Icvm-7 Abstracts

Total Page:16

File Type:pdf, Size:1020Kb

Icvm-7 Abstracts 274 ICVM-7 ABSTRACTS How to Measure Ontogeny? Expression of beta-Keratin and Its mRNA in Differentiating Lizard Adriaens, Dominique; Ghent University, Gent, Belgium (dominique. Epidermis [email protected]) Alibardi, L.,1 Toni, M.,2 Toffolo, V.,1 and Dalla Valle, L.1; 1University of When studying evolution and adaptations, it is crucial that the early life Bologna, Italy ([email protected]), 2University of Padova, Italy history of vertebrates is considered as well. Selective forces act upon each The hard form of keratin of lizard scales, beta-keratin, was isolated by stage during development, thus constraining developmental processes. electrophoresis after labeling with tritiated proline. The molecular weight When studying ontogeny, developmental age is expressed in different and biosynthesis of beta-keratin was determined by autoradiography and ways: in relation to body size or to (chronological) age. Many discussions immunoblotting showing that the components at 8–10 and 16–18 kDa have tackled this. Deductive models have suggested that size is not a good form most beta-keratins. The primary sequence of beta-keratin was par- measure, because it is linked to shape, which is frequently used as a tially characterized after extraction and selection of a beta-keratin mRNA descriptor of ontogenetic changes. This study is an empirical approach to using RT-PCR. The derived cDNA probe was used to analyze by in situ the problem, using geometric morphometrics. Shape changes in the neu- hybridization the expression of beta-keratin mRNA during epidermal dif- rocranium of the African catfish Clarias gariepinus (Clariidae) are used as ferentiation of lizard epidermis. The probe localizes specifically in cells of a measure of developmental age, and are dissociated from size (using the differentiating beta-layer. Initially, the oberhautchen cells have no generalized procrustes analysis). The obtained shape variables were re- mRNA signal that increases after merging with cells of the beta-layer. This gressed to size (log-transformed standard length) and age (days posthatch- suggests that only beta-cells synthesize beta-keratin mRNA that can be ing), indicating that size is a better measure for ontogeny. Supporting exported into oberhautchen cells during maturation of the beta-layer. evidence is obtained from an experimental setup of two growth series of C. Suprabasal cells with presumptive beta-keratin differentiation show beta- gariepinus larvae, in which the ossification pattern of the skull is in keratin mRNA expression only at stage 3–4 of the shedding cycle, when correspondence with body size and not age. they assume a fusiform shape. This suggests that beta-keratin synthesis is rapidly switched on when presumptive beta-cells reach 2–3 layers above the germinative. This result confirms and details previous morphological and immunocytochemical studies and opens the possibility to completely Promise of Basic Mechanics in Functional and Ecological Vertebrate sequence the expressed beta-keratin mRNA. This will allow deriving the Morphology primary sequence of lizard beta-keratin for further analysis on the molec- Aerts, Peter; University of Antwerp, Belgium ([email protected]) ular evolution of beta-keratins in reptiles. Despite the many prosaic examples of the “perfect fit” between form and function, the underlying causes and adaptive nature (if present) of covaria- tion between design, performance, and ecology are often far from obvious or straightforward. Constraints can make form–function relations much Evolution of Flight Morphology in Hummingbirds more complex than expected at first, or the causal links can just be too Altshuler, Douglas L.,1 Stiles, F. Gary,2 Graves, Gary R.,3 and subtle, even hidden. In order to allow direct focus on the relevant design- McGuire, Jimmy A.4; 1California Institute