Development of a Model Cryopreserved Germplasm

Total Page:16

File Type:pdf, Size:1020Kb

Development of a Model Cryopreserved Germplasm Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2003 From gamete collection to database development: development of a model cryopreserved germplasm repository for aquatic species with emphasis on sturgeon William Rittenhouse Wayman Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Wayman, William Rittenhouse, "From gamete collection to database development: development of a model cryopreserved germplasm repository for aquatic species with emphasis on sturgeon" (2003). LSU Doctoral Dissertations. 2637. https://digitalcommons.lsu.edu/gradschool_dissertations/2637 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. FROM GAMETE COLLECTION TO DATABASE DEVELOPMENT: DEVELOPMENT OF A MODEL CRYOPRESERVED GERMPLASM REPOSITORY FOR AQUATIC SPECIES WITH EMPHASIS ON STURGEON A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The School of Renewable Natural Resources By William Rittenhouse Wayman B.S., Auburn University, 1991 M.S., Louisiana State University, 1996 August 2003 Acknowledgements I thank Dr. Terrence Tiersch for serving as my major advisor. Besides helping in the fulfillment of the obligations to obtain my doctoral degree, he has helped in obtaining a full-time position with the U. S. Fish and Wildlife Service, and in beginning my professional career. For this I am truly thankful. I thank Mr. Vincent Mudrak for offering me a position at the Warm Springs Fish Technology Center, and for providing the resources of the U. S. Fish and Wildlife Service during this dissertation. I thank the rest of my Advisory Committee, Dr. John Caprio, Dr. John Hawke, Dr. Jill Jenkins, and Dr. Robert Romaire, for the assistance they have provided during my studies. I thank the U. S. Fish and Wildlife Service for the initial funding of these efforts through a research work order, and for allowing the continuation of the work through the position at Warm Springs. I thank Sheldon Hawkins, James Henne, Malcolm Mohead, Wayne Tucker, and Kent Ware of the Bears Bluff National Fish Hatchery for help in the spawning and cryopreservation work with shortnose sturgeon. I thank Dr. Edward Baker of the Michigan Department of Natural Resources, his crew (Dean Burdett, Dan Daugherty, Karen Koval, and Jessica Mistak), Brenda and Gil Archambo of the Black Lake Chapter of Sturgeon for Tomorrow, and Kregg Smith for their assistance in the lake sturgeon efforts. I especially thank Rob Holm for his assistance and friendship in research of pallid sturgeon and shovelnose sturgeon, and in the development of a repository for pallid sturgeon sperm. I thank the staff and volunteers at the Garrison Dam National Fish Hatchery and the Charles M. Russell National Wildlife Refuge for assistance and housing during the cryopreservation work on pallid sturgeon and shovelnose sturgeon. I thank Karen Kilpatrick, Jan Dean and the staff at the Natchitoches National Fish Hatchery for their assistance in the collection of blood samples from shovelnose sturgeon and pallid sturgeon. ii I thank the staff of the Warm Springs Regional Fisheries Center (Robert Bakal, Joe Bodine, Josh Bradley, Irene Duke, Carlos Echevarria, Lawrence Ford, Norm Heil, Brian Hickson, Harvey Ingram, Haile Macurdy, and Rosla Plant) for making me feel comfortable at work and helping me to accomplish this project. I especially thank Greg Looney for the help, advice, and assistance that he has given during this research, many times while being away from his family for extended periods. I thank the Student Conservation Association interns at Warm Springs, Elizabeth Osier, Catherine Bradley, and Jaclyn Zelko, for assistance, and for putting up with me for the 6 months that I was their supervisor. I thank the staff and students of the Aquaculture Research Station for all the assistance they provided over the years. I miss being around there to enjoy the friendships that were developed over the past decade. I owe John Buchanan immensely for his critical review of this dissertation, his advice on coping with stress, his guidance on research directions, and especially his friendship. I express extreme gratitude to my wife, Candice, for her unwavering support during this period, and especially during the last 6 months when she was largely responsible for the care of our newborn child, William, Jr. I express thanks to my parents for their monetary and emotional support throughout my life and to my sisters for their competitive nature and support, without them none of this would have been possible. I am sure that I am leaving out others who have helped me during the last 7 years, and for this I am sorry, but please be assured that I appreciate your help. iii Table of Contents Acknowledgements................................................................................................................ii List of Tables .........................................................................................................................vi List of Figures ........................................................................................................................viii Abstract ..................................................................................................................................xiii Chapter 1 Foreword .................................................................................................................1 Literature Cited ..............................................................................................7 2 Introduction............................................................................................................. 