of the amphibole group; forms a solid solution series with ferro-anthophyllite. Anthophyllite is a metamorphic mineral, occurring in various schists, gneisses, and some iron formations. It also occurs as a hydrothermal mineral species in altered peridotites. The Marquette County localities cited below were reported by Brooks (1873). The identity of his anthophyllites has never been verified or supported by optical data. It is suspected that some, if not all, of the amphibole he reported as anthophyllite may actually be grunerite, inasmuch as some of Brooks’ localities are underlain by Bijiki or Negaunee Iron Formation which in the Marquette district includes grunerite- magnetite schists (Van Hise and Leith, 1911; Richarz, 1927a, b, c; 1932). Northern Peninsula. Baraga County: Spurr Mountain: “Anthophylite” containing 1.78% Mn is reported by Brooks (1873). Dickinson County: 1. Metronite quarry near Felch: Lamey (1934) reports, along with other silicates, the presence of “feranthophyllite” (=ferro-anthophyllite). This has not been verified and is very doubtful (Heinrich, 1962b). 2. NE ¼ NE ¼, section 23, T42N, R29W: In the Skunk Creek Member of the Solberg Schist, actinolite(?) fringed by an amphibole that “may be anthophyllite” was found in a hornblende- magnetite schist (James et al., 1961). 3. Vulcan Iron Formation: One variant consists of grunerite with magnetite, quartz, and anthophyllite (James et al., 1961). Marquette County: 1. Washington mine: Anthophyllite-quartz-magnetite schist. 2. South of New England mine: In slaty magnetite schist.
    [Show full text]
  • Sulfide Mineralization in an Ultramafic-Rock Hosted Seafloor
    Marine Geology 245 (2007) 20–39 www.elsevier.com/locate/margeo Sulfide mineralization in an ultramafic-rock hosted seafloor hydrothermal system: From serpentinization to the formation of Cu–Zn–(Co)-rich massive sulfides ⁎ Ana Filipa A. Marques a,b, , Fernando J.A.S. Barriga a, Steven D. Scott b a CREMINER (LA/ISR), Universidade de Lisboa, Faculdade de Ciências, Departamento de Geologia, Edif. C6 Piso 4. 1749-016 Campo Grande, Lisboa, Portugal b Scotiabank Marine Geology Research Laboratory, Department of Geology, University of Toronto, 22 Russell St., Toronto, Canada M5S 3B1 Received 12 December 2006; received in revised form 2 May 2007; accepted 12 May 2007 Abstract The Rainbow vent field is an ultramafic rock-hosted seafloor hydrothermal system located on the Mid-Atlantic ridge issuing high temperature, acidic, metal-rich fluids. Hydrothermal products include Cu–Zn–(Co)-rich massive sulfides with characteristics comparable to those found in mafic volcanic-hosted massive sulfide deposits. Petrography, mineralogy and geochemistry of nonmineralized and mineralized rocks sampled in the Rainbow vent field indicate that serpentinized peridotites host the hydrothermal vent system but serpentinization reactions occurred prior to and independently of the sulfide mineralization event. The onset of sulfide mineralization is reflected by extensive textural and chemical transformations in the serpentine-group minerals that show clear signs of hydrothermal corrosion. Element remobilization is a recurrent process in the Rainbow vent field rocks and, during simple peridotite serpentinization, Ni and Cr present in olivine and pyroxene are incorporated in the pseudomorphic serpentine mesh and bastite, respectively. Ni is later remobilized from pseudomorphic serpentine into the newly formed sulfides as a result of extensive hydrothermal alteration.