of Technology, Pasadena, CA, traits, proper deductive assessment of form–function relationships needs an USA ([email protected]), 2Universidad Nacional de Colombia, Colombia, understanding of the demands imposed by the ecology and behavior of the 3National Museum of Natural History, Smithsonian Institution, Washing- organism. Next, insights into the mechanistic coupling between these traits ton, DC, USA, 4University of California, Berkeley, CA, USA and performance can be gained. In the case of musculo-skeletal systems, Hummingbirds are obligate nectarivores and are the only birds capable of biomechanical reasoning and analyses (both through experiments and sustained hovering flight. Despite this high degree of ecological and models) are especially suited to realize these aims: i.e., grasping the logical locomotor specialization, hummingbirds are remarkably diverse, with over sequence from design-traits to differential performance and, finally, to 325 species in the New World, and are also highly variable in body ecological niche. Applied in this way, biomechanical modeling may reveal, morphology, ranging over an order of magnitude difference in body mass. for example, why long limbs are helpful, but not sufficient for the con- Here we analyze the phylogenetic patterns in flight morphology using a spicuous jumping behavior of bush babies; why snake-necked turtles can new phylogeny that contains over 100 taxa based on sequences of one do without long, forceful neck extensors in their fast and precise strike mitochondrial and two nuclear genes. behavior during feeding; why forelimbs are “almost” redundant for fast intermittently running lizards, or why frogs seem to be lazy when swim- ming. Biorhythmical Organization of Spermatogenesis Arav, Vladimir I., Sych, Vitaly F., and Zheleznyak, Elena V.; Ulyanovsk State University, Russia ([email protected]) Air Sac Diverticula as Passive Support Devices in Birds and Sauris- chian Dinosaurs: An Overlooked Biomechanical System We studied the daily dynamics of the mitotic index (MI) of type B Akersten, William A., and Trost, Charles H.; Idaho Museum of Natural spermatogonia and the frequency of spermatogenic cycle stages for intact History, Pocatello, ID, USA ([email protected]) and pinealectomized rats that consequently received an injection of epith- alamin (or the complex of pineal gland neuropeptides). Biorhythms were Just as impermeable and inelastic low-pressure air bladders used in ship- detected through spectral and least-squares (OLS) analyses. The daily MI ping can support up to four tons at 2.0 psi, similar structures in organisms spermatogonia dynamics of intact animals were characterized by a circa- could provide substantial passive support. While portions of the minimally dian rhythm. This rhythm disappeared after pinealectomy but was restored elastic and nearly impermeable diverticula of the air sac complex in birds after the injection of epithalamin between the 26th and 40th day postpi- function to pneumatize bones, other parts play no obvious role in this nealectomy. The spermatogenic cycle of rats comprises 14 stages charac- function. However, their morphologies and placement strongly suggest terized by different combinations of spermatogenic cells. In intact animals, that, upon pressurization, they would provide passive support to much of only 3 of 14 stages that include mitosis of spermatogonia and meiosis of the vertebral column, the femora, and the outstretched wings of soaring spermatocytes had a circadian rhythm. If a given spermatogenic period birds. We observed these effects at inflation pressures of 0.6 Ϯ 0.2 psi. We included several stages, the daily frequency dynamics for this group were focus here on the cervical vertebrae, especially in birds that fly with long also characterized by a circadian rhythm. Pinealectomy led to the disap- extended necks. Avian cervical diverticula consist of