9 Literature Cited .............................................................................................. 28 3 Development of Methods to Verify the Field Identifications of Species ............... 35 Introduction.................................................................................................... 35 Materials and Methods................................................................................... 37 Results............................................................................................................ 41 Discussion...................................................................................................... 42 Literature Cited .............................................................................................. 45 4 Bacterial Contamination of Sperm Samples ........................................................... 48 Introduction.................................................................................................... 48 Materials and Methods................................................................................... 51 Results............................................................................................................ 55 Discussion...................................................................................................... 59 Literature Cited .............................................................................................. 65 5 Development of Refrigerated Storage Methods...................................................... 69 Introduction.................................................................................................... 69 Materials and Methods................................................................................... 70 Results............................................................................................................ 75 Discussion...................................................................................................... 96 Literature Cited .............................................................................................. 103 6 Development of Cryopreservation Techniques.......................................................108 Introduction....................................................................................................108 Materials and Methods...................................................................................109 Results............................................................................................................114 Discussion......................................................................................................127 Literature Cited ..............................................................................................131 iv 7 Development of Methods for the Objective Determination of Sperm Quality.......133 Introduction....................................................................................................133 Materials and Methods...................................................................................134 Results............................................................................................................138 Discussion......................................................................................................156 Literature Cited ..............................................................................................159
Recommended publications
  • Maximizing Offspring Production While Maintaining Genetic Diversity in Supplemental Breeding Programs of Highly Fecund Managed Species
    Conservation in Practice Maximizing Offspring Production While Maintaining Genetic Diversity in Supplemental Breeding Programs of Highly Fecund Managed Species ANTHONY C. FIUMERA,∗‡ BRADY A. PORTER,∗§ GREG LOONEY,† MARJORIE A. ASMUSSEN,∗ AND JOHN C. AVISE∗ ∗Department of Genetics, University of Georgia, Athens, GA 30602, U.S.A. †Warm Spring Fish Technology Center, 5308 Spring Street, Warm Springs, GA 31830, U.S.A. Abstract: Supplemental breeding is an intensive population management strategy wherein adults are cap- tured from nature and spawned in controlled settings, and the resulting offspring are later released into the wild. To be effective, supplemental breeding programs require crossing strategies that maximize offspring production while maintaining genetic diversity within each supplemental year class. We used computer simula- tions to assess the efficacy of different mating designs to jointly maximize offspring production and maintain high levels of genetic diversity (as measured by the effective population size) under a variety of biological conditions particularly relevant to species with high fecundity and external fertilization, such as many fishes. We investigated four basic supplemental breeding designs involving either monogamous pairings or complete factorial designs (in which every female is mated to every male and vice versa), each with or without the added stipulation that all breeders contribute equally to the total reproductive output. In general, complete factorial designs that did not equalize parental contributions came closest to the goal of maximizing offspring production while still maintaining relatively large effective population sizes. Next, we estimated the effective population size of 10 different supplemental year classes within the breeding program of the robust redhorse (Moxostoma robustum).