    [Show full text]
  • An Unusual Occurrence of Ultramafic and Mafic Rocks North of Mt Bischoff, Nw Tas~1Ania
    Papers and Proceedings of the Royal Society of Tasmania, Volume 117, 1983. (ms. received 18.5.1982) AN UNUSUAL OCCURRENCE OF ULTRAMAFIC AND MAFIC ROCKS NORTH OF MT BISCHOFF, NW TAS~1ANIA by P.R. Williams and A.V. Brown Geological Survey of Tasmania (with one table and one text-figure) ABSTRACT WILLIAMS, P.R. & BROWN, A.V., 1983 (31 viii): An unusual occurrence of ultramafic and mafic rocks north of Mt Bischoff, NW Tasmania. Pap. Proe. R. Soc. Tasm., 117: 53-58. ISSN 0080-4703. Department of Mines, Bligh Street, Rosny Park, Tasmania, Australia. Plagioclase-bearing harzburgite, plagioclase lherzolite, basalt and dolerite intrude a sequence of mudstone, greywacke, pillowed basalt and chert in the Arthur River valley north of Mt Bischoff. The ultramafic rocks are concordant bodies characterised by absence of internal deformation structures, abundant primary mineral assemblages and cumulate textures. The ultramafics were most probably intruded as magma. Fine- to coarse-grained dolerite were intruded in the same zone, probably as dykes. The dolerite is chemically and texturally distinct from pillowed basalt interbedded with the sedimentary sequence. INTRODUCTION Outcrops of ultramafic and mafic rocks in the Arthur River valley north of Mt Bischoff (fig. 1) were mapped during the Geological Survey of Tasmania's coverage of the St Valentine Quadrangle in northwestern Tasmania. The occurrence was previously unrecord­ ed, as was much of the sedimentary and volcanic sequence of the surrounding countryside. The ultramafic rock bodies are unusual to Tasmania, in that they are apparently undeformed, display their primary mineral compositions without extensive serpentinization and appear to intrude the surrounding sedimentary/volcanic sequence as sills.
    [Show full text]
  • A Systematic Nomenclature for Metamorphic Rocks
    A systematic nomenclature for metamorphic rocks: 1. HOW TO NAME A METAMORPHIC ROCK Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks: Web version 1/4/04. Rolf Schmid1, Douglas Fettes2, Ben Harte3, Eleutheria Davis4, Jacqueline Desmons5, Hans- Joachim Meyer-Marsilius† and Jaakko Siivola6 1 Institut für Mineralogie und Petrographie, ETH-Centre, CH-8092, Zürich, Switzerland, [email protected] 2 British Geological Survey, Murchison House, West Mains Road, Edinburgh, United Kingdom, [email protected] 3 Grant Institute of Geology, Edinburgh, United Kingdom, [email protected] 4 Patission 339A, 11144 Athens, Greece 5 3, rue de Houdemont 54500, Vandoeuvre-lès-Nancy, France, [email protected] 6 Tasakalliontie 12c, 02760 Espoo, Finland ABSTRACT The usage of some common terms in metamorphic petrology has developed differently in different countries and a range of specialised rock names have been applied locally. The Subcommission on the Systematics of Metamorphic Rocks (SCMR) aims to provide systematic schemes for terminology and rock definitions that are widely acceptable and suitable for international use. This first paper explains the basic classification scheme for common metamorphic rocks proposed by the SCMR, and lays out the general principles which were used by the SCMR when defining terms for metamorphic rocks, their features, conditions of formation and processes. Subsequent papers discuss and present more detailed terminology for particular metamorphic rock groups and processes. The SCMR recognises the very wide usage of some rock names (for example, amphibolite, marble, hornfels) and the existence of many name sets related to specific types of metamorphism (for example, high P/T rocks, migmatites, impactites).