anteroposterior pas- pearance of all circadian rhythms and the injection of epithalamin to their sages through the transverse foramina and neural canal, connecting a series restoration. Our study demonstrates the role pineal gland neuropeptides of intervertebral sacs that become progressively smaller craniad. Accessory play in the formation of the spermatogenesis circadian rhythm. Stages of diverticula may also be present. Experimentally pressurizing cervical di- the spermatogenic cycle previously described in the literature seem to verticula demonstrates their role in neck support. Gravitational forces act on the extended necks of flying birds and would similarly affect the necks of saurischians, especially sauropods that held their necks relatively hori- zontally. Because many parallels exist between the pneumatic features of bird and saurischian cervicals, and because major nuchal ligaments are DOI: 10.1002/jmor.10223 absent in both, we infer that saurischian dinosaurs also used pneumatic Published online in pressure to passively support their necks Wiley InterScience (www.interscience.wiley.com) © 2004 WILEY-LISS, INC. ICVM-7 ABSTRACTS 275 reflect the topographic structure of the spermatogenic tissue cells, rather generating traveling waves of lateral undulation after the entire body was than the sequence of spermatogenesis. immersed in water. Surface EMGs Design Principles of Gecko Adhesive Nanostructures Arnold, D., Fischer, M.S., Schumann, N.P., Biedermann, F.H.W., and Autumn, Kellar; Lewis and Clark College, Portland, OR, USA (autumn@ Scholle, H.Ch.; Friedrich-Schiller-University, Jena, Germany (b9ardi@ lclark.edu) pan.zoo.uni-jena.de) Geckos have evolved setal nanostructures on the surface of their toes that Physiological studies with surface-EMGs were undertaken to better under-
Recommended publications
  • 1.1 První Chobotnatci 5 1.2 Plesielephantiformes 5 1.3 Elephantiformes 6 1.3.1 Mammutida 6 1.3.2 Elephantida 7 1.3.3 Elephantoidea 7 2
    MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV GEOLOGICKÝCH VĚD Jakub Březina Rešerše k bakalářské práci Využití mikrostruktur klů neogenních chobotnatců na příkladu rodu Zygolophodon Vedoucí práce: doc. Mgr. Martin Ivanov, Dr. Brno 2012 OBSAH 1. Současný pohled na evoluci chobotnatců 3 1.1 První chobotnatci 5 1.2 Plesielephantiformes 5 1.3 Elephantiformes 6 1.3.1 Mammutida 6 1.3.2 Elephantida 7 1.3.3 Elephantoidea 7 2. Kly chobotnatců a jejich mikrostruktura 9 2.1 Přírůstky v klech chobotnatců 11 2.1.1 Využití přírůstků v klech chobotnatců 11 2.2 Schregerův vzor 12 2.2.1 Stavba Schregerova vzoru 12 2.2.2 Využití Schregerova vzoru 12 2.3 Dentinové kanálky 15 3 Sedimenty s nálezy savců v okolí Mikulova 16 3.1 Baden 17 3.2 Pannon a Pont 18 1. Současný pohled na evoluci chobotnatců Současná systematika chobotnatců není kompletně odvozena od jejich fylogeneze, rekonstruované pomocí kladistických metod. Diskutované skupiny tak mnohdy nepředstavují monofyletické skupiny. Přestože jsou taxonomické kategorie matoucí (např. Laurin 2005), jsem do jisté míry nucen je používat. Některým skupinám úrovně stále přiřazeny nebyly a zde této skutečnosti není přisuzován žádný význam. V této rešerši jsem se zaměřil hlavně na poznatky, které následovaly po vydání knihy; The Proboscidea: Evolution and Paleoecology of Elephants and Their Relatives, od Shoshaniho a Tassyho (1996). Chobotnatci jsou součástí skupiny Tethytheria společně s anthracobunidy, sirénami a desmostylidy (Shoshani 1998; Shoshani & Tassy 1996; 2005; Gheerbrant & Tassy 2009). Základní klasifikace sestává ze dvou skupin. Ze skupiny Plesielephantiformes, do které patří čeledě Numidotheriidae, Barytheriidae a Deinotheridae a ze skupiny Elephantiformes, do které patří čeledě Palaeomastodontidae, Phiomiidae, Mammutida, Gomphotheriidae, tetralofodontní gomfotéria, Stegodontidae a Elephantidae (Shoshani & Marchant 2001; Shoshani & Tassy 2005; Gheerbrant & Tassy 2009).