    [Show full text]
  • Life History and Population Dynamics of Lake Sturgeon
    LIFE HISTORY AND POPULATION DYNAMICS OF LAKE STURGEON, Acipenser fulvescens, IN THE MUSKEGON RIVER, MICHIGAN by Paul Joseph Vecsei (Under the direction of Douglas L. Peterson) ABSTRACT The lake sturgeon was once abundant throughout Lake Michigan with an estimated 11 million fish prior to human exploitation. By the early 1900s, however, most populations had been decimated by severe over-fishing and habitat degradation. Despite recent interests in restoring the species in Lake Michigan, little is known about the current status of remnant populations. The primary objectives of this study were to estimate annual spawning stock abundance and to identify potential spawning habitat for lake sturgeon on the Muskegon River, Michigan. To capture adult lake sturgeon, I used large-mesh, bottom-set gill nets deployed at the mouth of the Muskegon River from mid- March through May, 2002-2005. Radio telemetry was used to monitor seasonal movements and to identify likely spawning habitats. Sampling for larval lake sturgeon was conducted in May of each year using D-frame drift nets anchored in the mainstream of the river channel. During the 4 years of the study, I expended more than 5000 gill-net hours and captured 59 individual adult lake sturgeon. Larval lake sturgeon were captured in 2 years, suggesting that at least some natural reproduction still occurs. Habitat analysis revealed that the lower Muskegon River likely contains extensive reaches of potential spawning habitat for lake sturgeon. INDEX WORDS: Biology, population dynamics, habitat, lake
    [Show full text]
  • Latris Lineata) in a Data Limited Situation
    Assessing the population dynamics and stock viability of striped trumpeter (Latris lineata) in a data limited situation Sean Tracey B. App. Sci. [Fisheries](AMC) A thesis submitted for the degree of Doctor of Philosophy University of Tasmania February 2007 Supervisors Dr. J. Lyle Dr. A. Hobday For my family...Anj and Kails Statement of access I, the undersigned, the author of this thesis, understand that the University of Tas- mania will make it available for use within the university library and, by microfilm or other photographic means, and allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement: ‘In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part, or use the results in any other work (written or otherwise) without the signed consent of the author; and to make proper written acknowledgment for any other assistance which I have obtained from it.’ Beyond this, I do not wish to place any restrictions on access to this thesis. Signed: .......................................Date:........................................ Sean Tracey Candidate University of Tasmania Declaration I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary edu- cation. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given. Signed: .......................................Date:........................................ Sean Tracey Candidate University of Tasmania Statement of co-authorship Chapters 2 – 5 of this thesis have been prepared as scientific manuscripts.
    [Show full text]
  • Pallid Sturgeon Recovery Plan (Recovery Plan)
    PALLID STURGEON coRE VERYPMN Recovery Plan for the Pallid Sturgeon (Scaphirhynchus a/bus) Prepared by the Pallid Sturgeon Recovery Team Principal Authors Mark P. Dryer, Leader U.S. Fish and Wildlife Service Ecological Services 1500 Capitol Avenue Bismarck, ND 58501 and Alan J. Sandvol U.S. Fish and Wildlife Service Fisheries and Federal Aid 1500 Capitol Avenue Bismarck, ND 58501 for Region 6 U.S. Fish and Wildlife Service Denver, Colorado / Approved: Re~5l i rector Date TABLE OF CONTENTS TITLE PAGE RECOVERY BACKGROUND AND STRATEGY iii PALLID STURGEON RECOVERY TEAM iv DISCLAIMER V ACKNOWLEDGEMENTS vi EXECUTIVE SUMMARY vii Part I INTRODUCTION 1 History 1 General Description 1 Historical Distribution and Abundance 3 Present Distribution and Abundance 5 Habitat Preference 5 Current Velocity 7 Turbidity 8 Water Depth 8 Substrate 8 Temperature 8 Life History 8 Reproductive Biology 8 Food and Feeding Habits 9 Age and Growth 10 Reasons for Decline 10 Habitat Loss 10 Commercial Harvest 13 Pall uti on/Contami nants 14 Hybridization 14 Part II RECOVERY 16 Recovery Objectives and Criteria 16 Recovery—Priority Management Areas 16 Recovery Outline 19 24 Recovery Outline Narrative . LITERATURE CITED 42 Part III IMPLEMENTATION SCHEDULE 46 FIGURES NO. PAGE 1. Comparative Diagrams of the Ventral Surface of the Head of Shovelnose Sturgeon and Pallid Sturgeon, Showing Several Measurement Ratios of Value for Identification 2 2. Historic Range of Pallid Sturgeon 4 3. Recent Occurrence of Pallid Sturgeon 6 4. Recovery—Priority Management Areas 18 RECOVERY BACKGROUND AND STRATEGY The pallid sturgeon (Scaphirhynchus albus Forbes and Richardson) was listed as an endangered species on September 6, 1990 (55 FR 36641) pursuant to the Endangered Species Act (Act) of 1973 (16 U.S.C.
