Chapter Eleven 210 the MASS-PRODUCTION of STEEL

Total Page:16

File Type:pdf, Size:1020Kb

Chapter Eleven 210 the MASS-PRODUCTION of STEEL 210 chapter eleven Chapter eleven The Mass-Production of Steel for Swords and Armour Bloomery Steel Making The manufacture of plate armour on an industrial scale in Northern Italy, during the late 13th and 14th centuries, was possible because iron-smelt- ing furnaces were operated in such a way (probably on the cusp of pro- ducing a liquid product) as to produce blooms large enough (10 kg or more) for making plates for armour and of a carbon content high enough (0.4% C or more) to make the armour effective. By the 15th century, the overwhelming majority of Italian armour bearing armourers’ marks was made of this steel, and much of it was hardened in some way. But these procedures were to change quite suddenly. There are three major changes in Italian armour which take place within a few years of one another around the turn of the 16th century. In the first place, and most importantly, it is almost never made of hardened steel after about 1510. Out of 84 specimens of Italian armour made after 1520 examined by this author, 41 had been made of low-carbon steel and 33 of medium- carbon steel; but none had undergone any hardening.1 This is an abrupt change in practice, and not easy to explain convincingly but it does coin- cide with the adoption of fire-gilding. This process seems to have been employed for the decoration of armour from about 1490 onwards. It rap- idly becomes very common, and increases in extent until half or more of the surface is covered by fire-gilded decoration. Evidently the heating for one operation (gilding) was found to interfere, or thought to be likely to interfere, with the heat-treatment for the other (hardening). The two operations were very seldom both carried out on an Italian armour. The second change is that the use of armourers’ marks becomes rela- tively uncommon, and effectively disappears after 1510, although some gilded armours are signed (rather than marked) later in the century. If the use of a mark was intended to be a sign of the quality of the metal 1 For the manufacture of steel suits of armour, see Williams, A. “The Knight and the Blast Furnace” (Leiden, 2003) 203–329. The Mass-Production of Steel for Swords and Armour 211 employed to make the armour, then when most customers were no longer interested in that quality, its disappearance may have followed logically. The third change is the less frequent use of steel in the early years of the 16th century, although perhaps economic factors might have been partly responsible for this. The French invasion of 1494, and the subse- quent 30 years of intermittent war, dislocated the economic life of Italy in general and Milan in particular. But there was a revival in the use of steel in the 1530s, and at the time Biringuccio was writing, the Negroli family of Milan were employing steel for their fantastic embossed armours, which allowed noblemen to pose as the demigod Hercules, Alexander the Great, or even a sea-serpent. Filippo Negroli was regarded as the finest armourer of his day, and made Milan, at least for a little while, the centre of the industry once again. More than forty specimens from more than twenty “embossed” (in fact forged) armours made by the Negroli family and their contemporaries have been examined by this author. More than half were found to be made of steel, rather than the softer iron which might have been expected, and the hardest steel pre- dominated in the best armours.2 At first sight, it may seem surprising that a material twice as hard as iron should be used for “parade” armours. But, decorative though these “parade” armours were, they were still armour. It seems clear that princes and nobles ordered their best and most expensive armours to wear as display, but with the added possibility of wearing it in battle if necessary. One Negroli helmet made for a delle Rovere was described as having been made “pistol-proof” so its owner expected to be shot at some day.3 It was not simply the invention of guns which made suits of plate armour obsolete, indeed both inventions had appeared fairly close together on the 14th century battlefield, but rather the armourers’ general response to musketry, which was to make armour steadily thicker from the last quarter of the 16th century onwards. When the metal used in the mass-produced armour of the late 16th and 17th century is examined, it is found that iron becomes commoner. It was made bulletproof simply by 2 Williams, A. “The Steel of the Negroli” Metropolitan Museum Journal, 34, (New york, 1999) 101–124. 3 Pyhrr, S.W & Godoy, J.A. “Heroic armor of the Italian Renaissance” Metropolitan Museum of Art Exhibition Catalogue, (New york, 1998) 158. Parts of this helmet are in the Wallace Collection, London, (A.207). They are 2.0 to 2.5 mm thick, and made of medium- carbon steel. .