    [Show full text]
  • Traversing Tight Tunnels—Implementing an Adaptive Concertina Gait in a Biomimetic Snake Robot Henry C
    Earth and Space 2018 158 Traversing Tight Tunnels—Implementing an Adaptive Concertina Gait in a Biomimetic Snake Robot Henry C. Astley1 1Biomimicry Research and Innovation Center, Dept. of Biology and Polymer Science, Univ. of Akron, 235 Carroll St., Akron, OH 44325-3908. E-mail: [email protected] ABSTRACT Snakes move through cluttered habitats and tight spaces with extraordinary ease, and consequently snake robots are a popular design for such situations. The remarkable locomotor performance of snakes is due in part to their diversity of locomotor modes for addressing a range of environmental challenges. Concertina locomotion consists of alternating periods of static anchoring and movement along the snake’s body, and is used to negotiate narrow spaces such as tunnels or bare branches. However, concertina locomotion has rarely been implemented in snake robots. In this paper, the anchor formation process in live snakes during concertina locomotion is quantified and used to implement concertina locomotion in a snake robot, with automatic detection of the width of the tunnel walls to modulate the waveform. This allows effective concertina locomotion in tunnels of unknown width, without prior knowledge of tunnel geometry, expanding the range of gaits in snake robots. INTRODUCTION The elongate, limbless body plan is extremely common throughout nature, in both vertebrate and invertebrates alike (Pechenik, J. A. 2005; Pough, F. H. et al. 2002), and has evolved independently numerous times (Gans, C 1975). Indeed, within lizards (Order Squamata) alone there are over two dozen independent evolutions of limblessness or functional limblessness (Wiens, J. J. et al. 2006). Snakes are by far the most successful limbless taxon, with a near-global distribution, nearly 3000 species, and a wide range of ecological niches and habitats (Pough, F.
    [Show full text]
  • Slithering Locomotion
    SLITHERING LOCOMOTION DAVID L. HU() AND MICHAEL SHELLEY∗∗ Abstract. Limbless terrestrial animals propel themselves by sliding their bellies along the ground. Although the study of dry solid-solid friction is a classical subject, the mechanisms underlying friction-based limbless propulsion have received little attention. We review and expand upon our previous work on the locomotion of snakes, who are expert sliders. We show that snakes use two principal mechanisms to slither on flat surfaces. First, their bellies are covered with scales that catch upon ground asperities, providing frictional anisotropy. Second, they are able to lift parts of their body slightly off the ground when moving. This reduces undesired frictional drag and applies greater pressure to the parts of the belly that are pushing the snake forwards. We review a theoretical framework that may be adapted by future investigators to understand other kinds of limbless locomotion. Key words. Snakes, friction, locomotion AMS(MOS) subject classifications. Primary 76Zxx 1. Introduction. Animal locomotion is as diverse as animal form. Swimming, flying and walking have received much attention [1, 9]withthe latter being the most commonly studied means for moving on land (Fig. 1). Comparatively little attention has been paid to limbless locomotion on land, which necessarily relies upon sliding. Sliding is physically distinct from pushing against a fluid and understanding it as a form of locomotion presents new challenges, as we present in this review. Terrestrial limbless animals are rare. Those that are multicellular include worms, snails and snakes, and account for less than 2% of the 1.8 million named species (Fig.
    [Show full text]
  • Pacific Plate Biogeography, with Special Reference to Shorefishes
    Pacific Plate Biogeography, with Special Reference to Shorefishes VICTOR G. SPRINGER m SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 367 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • Status Review, Disease Risk Analysis and Conservation Action Plan for The
    Status Review, Disease Risk Analysis and Conservation Action Plan for the Bellinger River Snapping Turtle (Myuchelys georgesi) December, 2016 1 Workshop participants. Back row (l to r): Ricky Spencer, Bruce Chessman, Kristen Petrov, Caroline Lees, Gerald Kuchling, Jane Hall, Gerry McGilvray, Shane Ruming, Karrie Rose, Larry Vogelnest, Arthur Georges; Front row (l to r) Michael McFadden, Adam Skidmore, Sam Gilchrist, Bruno Ferronato, Richard Jakob-Hoff © Copyright 2017 CBSG IUCN encourages meetings, workshops and other fora for the consideration and analysis of issues related to conservation, and believes that reports of these meetings are most useful when broadly disseminated. The opinions and views expressed by the authors may not necessarily reflect the formal policies of IUCN, its Commissions, its Secretariat or its members. The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Jakob-Hoff, R. Lees C. M., McGilvray G, Ruming S, Chessman B, Gilchrist S, Rose K, Spencer R, Hall J (Eds) (2017). Status Review, Disease Risk Analysis and Conservation Action Plan for the Bellinger River Snapping Turtle. IUCN SSC Conservation Breeding Specialist Group: Apple Valley, MN. Cover photo: Juvenile Bellinger River Snapping Turtle © 2016 Brett Vercoe This report can be downloaded from the CBSG website: www.cbsg.org. 2 Executive Summary The Bellinger River Snapping Turtle (BRST) (Myuchelys georgesi) is a freshwater turtle endemic to a 60 km stretch of the Bellinger River, and possibly a portion of the nearby Kalang River in coastal north eastern New South Wales (NSW).