    [Show full text]
  • 2012 Wildearth Guardians and Friends of Animals Petition to List
    PETITION TO LIST Fifteen Species of Sturgeon UNDER THE U.S. ENDANGERED SPECIES ACT Submitted to the U.S. Secretary of Commerce, Acting through the National Oceanic and Atmospheric Administration and the National Marine Fisheries Service March 8, 2012 Petitioners WildEarth Guardians Friends of Animals 1536 Wynkoop Street, Suite 301 777 Post Road, Suite 205 Denver, Colorado 80202 Darien, Connecticut 06820 303.573.4898 203.656.1522 INTRODUCTION WildEarth Guardians and Friends of Animals hereby petitions the Secretary of Commerce, acting through the National Marine Fisheries Service (NMFS)1 and the National Oceanic and Atmospheric Administration (NOAA) (hereinafter referred as the Secretary), to list fifteen critically endangered sturgeon species as “threatened” or “endangered” under the Endangered Species Act (ESA) (16 U.S.C. § 1531 et seq.). The fifteen petitioned sturgeon species, grouped by geographic region, are: I. Western Europe (1) Acipenser naccarii (Adriatic Sturgeon) (2) Acipenser sturio (Atlantic Sturgeon/Baltic Sturgeon/Common Sturgeon) II. Caspian Sea/Black Sea/Sea of Azov (3) Acipenser gueldenstaedtii (Russian Sturgeon) (4) Acipenser nudiventris (Ship Sturgeon/Bastard Sturgeon/Fringebarbel Sturgeon/Spiny Sturgeon/Thorn Sturgeon) (5) Acipenser persicus (Persian Sturgeon) (6) Acipenser stellatus (Stellate Sturgeon/Star Sturgeon) III. Aral Sea and Tributaries (endemics) (7) Pseudoscaphirhynchus fedtschenkoi (Syr-darya Shovelnose Sturgeon/Syr Darya Sturgeon) (8) Pseudoscaphirhynchus hermanni (Dwarf Sturgeon/Little Amu-Darya Shovelnose/Little Shovelnose Sturgeon/Small Amu-dar Shovelnose Sturgeon) (9) Pseudoscaphirhynchus kaufmanni (False Shovelnose Sturgeon/Amu Darya Shovelnose Sturgeon/Amu Darya Sturgeon/Big Amu Darya Shovelnose/Large Amu-dar Shovelnose Sturgeon/Shovelfish) IV. Amur River Basin/Sea of Japan/Sea of Okhotsk (10) Acipenser mikadoi (Sakhalin Sturgeon) (11) Acipenser schrenckii (Amur Sturgeon) (12) Huso dauricus (Kaluga) V.