Recommended publications
  • Stab Resistant Body Armour
    IAN HORSFALL STAB RESISTANT BODY ARMOUR COLLEGE OF DEFENCE TECHNOLOGY SUBMITTED FOR THE AWARD OF PhD CRANFIELD UNIVERSITY ENGINEERING SYSTEMS DEPARTMENT SUBMITTED FOR THE AWARD OF PhD 1999-2000 IAN HORSFALL STAB RESISTANT BODY ARMOUR SUPERVISOR DR M. R. EDWARDS MARCH 2000 ©Cranfield University, 2000. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder. ABSTRACT There is now a widely accepted need for stab resistant body armour for the police in the UK. However, very little research has been done on knife resistant systems and the penetration mechanics of sharp projectiles are poorly understood. This thesis explores the general background to knife attack and defence with a particular emphasis on the penetration mechanics of edged weapons. The energy and velocity that can be achieved in stabbing actions has been determined for a number of sample populations. The energy dissipated against the target was shown to be primarily the combined kinetic energy of the knife and the arm of the attacker. The compliance between the hand and the knife was shown to significantly affect the pattern of energy delivery. Flexibility and the resulting compliance of the armour was shown to have a significant effect upon the absorption of this kinetic energy. The ability of a knife to penetrate a variety of targets was studied using an instrumented drop tower. It was found that the penetration process consisted of three stages, indentation, perforation and further penetration as the knife slides through the target. Analysis of the indentation process shows that for slimmer indenters, as represented by knives, frictional forces dominate, and indentation depth becomes dependent upon the coefficient of friction between indenter and sample.
    [Show full text]
  • From Knights' Armour to Smart Work Clothes
    September 16, 2020 Suits of steel: from knights’ armour to smart work clothes From traditional metal buttons to futuristic military exoskeletons, which came to the real world from the pages of comics. From the brigandines of medieval dandies to modern fire-resistant clothing for hot work areas. Steel suits have come a long way, and despite a brief retreat caused by a “firearm”, they are again conquering the battlefields and becoming widely used in cutting-edge operations. Ancestors of skins and cotton wool The first armour that existed covered the backs of warriors. For the Germanic tribes who attacked the Roman Empire, it was not considered shameful to escape battle. They protected their chests by dodging, while covering their backs, which became vulnerable when fleeing, with thick animal skins over the shoulders. Soldiers of ancient Egypt and Greece wore multi-layer glued and quilted clothes as armour. Mexican Aztecs faced the conquistadors in quilted wadded coats a couple of fingers thick. In turn, the Spanish borrowed the idea from the Mexicans. In medieval Europe, such protective clothing was widely used up to the 16th century. The famous Caucasian felt cloak also began life as armour. Made of wool using felting technology, it was invulnerable against steel sabres , arrows and even some types of bullets. Metal armour: milestones Another ancient idea for protective clothing was borrowed from animals. The scaled skin of pangolins was widely used as armour by Indian noble warriors, the Rajputs. They began to replicate a scaly body made of copper back in ancient Mesopotamia, then they began to use brass and later steel.
    [Show full text]
  • Denv S090015 Military Vehicle Protection.Qxd
    Defence TNO | Knowledge for business Military vehicle protection Finding the best armour solutions circuit armour. All these current and future armours require constant and rigorous testing under fully controlled conditions. The Laboratory for Ballistic Research is a state of the art research facility of TNO and able to provide these conditions. New threats In today's scenarios, the threat to a military vehicle may come from any direction, including above and below. The crew of a military vehicle not only has to deal with more or less 'standard' fire from the enemy in front, but - more often than not - also with asymmetric threats like rocket-propelled grenades, explosively formed projectiles, mines and improvised explosive devices. The RPG7, for instance, is able to cut through 250 mm of armour steel. Falling prey to any of these threats, also known as a 'cheap kill', Developments in vehicle armour never stop. It's not just the nature of the is something that has to be avoided at all threat that is continually changing, but we also have to deal with new times. TNO uses its highly advanced resources and decades of expertise in armour trends in warfare, like lightweight armoured vehicles. For survival, today's research to help governments and and tomorrow's military vehicles will not only have to rely on armour, but manufacturers achieve their aim: the optimal e.g. also on mobility and manoeuvrability. TNO supports its clients - protection of military vehicles against the governments and manufacturers - in finding the best armour solutions for widest possible range of ballistic threats.