    [Show full text]
  • Cordierite-Anthophyllite Rocks at Rat Lake, Manitoba
    ., , .,. '-'-' . MANlTiBA DEPARTMENJ Of MINES. RESOURCES & ENVIRONMENTAl MANIiGEMENT MINERAL BES(lJRCES DIvtSION OPEN FIIB REPORl' 76/1 OORDlERI'l'FI-ANTHOPHIWTE ROCKS AT RAT LAKE, MlNI'l'OBA; A METAMORPHOSED ALTERATION ZONE By D. A. Baldwin 19'16 Electronic Capture, 2011 The PDF file from which this document was printed was generated by scanning an original copy of the publication. Because the capture method used was 'Searchable Image (Exact)', it was not possible to proofread the resulting file to remove errors resulting from the capture process. Users should therefore verify critical information in an original copy of the publication. .. :., ,.' . .... .- .• I Tt'! OF CC!fl!fl'S .. ' i. -, Page Ifttraduct10n 1 ," Glael'll QeoloIJ 3 · ~ · " "'ell.e. ot unJcnom aft1DitJ (3, 4) 4 .' Coderite-AnthopbJlllte Roc1c1 6 ~I beU'.I.DI l'Ockl 6 .. " Quarts tree l'Ockl 6 ChIld..tl7 ot the Rat take Cordier1tWnthophJllite " BoGIe. 11 Oripn ot the Cord1.r1te-Antho~1l1tl Rocke 15 0I0phJ11ft81 IW'VI),' 18 '. :,(~, Airbome INPUT IVVi,Y 18 ..16 IUl'VI)' 20 OoIIalulonl IDCi Recoanendatianl 21 Iet.rtnael 2, Appendix "A" 25 Appendix "I" 27 \ , I .. ·. ~ . : . ~ . ·-. - 1-· IN'lRODUCTION -==ar=====:==s COrdierite-anthophyllite rocks containing disseminated sulphides of il'Onand copper, and traces of molybdn1te outcrop on the south shore of a small bay at Rat take, Manitoba (Location "5", Fig. 1). These rocks are siDdlar to those that occur in association with massive sulphide ore bodies at the Sherridon MLne, Manitoba, and the Coronation Mine, Saskatchewan. '!'he outcrops are found in an amphibolitic unit within cordierite­ s1 1limarrlte-anthophyll1te-biotite gneisses of ''unknown affinity" (Schledewitz, 1972).
    [Show full text]
  • Anthophyllite Asbestos: State of the Science Review Shannon H
    Review article Received: 11 May 2016, Accepted: 17 May 2016 Published online in Wiley Online Library: 11 July 2016 (wileyonlinelibrary.com) DOI 10.1002/jat.3356 Anthophyllite asbestos: state of the science review Shannon H. Gaffneya*, Matthew Grespinb, Lindsey Garnicka, Derek A. Drechselb, Rebecca Hazanc,DennisJ.Paustenbachd and Brooke D. Simmonsa ABSTRACT: Anthophyllite is an amphibole form of asbestos historically used in only a limited number of products. No published resource currently exists that offers a complete overview of anthophyllite toxicity or of its effects on exposed human populations. We performed a review focusing on how anthophyllite toxicity was understood over time by conducting a comprehensive search of publicly available documents that discussed the use, mining, properties, toxicity, exposure and potential health effects of anthophyllite. Over 200 documents were identified; 114 contained relevant and useful information which we present chronolog- ically in this assessment. Our analysis confirms that anthophyllite toxicity has not been well studied compared to other asbestos types. We found that toxicology studies in animals from the 1970s onward have indicated that, at sufficient doses, anthophyllite can cause asbestosis, lung cancer and mesothelioma. Studies of Finnish anthophyllite miners, conducted in the 1970s, found an increased incidence of asbestosis and lung cancer, but not mesothelioma. Not until the mid-1990s was an epidemiological link with mesothelioma in humans observed. Its presence in talc has been of recent significance in relation to potential asbestos exposure through the use of talc-containing products. Characterizing the health risks of anthophyllite is difficult, and distinguishing between its asbestiform and non-asbestiform mineral form is essential from both a toxicological and regulatory perspective.