    [Show full text]
  • Lates Calcarifer)
    National Training on 'Cage Culture of Seabass' held at CMFRI, Kochi View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository Taxonomy, identification and biology of Seabass (Lates calcarifer) Grace Mathew Central Marine Fisheries Research Institute, Post box No. 1603 Ernakulam North P.O., Kochi- 682 018, Kerala, India [email protected] Introduction female fish provides plenty of material for hatchery Lates calcarifer (Bloch), commonly known as giant sea perch production of seed. Hatchery production of seed is relatively or Asian seabass, is an economically important food fish in simple. Seabass feed well on pelleted diets, and juveniles the tropical and subtropical regions in the Asia –Pacific. are easy to wean to pellets. Seabass grow rapidly, reaching They are medium to large-sized bottom-living fishes a harvestable size (350 g – 3 kg) in six months to two years. occurring in coastal seas, estuaries and lagoons in depths Today Seabass is farmed throughout most of its range, with between 10 and 50m. They are highly esteemed food and most production in Southeast Asia, generally from small sport fishes taken mainly by artisanal fishermen. Because coastal cage farms. Often these farms will culture a mixture of its relatively high market value, it has become an of species, including Seabass, groupers (Family Serranidae, attractive commodity of both large to small-scale Subfamily Epinephelinae) and snappers (Family Lutjanidae). aquaculture enterprises. It is important as a commercial and subsistence food fish but also is a game fish. The most Australia is experiencing the development of large-scale important commercial fish of Australia, and the most seabass farms, where seabass farming is undertaken sought after game fish, generates millions of dollars per outside the tropics and recirculation production systems year in revenue for the sport fishing.
    [Show full text]
  • The Marine Biodiversity and Fisheries Catches of the Pitcairn Island Group
    The Marine Biodiversity and Fisheries Catches of the Pitcairn Island Group THE MARINE BIODIVERSITY AND FISHERIES CATCHES OF THE PITCAIRN ISLAND GROUP M.L.D. Palomares, D. Chaitanya, S. Harper, D. Zeller and D. Pauly A report prepared for the Global Ocean Legacy project of the Pew Environment Group by the Sea Around Us Project Fisheries Centre The University of British Columbia 2202 Main Mall Vancouver, BC, Canada, V6T 1Z4 TABLE OF CONTENTS FOREWORD ................................................................................................................................................. 2 Daniel Pauly RECONSTRUCTION OF TOTAL MARINE FISHERIES CATCHES FOR THE PITCAIRN ISLANDS (1950-2009) ...................................................................................... 3 Devraj Chaitanya, Sarah Harper and Dirk Zeller DOCUMENTING THE MARINE BIODIVERSITY OF THE PITCAIRN ISLANDS THROUGH FISHBASE AND SEALIFEBASE ..................................................................................... 10 Maria Lourdes D. Palomares, Patricia M. Sorongon, Marianne Pan, Jennifer C. Espedido, Lealde U. Pacres, Arlene Chon and Ace Amarga APPENDICES ............................................................................................................................................... 23 APPENDIX 1: FAO AND RECONSTRUCTED CATCH DATA ......................................................................................... 23 APPENDIX 2: TOTAL RECONSTRUCTED CATCH BY MAJOR TAXA ............................................................................
