Lista De Espécies Algas

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Lista de espécies Algas Mariângela Menezes Carlos Eduardo de Mattos Bicudo (coords.) SciELO Books / SciELO Livros / SciELO Libros MENEZES, M., and BICUDO, CEM., coords. Lista de espécies: algas. In: FORZZA, RC., org., et al. INSTITUTO DE PESQUISAS JARDIM BOTÂNICO DO RIO DE JANEIRO. Catálogo de plantas e fungos do Brasil [online]. Rio de Janeiro: Andrea Jakobsson Estúdio: Instituto de Pesquisa Jardim Botânico do Rio de Janeiro, 2010. p. 262-451. Vol. 1. ISBN 978-85-8874-242-0. Available from SciELO Books <http://books.scielo.org>. All the contents of this work, except where otherwise noted, is licensed under a Creative Commons Attribution-Non Commercial-ShareAlike 3.0 Unported. Todo o conteúdo deste trabalho, exceto quando houver ressalva, é publicado sob a licença Creative Commons Atribuição - Uso Não Comercial - Partilha nos Mesmos Termos 3.0 Não adaptada. Todo el contenido de esta obra, excepto donde se indique lo contrario, está bajo licencia de la licencia Creative Commons Reconocimento-NoComercial-CompartirIgual 3.0 Unported. ALGAS Coordenadores: Mariângela Menezes e Carlos Eduardo de Mattos Bicudo 828 gêneros, 3.496 espécies (52 endêmicas), 8 subespécies (nenhuma endêmica), 970 variedades (37 endêmicas) BacIllaRIOPHYceae Achnanthes curvirostrum Grunow Enide Eskinazi-Leça, Maria da Glória Gonçalves da Referência: Procopiak, L.K. et al. 2006. Silva Cunha, Marilene Felipe Santiago, Gislayne Biota Neotrop. 6(3): 1-28. Cristina Palmeira Borges, Jucicleide Cabral de Lima, Distribuição: nativa; não endêmica; Sudeste (SP), Marcos Honorato da Silva, Emerson de Paula Lima, Sul (PR); marinho Mariângela Menezes Achnanthes elata (Leud.-Fortm.) Gandhi 162 gêneros, 887 espécies (5 endêmicas), 321 variedades Referência: Procopiak, L.K. et al. 2006. (nenhuma endêmica) Biota Neotrop. 6(3): 1-28. Distribuição: nativa; não endêmica; Sudeste (SP), Achnanthes Bory Sul (PR); marinho 14 espécies (nenhuma endêmica), 6 variedades Achnanthes fimbriata (Grunow) R.Ross (nenhuma endêmica) Referência: Procopiak, L.K. et al. 2006. Achnanthes acares Hohn & Hellerman Biota Neotrop. 6(3): 1-28. Distribuição: nativa; não endêmica Distribuição: nativa; não endêmica; Sudeste (SP), Achnanthes acares Hohn & Hellerman var. acares Sul (PR); marinho Referência: Tremarin, P.I. et al. 2009. Achnanthes inflata (Kütz.) Grunow Iheringia, Bot. 64(2): 79-107. Referência: Procopiak, L.K. et al. 2006. Distribuição: nativa; não endêmica; Sul (PR); Biota Neotrop. 6(3): 1-28. Mata Atlântica; epicontinental Distribuição: nativa; não endêmica; Sudeste (SP), Sul Achnanthes brevipes C.Agardh (PR); Domínio desconhecido; epicontinental, marinho Distribuição: nativa; não endêmica Achnanthes brevipes var. angustata (W.Greg.) Cleve Referência: Procopiak, L.K. et al. 2006. Biota Neotrop. 6(3): 1-28. Distribuição: nativa; não endêmica; Sudeste (SP), Sul (PR); marinho Achnanthes brevipes var. intermedia (Kütz.) Cleve Referência: Villac, M.C. et al. 2008. Biota Neotrop. 8(3): 151-173. Distribuição: nativa; não endêmica; Nordeste (MA), Sudeste (SP), Sul (PR, RS); marinho Achnanthes brevipes var. parvula (Kütz.) Cleve Referência: Villac, M.C. et al. 2008. Biota Neotrop. 