    [Show full text]
  • AREAS MORE LIKELY to CONTAIN NATURALLY OCCURRING ASBESTOS August, 2000
    OPEN-FILE REPORT 2000-19 A GENERAL LOCATION GUIDE FOR ULTRAMAFIC ROCKS IN CALIFORNIA - AREAS MORE LIKELY TO CONTAIN NATURALLY OCCURRING ASBESTOS August, 2000 DEPARTMENT OF CONSERVATION Division of Mines and Geology (:Jl ll lltCRt•Jlll CON'.!!"1\/'AnoN, STATE OF CALIFORNIA GRAY DAVIS GOVERNOR THE RESOURCES AGENCY DEPARTMENT OF CONSERVATION MARY D. NICHOLS DARRYL YOUNG SECRETARY FOR RESOURCES DIRECTOR STATE OF CALIFORNIA - GRAY DAVIS, GOVERNOR OPEN-FILE REPORT 2000-19 DIVISION OF MINES AND GEOLOGY THE RESOURCES AGENCY - MARY NICHOLS, SECRETARY FOR RESOURCES A GENERAL LOCATION GUIDE FOR ULTRAMAFIC ROCKS IN CALIFORNIA - JAMES F. DAVIS, STATE GEOLOGIST DEPARTMENT OF CONSERVATION - DARRYL YOUNG, DIRECTOR AREAS MORE LIKELY TO CONTAIN NATURALLY OCCURRING ASBESTOS 124° 42° B 120° B B 42° A General Location Guide for Ultramafic Rocks 97 DelDel NorteNorte in California - Areas More Likely to Contain ModocModoc 5 SiskiyouSiskiyou Naturally Occurring Asbestos 101 395 Compiled By Ronald K. Churchill and Robert L. Hill August 2000 c·~-.✓- MAP PURPOSE MAP USAGE AND LIMITATIONS ··, ,. _ ~ This map shows the areas more likely to contain natural occurrences of asbestos The small scale of this map (1:1,000,000) precludes showing detailed boundaries ~-r in California. Its purpose is to inform government agencies, private industry and of ultramafic rock units and small occurrences of ultramafic rocks. It should be used HumboldtHumboldt I LassenLassen the public of the areas in the State where natural occurrences of asbestos may only as a general guide to the presence of ultramafic rocks that may contain asbestos. be an issue. In these areas, consideration of the implications of the presence or This map is derived from the Geologic Map of California (1:750,000 scale - one inch TrinityTrinity ShastaShasta absence of asbestos through examination of more detailed maps and site-specific equals about 12 miles), Jennings (1977).
    [Show full text]
  • Asbestos in Commercial Cosmetic Talcum Powder As a Cause of Mesothelioma in Women
    Asbestos in commercial cosmetic talcum powder as a cause of mesothelioma in women Ronald E. Gordon1, Sean Fitzgerald2, James Millette3 1Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, USA, 2SAI Laboratory, Greensboro, NC, USA, 3MVA Inc., Duluth, GA, USA Background: Cosmetic talcum powder products have been used for decades. The inhalation of talc may cause lung fibrosis in the form of granulomatose nodules called talcosis. Exposure to talc has also been suggested as a causative factor in the development of ovarian carcinomas, gynecological tumors, and mesothelioma. Purpose: To investigate one historic brand of cosmetic talcum powder associated with mesothelioma in women. Methods: Transmission electron microscope (TEM) formvar-coated grids were prepared with concentra- tions of one brand of talcum powder directly, on filters, from air collections on filters in glovebox and simulated bathroom exposures and human fiber burden analyses. The grids were analyzed on an analytic TEM using energy-dispersive spectrometer (EDS) and selected-area electron diffraction (SAED) to determine asbestos fiber number and type. Results: This brand of talcum powder contained asbestos and the application of talcum powder released inhalable asbestos fibers. Lung and lymph node tissues removed at autopsy revealed pleural mesothelioma. Digestions of the tissues were found to contain anthophyllite and tremolite asbestos. Discussion: Through many applications of this particular brand of talcum powder, the deceased inhaled asbestos fibers, which then accumulated in her lungs and likely caused or contributed to her mesothelioma as well as other women with the same scenario. Keywords: Asbestos, Talcum powder, Chamber test, TEM, SEM, EDS, SAED, Mesothelioma Introduction In 1976, Rohl and Langer tested 20 consumer Malignant mesothelioma occurs in both the perito- products labeled as talc or talcum powder, including 1 neum and in the lung pleura.
    [Show full text]