    [Show full text]
  • Sturgeons – Contemporaries of Dinosaurs
    G.M. PALATNIKOV, R.U. KASIMOV STURGEONS – CONTEMPORARIES OF DINOSAURS BAKU – 2010. INTRODUCTION TheCaspian Sea is abundant with its natural unique gems, the most famous being sturgeons and oil. But, as the old wisdom says, wealth alone will make no one happy, especially if used without thinking of future. All natural resources can be categorized as renewables and nonrenewables. Renewables are such resources that can regenerate through reproduction or through the nature renewal cycles over the time frame comparable with the pace of huuman economical activity. Examples of such resources are sturgeons. Nonrenewables are such resources that cannot regenerate over the natural cycle over the time frame comparable with the pace of human economical activity. Oil reserves are such nonrenewable resources. Oil has now been actively developed and produced. Big money is being spent for the development of hydrocarbon exploration, production and transportation technologies. But hydrocarbon reserves sooner or later will deplete. As for sturgeons, their stock is being gradually decreased because of irrational catch, reduction of feeding and spawning areas, and contamination of the water environment - and oil industry has contributed greatly to it. However, this problem has currently not been addressed properly although preservation of sturgeon reserves requires less investment but promises continuously high profits at all times. Unfortunately, not everyone, including those who live at the Caspian Sea, understands this. Most people have insufficient knowledge about sturgeons, but view sturgeons as a source of food. We will try to inform the readers about the life of this unique fish. We will tell you the following: What are these species that have left such a noticeable footprint in the history of mankind? What y interest (other than being a source of food) do they present? Will they be preserved for future generations, or disappear as did their contemporaries – the dinosaurs? 1 GOING BACK TO HISTORY Sturgeon catching has been known since ancient times.
    [Show full text]
  • Bibliography Aquaculture 1981-2015
    PERPUSTAKAAN UMS PENERBIT UNIVERSITI MALAYSIA SABAH Kota Kinabalu • Sabah • Malaysia http://www.ums.edu.my 2018 Ahli Majlis Penerbitan Ilmiah Malaysia (MAPIM) © Universiti Malaysia Sabah, 2018 Hak cipta terpelihara. Tiada bahagian daripada terbitan ini boleh diterbitkan semula, disimpan untuk pengeluaran atau dikeluarkan ke dalam sebarang bentuk sama ada dengan cara elektronik, gambar serta rakaman dan sebagainya tanpa kebenaran bertulis daripada Penerbit Universiti Malaysia Sabah, kecuali seperti yang diperuntukkan dalam Akta 332, Akta Hak Cipta 1987. Keizinan adalah tertakluk kepada pembayaran royalti atau honorarium. Segala kesahihan maklumat yang terdapat dalam buku ini tidak semestinya mewakili atau menggambarkan pendirian mahupun pendapat Penerbit Universiti Malaysia Sabah. Pembaca atau pengguna buku ini perlu berusaha sendiri untuk mendapatkan maklumat yang tepat sebelum menggunakan sebarang maklumat yang terkandung di dalamnya. Pandangan yang terdapat dalam buku ini merupakan pandangan ataupun pendapat penulis dan tidak semestinya menunjukkan pendapat atau polisi Universiti Malaysia Sabah. Penerbit Universiti Malaysia Sabah tidak akan bertanggungjawab terhadap sebarang masalah mahupun kesulitan yang timbul, sama ada secara menyeluruh atau sebahagian, yang diakibatkan oleh penggunaan atau kebergantungan pembaca terhadap kandungan buku ini. Perpustakaan Negara Malaysia Data Pengkatalogan-dalam-Penerbitan BIBLIOGRAFI AKUAKULTUR 1981-2015 / PERPUSTAKAAN UMS. eISBN 978-967-2166-06-1 1. Perpustakaan Universiti Malaysia Sabah. 2. Aquaculture--Bibliography.
    [Show full text]
  • Expression of Infection-Related Immune Response in European Sea Bass
    Fish and Shellfish Immunology 84 (2019) 62–72 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Full length article Expression of infection-related immune response in European sea bass (Dicentrarchus labrax) during a natural outbreak from a unique T dinoflagellate Amyloodinium ocellatum ∗ Omkar Byadgi , Paola Beraldo, Donatella Volpatti, Michela Massimo, Chiara Bulfon, Marco Galeotti Section of Animal and Veterinary Sciences, Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy ARTICLE INFO ABSTRACT Keywords: In the Mediterranean area, amyloodiniosis represents a major hindrance for marine aquaculture, causing high Natural infection mortalities in lagoon-type based rearing sites during warm seasons. Amyloodinium ocellatum (AO) is the most Amyloodinium ocellatum common and important dinoflagellate parasitizing fish, and is one of the few fish parasites that can infest several European sea bass fish species living within its ecological range. In the present study, A. ocellatum was recorded and collected from Immune response infected European sea bass (Dicentrarchus labrax) during a summer 2017 outbreak in north east Italy. Immune related genes Histological observation of infected ESB gill samples emphasized the presence of round or pear-shaped trophonts anchored to the oro-pharingeal cavity. Molecular analysis for small subunit (SSU) rDNA of A. ocellatum from gill genomic DNA amplified consistently and yielded 248 bp specific amplicon of A. ocellatum, that was also con- firmed using sequencing and NCBI Blast analysis. Histological sections of ESB gill samples were addressed to immunohistochemical procedure for the labelling of ESB igm, inos, tlr2, tlr4, pcna and cytokeratin.