    [Show full text]
  • Constructing a Heavy-List Gambeson Tips and Techniques
    Constructing a Heavy-List Gambeson Tips and Techniques Lady Magdalena von Regensburg mka Marla Berry [email protected] July 16, 2005 An Historic Overview “Mail is tough but flexible; it resists a cutting sword-stroke but needs a padded or quilted undergarment as a shock absorber against a heavy blow.”1 Quilted garments were part of soldiers’ kits in varying forms and with varying names throughout most of the SCA timeline. As early as the late Roman/early Byzantine period there is documentation for quilted or padded coats called Zabai or Kabadia.2 Illuminations from Maciejowski Bible (circa 1250) show aketons or gambesons. “These terms seem to have been interchangeable but the weight of evidence From “Jonathan and his Armor- suggests that ‘aketon’ refers to garments worn under the mail while bearer Attack the Philistines,” gambesons were worn over or instead of it...The gambeson is often from the Maciejowski Bible, referred to in contemporary accounts as being worn by the common circa 1250. soldiery and, indeed, is part of the equipment required by the Assize of Arms of 1185 of Edward I of England.”3 Extant examples from the fourteenth century include the pourpoint of Charles de Blois (d. 1364) and the late fourteenth century jupon of Charles VI. Fifteenth century documents mention arming doublets and padded jacks. These garments were worn under maille, over maille, under plate, over plate, or on their own. Some were designed to encase maille or plate. “Infantry, as laid down in the Assize of Arms of 1182, often wore one of two types of gambeson.
    [Show full text]
  • The Evolution of Armour Steel
    May 26, 2021 Clad in Steel: The Evolution of Armour Steel A little over a century ago, the armed forces of the British Empire received a new type of land-based military vehicle. The British Admiralty led the vehicle’s development in the utmost secrecy. To justify the connection with the Royal Navy, the invention was called a “landship” in official documents. As the Admiralty also managed oil production and processing, it decided to codename this vehicle the “tank” to mislead adversaries. This name is still used for self-propelled tracked armoured combat vehicles. Nowadays, armed forces around the world have hundreds of different types of tanks and other self-propelled vehicles. A key feature that they share is an armoured hull made of specialty grade steel . This protects the crew and critical parts from bullets, shells and other devastating effects. Over the past 100 years, one of the main challenges for designers has been to reduce the weight of armoured vehicles while increasing the level of protection that they provide. Aside from products for military use, civilian applications for armoured vehicles have also been developed. At the beginning of the 20th century, steel plates were used to reinforce the carriages of royalty and high-ranking officials. Today, armoured vehicles are used by heads of state, businesspeople, sport stars and entertainers. They are also used by government agencies and security services, as well as by banks for cash collection and transportation. Below, we discuss what armour is, how these steels evolved, as well as the role that Ukraine played in these developments.
    [Show full text]
  • Protective Armor Engineering Design
    PROTECTIVE ARMOR ENGINEERING DESIGN PROTECTIVE ARMOR ENGINEERING DESIGN Magdi El Messiry Apple Academic Press Inc. Apple Academic Press Inc. 3333 Mistwell Crescent 1265 Goldenrod Circle NE Oakville, ON L6L 0A2 Palm Bay, Florida 32905 Canada USA USA © 2020 by Apple Academic Press, Inc. Exclusive worldwide distribution by CRC Press, a member of Taylor & Francis Group No claim to original U.S. Government works International Standard Book Number-13: 978-1-77188-787-8 (Hardcover) International Standard Book Number-13: 978-0-42905-723-6 (eBook) All rights reserved. No part of this work may be reprinted or reproduced or utilized in any form or by any electric, mechanical or other means, now known or hereafter invented, including photocopying and re- cording, or in any information storage or retrieval system, without permission in writing from the publish- er or its distributor, except in the case of brief excerpts or quotations for use in reviews or critical articles. This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission and sources are indicated. Copyright for individual articles remains with the authors as indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the authors, editors, and the publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors, editors, and the publisher have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained.
    [Show full text]
  • Fighting Vehicle Technology
    Fighting Vehicle Technology 41496_DSTA 60-77#150Q.indd 1 5/6/10 12:44 AM ABSTRACT Armoured vehicle technology has evolved ever since the first tanks appeared in World War One. The traditional Armoured Fighting Vehicle (AFV) design focuses on lethality, survivability and mobility. However, with the growing reliance on communications and command (C2) systems, there is an increased need for the AFV design to be integrated with the vehicle electronics, or vetronics. Vetronics has become a key component of the AFV’s effectiveness on the battlefield. An overview of the technology advances in these areas will be explored. In addition, the impact on the human aspect as a result of these C2 considerations will be covered. Tan Chuan-Yean Mok Shao Hong Vince Yew 41496_DSTA 60-77#150Q.indd 2 5/6/10 12:44 AM Fighting Vehicle Technology 62 and more advanced sub-systems will raise the INTRODUCTION question of how the modern crew is able to process and use the information effectively. On the modern battlefield, armies are moving towards Network-Centric Warfare TECHNOLOGIES IN AN (NCW). Forces no longer fight as individual entities but as part of a larger system. Each AFV entity becomes a node in a network where information can be shared, and firepower can Firepower be called upon request. AFVs are usually equipped with weapon Key to this network fighting capability is the stations for self-protection and the communications and command (C2) system. engagement of targets. Depending on By enabling each force to be plugged into the threat, some are equipped with pintle the C2 system, information can be shared mount systems for light weapons (e.g.