    [Show full text]
  • Filling a Gap in the Proboscidean Fossil Record: a New Genus from The
    Filling a gap in the proboscidean fossil record: a new genus from the Lutetian of Senegal Rodolphe Tabuce, Raphaël Sarr, Sylvain Adnet, Renaud Lebrun, Fabrice Lihoreau, Jeremy Martin, Bernard Sambou, Mustapha Thiam, Lionel Hautier To cite this version: Rodolphe Tabuce, Raphaël Sarr, Sylvain Adnet, Renaud Lebrun, Fabrice Lihoreau, et al.. Filling a gap in the proboscidean fossil record: a new genus from the Lutetian of Senegal. Journal of Paleontology, Paleontological Society, 2019, pp.1-9. 10.1017/jpa.2019.98. hal-02408861 HAL Id: hal-02408861 https://hal.archives-ouvertes.fr/hal-02408861 Submitted on 8 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Filling a gap in the proboscidean fossil record: a new genus from 2 the Lutetian of Senegal 3 4 Rodolphe Tabuce1, Raphaël Sarr2, Sylvain Adnet1, Renaud Lebrun1, Fabrice Lihoreau1, Jeremy 5 E. Martin2, Bernard Sambou3, Mustapha Thiam3, and Lionel Hautier1 6 7 1Institut des Sciences de l’Evolution, UMR5554, CNRS, IRD, EPHE, Université de 8 Montpellier, Montpellier, France <[email protected]> 9 <[email protected]> <[email protected]> 10 <[email protected]> <[email protected] > 11 2Univ.
    [Show full text]
  • The Distribution of Proboscidea (Elephants) Professor Dr
    The Distribution of Proboscidea (Elephants) Professor Dr. Erich Thenius [In: Kosmos #5, May, pp. 235-242, 1964, Stuttgart] When I speak here about animals with a trunk, I do not mean the tapirs or pigs, but I refer only to the elephants and their ancestors, like the Mastodons and Dinotheria which we call the Proboscidea (after the Greek: proboscis = trunk). Their main characteristic is their remarkable trunk which has been fashioned to become a “gripping” organ. That organ was not present in the geologically oldest ancestors whose skeletons stem from the deposits of the Eocene (old Tertiary) in Africa. Even though we have no “soft tissues” of those animals, their skeletal features suffice to tell the scientist just what their bodily characteristics would have been. Thus also, we are not really going to discuss much about their distribution in historic times, but rather, we will concentrate on the development of these characteristic mammals, from their inception to their distribution in the past. A history of the Proboscidea is necessarily a history of their distribution in time and space. Information of these animals is available from numerous fossil findings in nearly all continents. But, before we even consider the fossil history, let us take a quick look of the current distribution of elephants which is shown in Figure 1. Nowadays, there are only two species of elephants: the Indian and African elephants. They not only differ geographically but also morphologically. That is to say, they are different in their bodily form and in their anatomy in several characteristics as every attentive zoo visitor who sees them side-by-side easily observes: The small-eared Indian elephant (Elephas maximus) has a markedly bowed upper skull; the African cousin (Loxodonta africana) has longer legs and markedly larger ears.