    [Show full text]
  • Status of Knowledge of the Shovelnose Sturgeon (Scaphirhynchus Platorynchus, Rafinesque, 1820) Q
    CORE Metadata, citation and similar papers at core.ac.uk Provided by UNL | Libraries University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Natural Resources Natural Resources, School of 2016 Status of knowledge of the Shovelnose Sturgeon (Scaphirhynchus platorynchus, Rafinesque, 1820) Q. E. Phelps Missouri Department of Conservation, [email protected] S. J. Tripp Missouri Department of Conservation M. J. Hamel University of Nebraska-Lincoln, [email protected] J. Koch Kansas Department of Wildlife Parks and Tourism E. J. Heist Southern Illinois University Carbondale See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/natrespapers Part of the Natural Resources and Conservation Commons, Natural Resources Management and Policy Commons, and the Other Environmental Sciences Commons Phelps, Q. E.; Tripp, S. J.; Hamel, M. J.; Koch, J.; Heist, E. J.; Garvey, J. E.; Kappenman, K. M.; and Webb, M. A. H., "Status of knowledge of the Shovelnose Sturgeon (Scaphirhynchus platorynchus, Rafinesque, 1820)" (2016). Papers in Natural Resources. 599. http://digitalcommons.unl.edu/natrespapers/599 This Article is brought to you for free and open access by the Natural Resources, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Natural Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Q. E. Phelps, S. J. Tripp, M. J. Hamel, J. Koch, E. J. Heist, J. E. Garvey, K. M. Kappenman, and M. A. H. Webb This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/natrespapers/599 Journal of Applied Ichthyology J.
    [Show full text]
  • Molecular Genetics of Cirrhitoid Fishes (Perciformes: Cirrhitoidea
    Molecular genetics of c·irrhitoid fishes (Perciformes: Cirrhitoidea): phylogeny, taxonomy, biogeography, and stock structure Christopher Paul Burridge BSc(Hons) University of Tasmania Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy, University of Tasmania October 2000 S1a~tements I declare that this thesis contains no material whicb has been accepted for the award of any otiler degree or diploma in any tertiary institution and, to the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due reference is made in the text. This thesis is to be made available for loan and limited copying in accordance with the Copyright Act 1968. October 2000 Summary The molecular phylogenetic relationships within three of the five cirrhitoid fish families were reconstructed from mitochondrial DNA cytochrome b, cytochrome oxidase I, and D-loop sequences. Analysis of the Cheilodactylidae provided evidence that much taxonomic revision is required. The molecular data suggest that this family should be restricted to the two South African Cheilodactylus, as they are highly divergent from the other cheilodactylids and one member is the type species. The remaining 25 cheilodactylids should be transferred to the Latridae. Nine of the non South African Cheilodactylus can be allocated to three new genera; Goniistius (elevated to generic rank), Zeodrius (resurrected), and Morwong (resurrected), while the placement of three species is uncertain. The three South African Chirodactylus should revert to Palunolepis, as they are distinct from the South American type species Chirodact_vlus variegatus. Acantholatris clusters within Nemadactylus, ar;d the former should be synonymised.
    [Show full text]