    [Show full text]
  • Armour As a Symbolic Form
    Originalveröffentlichung in: Waffen-und Kostümkunde 26 (1984), Nr. 2, S. 77-96 Armour As a Symbolic Form By Zdzislaw Zygulski Jr. „It is perfectly possible to argue that some distinctive objects are made by the mind, and that these objects, while appearing to exist objectively, have only a fictional reality." E. W. Said, Orientalism, New York 1979 Somewhere in the remote past of mankind armour was born, its basic purpose being to protect the soft and vulnerable human body in combat. It is somewhat surprising that in the course of Darwinian evolution man lost his natural protective attributes, above all hair, and slowly became what is called, with some malice, ,,the naked ape". Very soon man the hunter adopted animal skins as his first dress and also as armour. The tradition of an armour of leather is very ancient and still lingers in the word ,,cuirass". Various natural substances such as hard wood, plant fibres, bones, hoofs, or even tusks were used to make the body protection more resistant, but as soon as metallurgy had been mastered metal became the supreme material for all kinds of weaponry, both offensive and defensive. Since a blow to the head was often lethal, special attention was paid to the pro­ tection of that principal part of the body: early bronze helmets of conical shape are represented in the Sume­ rian art as early as the third millennium B. C.l. The shield, a prehistoric invention, although detached from the body and movable, may also be considered as a kind of armour. In the course of centuries a great number of types of armour and innumerable actual specimens were crea­ ted.
    [Show full text]
  • Cavalry: an Optimized Capability for Ado
    CAVALRY: AN OPTIMIZED CAPABILITY FOR ADO Maj R.M.R. Morin JCSP 41 PCEMI 41 Exercise Solo Flight Exercice Solo Flight Disclaimer Avertissement Opinions expressed remain those of the author and Les opinons exprimées n’engagent que leurs auteurs do not represent Department of National Defence or et ne reflètent aucunement des politiques du Canadian Forces policy. This paper may not be used Ministère de la Défense nationale ou des Forces without written permission. canadiennes. Ce papier ne peut être reproduit sans autorisation écrite. © Her Majesty the Queen in Right of Canada, as © Sa Majesté la Reine du Chef du Canada, représentée par represented by the Minister of National Defence, 2015. le ministre de la Défense nationale, 2015. CANADIAN FORCES COLLEGE – COLLÈGE DES FORCES CANADIENNES JCSP 41 – PCEMI 41 2014 – 2015 EXERCISE SOLO FLIGHT – EXERCICE SOLO FLIGHT CAVALRY: AN OPTIMIZED CAPABILITY FOR ADO Maj R.M.R. Morin “This paper was written by a student “La présente étude a été rédigée par un attending the Canadian Forces College stagiaire du Collège des Forces in fulfilment of one of the requirements canadiennes pour satisfaire à l'une des of the Course of Studies. The paper is a exigences du cours. L'étude est un scholastic document, and thus contains document qui se rapporte au cours et facts and opinions, which the author contient donc des faits et des opinions alone considered appropriate and que seul l'auteur considère appropriés et correct for the subject. It does not convenables au sujet. Elle ne reflète pas necessarily reflect the policy or the nécessairement la politique ou l'opinion opinion of any agency, including the d'un organisme quelconque, y compris le Government of Canada and the gouvernement du Canada et le ministère Canadian Department of National de la Défense nationale du Canada.