    [Show full text]
  • Educator Guide Presented by the Field Museum
    at the San Diego Natural History Museum July 4-November 11, 2013 Educator Guide Presented by The Field Museum INSIDE: Exhibition Introduction • Planning Your Visit Gallery Overviews and Guiding Questions • Focused Field Trip Activities Correlations to California State Content Standards • Additional Resources Mammoths and Mastodons: Titans of the Ice Age at the San Diego Natural History Museum is supported by: City of San Diego Commission for Arts and Culture County of San Diego Board of Supervisors, Community Enhancement Program Walter J. and Betty C. Zable Foundation Qualcomm Foundation The Kenneth T. and Eileen L. Norris Foundation VWR Charitable Foundation Education Sponsor: The Field Museum gratefully acknowledges the collaboration and assistance of the Shemanovskii Regional Museum and Exhibition Complex and the International Mammoth Committee. Walking Map The Field Museum • Mammoths and Mastodons Educator Guide • fieldmuseum.org/mammoths Page 2 www.sdnhm.org/mammoths-mastodons Exhibition Introduction Mammoths and Mastodons: Titans of the Ice Age July 4–November 11, 2013 Millions of years ago, colossal mammals roamed Europe, Asia, and North America. From the gigantic mammoth to the massive mastodon, these creatures have captured the world’s fascination. Meet “Lyuba,” the best-preserved baby mammoth in the world, and discover all that we’ve learned from her. Journey back to the Ice Age through monumental video installations, roam among saber-toothed cats and giant bears, and wonder over some of the oldest human artifacts in existence. Hands-on exciting interactive displays reveal the difference between a mammoth and a mastodon, This sketch shows a Columbian mammoth, an offer what may have caused their extinction, and show African elephant, and an American mastodon how today’s scientists excavate, analyze, and learn more (from back to front).
    [Show full text]
  • CNN-Based Genetic Algorithm
    International Journal of Computational Intelligence Systems, Vol.2, No. 2 (June, 2009), 124-131 Cellular Neural Networks-Based Genetic Algorithm for Optimizing the Behavior of an Unstructured Robot Alireza Fasih Transportation Informatics Group, Institute of Smart Systems Technologies, University of Klagenfurt Klagenfurt, Austria E-mail: [email protected] Jean Chamberlain Chedjou Transportation Informatics Group, Institute of Smart Systems Technologies, University of Klagenfurt E-mail: [email protected] Kyandoghere Kyamakya Transportation Informatics Group, Institute of Smart Systems Technologies, University of Klagenfurt E-mail: [email protected] Abstract A new learning algorithm for advanced robot locomotion is presented in this paper. This method involves both Cellular Neural Networks (CNN) technology and an evolutionary process based on genetic algorithm (GA) for a learning process. Learning is formulated as an optimization problem. CNN Templates are derived by GA after an optimization process. Through these templates the CNN computation platform generates a specific wave leading to the best motion of a walker robot. It is demonstrated that due to the new method presented in this paper an irregular and even a disjointed walker robot can successfully move with the highest performance. Keywords: Cellular Neural Networks, Robot locomotion, Simulation, Genetic Algorithms. 1. Introduction of animal walking motion with the aim of optimizing the energy consumption [2-4]. It is well-known that the Nowadays, some of the main goals of robotics science, walking motion of animals is of a stereotype. In a large mechatronics and artificial intelligence lie in designing variety of animals a central neural controller does mechanisms close to or mimicking as good as possible organize/coordinate the motion.
    [Show full text]
  • Aquatic Biodiversity II Developments in Hydrobiology 180
    Aquatic Biodiversity II Developments in Hydrobiology 180 Series editor K. Martens Aquatic Biodiversity II Edited by H. Segers & K. Martens Royal Belgian Institute of Natural Sciences, Belgium Reprinted from Hydrobiologia, volume 542 (2005) 123 Library of Congress Cataloging-in-Publication Data A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 1-4020-3745-7 Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands Printed on acid-free paper All Rights reserved Ó 2005 Springer No part of this material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner. Printed in the Netherlands TABLE OF CONTENTS Target review The future of freshwater biodiversity research: an introduction to the target review H. Segers ix–x The study of biodiversity in freshwater habitats: societal relevance and suggestions for priorities in science policy L. De Meester, S. Declerck 1–9 Biodiversity: a resource with a monetary value? H.J. Dumont 11–14 Linking science and policy for biodiversity A. Franklin 15–17 Relevance and policy dimensions of research on biodiversity in freshwater eco- systems: a developing country perspective B. Gopal 19–21 Conservation of freshwater biodiversity: does the real world meet scientific dreams? C. Le´veˆque, E.V. Balian 23–26 Taxonomy and systematics in biodiversity research K. Martens, H. Segers 27–31 Future priorities in science policy for biodiversity studies: a comment on the target review by Luc De Meester and Steven Declerck C.
    [Show full text]
  • Copyrighted Material
    06_250317 part1-3.qxd 12/13/05 7:32 PM Page 15 Phylum Chordata Chordates are placed in the superphylum Deuterostomia. The possible rela- tionships of the chordates and deuterostomes to other metazoans are dis- cussed in Halanych (2004). He restricts the taxon of deuterostomes to the chordates and their proposed immediate sister group, a taxon comprising the hemichordates, echinoderms, and the wormlike Xenoturbella. The phylum Chordata has been used by most recent workers to encompass members of the subphyla Urochordata (tunicates or sea-squirts), Cephalochordata (lancelets), and Craniata (fishes, amphibians, reptiles, birds, and mammals). The Cephalochordata and Craniata form a mono- phyletic group (e.g., Cameron et al., 2000; Halanych, 2004). Much disagree- ment exists concerning the interrelationships and classification of the Chordata, and the inclusion of the urochordates as sister to the cephalochor- dates and craniates is not as broadly held as the sister-group relationship of cephalochordates and craniates (Halanych, 2004). Many excitingCOPYRIGHTED fossil finds in recent years MATERIAL reveal what the first fishes may have looked like, and these finds push the fossil record of fishes back into the early Cambrian, far further back than previously known. There is still much difference of opinion on the phylogenetic position of these new Cambrian species, and many new discoveries and changes in early fish systematics may be expected over the next decade. As noted by Halanych (2004), D.-G. (D.) Shu and collaborators have discovered fossil ascidians (e.g., Cheungkongella), cephalochordate-like yunnanozoans (Haikouella and Yunnanozoon), and jaw- less craniates (Myllokunmingia, and its junior synonym Haikouichthys) over the 15 06_250317 part1-3.qxd 12/13/05 7:32 PM Page 16 16 Fishes of the World last few years that push the origins of these three major taxa at least into the Lower Cambrian (approximately 530–540 million years ago).
    [Show full text]
  • The Biogeography of Mitochondrial and Nuclear Discordance in Animals
    Molecular Ecology (2012) doi: 10.1111/j.1365-294X.2012.05664.x INVITED REVIEWS AND META-ANALYSES The biogeography of mitochondrial and nuclear discordance in animals DAVID P. L. TOEWS* and ALAN BRELSFORD† *Department of Zoology and Biodiversity Research Centre, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada, †Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland Abstract Combining nuclear (nuDNA) and mitochondrial DNA (mtDNA) markers has improved the power of molecular data to test phylogenetic and phylogeographic hypotheses and has highlighted the limitations of studies using only mtDNA markers. In fact, in the past decade, many conflicting geographic patterns between mitochondrial and nuclear genetic markers have been identified (i.e. mito-nuclear discordance). Our goals in this synthesis are to: (i) review known cases of mito-nuclear discordance in animal systems, (ii) to summarize the biogeographic patterns in each instance and (iii) to identify common drivers of discordance in various groups. In total, we identified 126 cases in animal systems with strong evidence of discordance between the biogeographic patterns obtained from mitochondrial DNA and those observed in the nuclear genome. In most cases, these patterns are attributed to adaptive introgression of mtDNA, demographic disparities and sex-biased asymmetries, with some studies also implicating hybrid zone movement, human introductions and Wolbachia infection in insects. We also discuss situations where divergent mtDNA clades seem to have arisen in the absence of geographic isolation. For those cases where foreign mtDNA haplotypes are found deep within the range of a second taxon, data suggest that those mtDNA haplotypes are more likely to be at a high frequency and are commonly driven by sex-biased asymmetries and ⁄ or adaptive introgression.
    [Show full text]