    [Show full text]
  • Ballistic Impact on Ceramic/Aramid Armour Systems
    BALLISTIC IMPACT ON CERAMIC/ARAMID ARMOUR SYSTEMS (Report-draft version) 09/03/2003 1. SUMMARY A combined numerical and experimental study for the analysis of Ceramic/Kevlar 29 composite armour system against 4.0g NATO 5.56 mm calibre bullet has been performed. In all cases the projectiles impacted orthogonal to the target and the ceramic tile is not bonded to the aramidic plate. The ballistic performance of the lightweight armour systems was examined to obtain an estimate for the V50 and the global damage of the composite plates. All estimates were performed by varying the thickness of ceramic tiles, while maintaining equal areal density of the system. Simulation predictions and trial results is demonstrated both in terms of deformation and damage of the laminates and ballistic performance. The Mohr-Coulomb (MC) strength model and linear equation of state (EOS) are used to model the ceramic layer. The micro mechanical failure of ceramic is modelled using a cumulative damage model. An advanced orthotropic model [ ] implemented in Autodyn hydrocode, which use non-linear equation of state in conjunction with an orthotropic stiffness matrix is used to model the Kevlar 29/Epoxy layer. A model of the bullet was developed using material data available from existing Autodyn model libraries and parameters modified based upon the measured hardness of the bullet´s individual components. In numerical programme two models in the Autodyn software are realised to capture the main events in failure processes: projectile erosion, crack propagation, ceramic conoid formation and failure of backing plate. One is made of Lagrangian brick elements only, and the second one uses SPH elements for the ceramic layer of plate.
    [Show full text]
  • The Evolution of Plate Armor in Medieval Europe and Its Relation to Contemporary Weapons Development
    History, Department of History Theses University of Puget Sound Year 2016 Clad In Steel: The Evolution of Plate Armor in Medieval Europe and its Relation to Contemporary Weapons Development Jason Gill [email protected] This paper is posted at Sound Ideas. http://soundideas.pugetsound.edu/history theses/21 Clad in Steel: The Evolution of Plate Armor in Medieval Europe and its Relation to Contemporary Arms Development Jason Gill History 400 Professor Douglas Sackman 1 When thinking of the Middle Ages, one of the first things that comes to mind for many is the image of the knight clad head to toe in a suit of gleaming steel plate. Indeed, the legendary plate armor worn by knights has become largely inseparable from their image and has inspired many tales throughout the centuries. But this armor was not always worn, and in fact for most of the years during which knights were a dominant force on battlefields plate was a rare sight. And no wonder, for the skill and resources which went into producing such magnificent suits of armor are difficult to comprehend. That said, it is only rarely throughout history that soldiers have gone into battle without any sort of armor, for in the chaotic environment of battle such equipment was often all that stood between a soldier and death. Thus, the history of both armor and weapons is essential to a fuller understanding of the history of war. In light of this importance, it is remarkable how little work has been done on charting the history of soldiers’ equipment in the Middle Ages.
    [Show full text]
  • Armours for Soft Bodies: How Far Can Bioinspiration Take
    Bioinspiration & Biomimetics TOPICAL REVIEW Related content - The biomechanics of solids and fluids: the Armours for soft bodies: how far can bioinspiration physics of life David E Alexander take us? - Functional adaptation of crustacean exoskeletal elements through structural and compositional diversity: a combined To cite this article: Zachary W White and Franck J Vernerey 2018 Bioinspir. Biomim. 13 041004 experimental and theoretical study Helge-Otto Fabritius, Andreas Ziegler, Martin Friák et al. - Stretch-and-release fabrication, testing and optimization of a flexible ceramic View the article online for updates and enhancements. armor inspired from fish scales Roberto Martini and Francois Barthelat This content was downloaded from IP address 128.138.222.211 on 14/06/2018 at 15:56 IOP Bioinspir. Biomim. 13 (2018) 041004 https://doi.org/10.1088/1748-3190/aababa Bioinspiration & Biomimetics Bioinspir. Biomim. 13 TOPICAL REVIEW 2018 Armours for soft bodies: how far can bioinspiration take us? 2018 IOP Publishing Ltd RECEIVED © 22 November 2017 Zachary W White and Franck J Vernerey REVISED 1 March 2018 BBIICI Mechanical Engineering, University of Colorado Boulder, 427 UCB, Boulder, United States of America ACCEPTED FOR PUBLICATION E-mail: [email protected] 29 March 2018 Keywords: bioinspired armour, ballistic protection, natural protection, scales, composite armour 041004 PUBLISHED 15 May 2018 Z W White and F J Vernerey Abstract The development of armour is as old as the dawn of civilization. Early man looked to natural structures to harvest or replicate for protection, leaning on millennia of evolutionary developments in natural protection. Since the advent of more modern weaponry, Armor development has seemingly been driven more by materials research than bio-inspiration.
    [Show full text]