8(3): 151-173. Distribuição: nativa; não endêmica; Sudeste (SP), Sul (PR); marinho Achnanthes coarctata (Bréb.) Grunow Referência: Procopiak, L.K. et al. 2006. Biota Neotrop. 6(3): 1-28. Distribuição: nativa; não endêmica; Sudeste (SP), Sul (PR); marinho Catálogo de plantas e fungos do Brasil 263 Achnanthes leontopithecus-rosalia J.C.Costa Achnanthidium microcephalum Kütz. Referência: Menezes, M. & Dias, I.C.A. (Orgs.) 2001. Referência: Procopiak, L.K. et al. 2006. Biota Neotrop. Mus. Nac. Série Livros 9:1-256. 6(3): 1-28. Distribuição: nativa; não endêmica; Sudeste (RJ); Distribuição: nativa; não endêmica; Sudeste (SP), Mata Atlântica; epicontinental Sul (PR); marinho Achnanthes longipes C.Agardh Achnanthidium minutissimum (Kütz.) Czarn. Referência: Silva-Cunha, M.G.G. & Eskinazi-Leça, E. 1990. Referência: Procopiak, L.K. et al. 2006. Biota Neotrop. Catálogo das diatomáceas (Bacillariophyceae) da plataforma 6(3): 1-28. continental de Pernambuco. Recife: SUDENE. 318 p. Distribuição: nativa; não endêmica; Sudeste (SP), Distribuição: nativa; não endêmica; Nordeste (PE), Sul (PR); Mata Atlântica; epicontinental Sudeste (SP), Sul (PR, SC, RS); marinho Achnanthidium tenera Hust. Achnanthes oblongella Oestrup Referência: Procopiak, L.K. et al. 2006. Biota Neotrop. Referência: Procopiak, L.K. et al. 2006. 6(3): 1-28. Biota Neotrop. 6(3): 1-28. Distribuição: nativa; não endêmica; Sudeste (SP), Distribuição: nativa; não endêmica; Sudeste (SP), Sul (PR); marinho Sul (PR); marinho Achnanthes parvula (Kütz.) Cleve Actinella Lewis Referência: Azevedo, A.C.G. & Cutrim, M.V.J. 2000. 9 espécies (1 endêmica) Boletim do Laboratório de Hidrobiologia 13: 1-17. Actinella brasiliensis Grunow Distribuição: nativa; não endêmica; Nordeste (MA); marinho Referência: Menezes, M. & Dias, I.C.A. (Orgs.) 2001. Achnanthes pulchra C.Zimm. Mus. Nac. Série Livros 9:1-256. Referência: Villac, M.C. et al. 2008. Distribuição: nativa; não endêmica; Norte (AM), Sudeste Biota Neotrop. 8(3): 151-173. (RJ), Sul (PR); Amazônia, Mata Atlântica; epicontinental Distribuição: nativa; não endêmica; Sudeste (SP); marinho Actinella curvatula Kociolek Achnanthes rupestoides Hohn Referência: Ferrari et al. 2007. Acta Amazonica 37(1): 1-16. Distribuição: nativa; não endêmica Distribuição: nativa; não endêmica; Norte (AM); Achnanthes rupestoides Hohn var. rupestoides Amazônia; epicontinental Referência: Tremarin, P.I. et al. 2009. Iheringia, Actinella eunotioides Hust. Bot. 64(2): 79-107. Referência: Menezes, M. & Dias, I.C.A. (Orgs.) 2001. Distribuição: nativa; não endêmica; Sul (PR); Mus. Nac. Série Livros 9:1-256. Mata Atlântica; epicontinental Distribuição: nativa; não endêmica; Sudeste (RJ); Achnanthes ventralis (Krasske) Lange-Bert. Mata Atlântica; epicontinental Referência: Menezes, M. & Dias, I.C.A. (Orgs.) 2001. Actinella guianensis Grunow Mus. Nac. Série Livros 9:1-256. Referência: Raupp, S.V. et al. 2009. Acta Limn. Bras. Distribuição: nativa; não endêmica; Sudeste (RJ); 2(2): 227-234. Mata Atlântica; epicontinental Distribuição: nativa; não endêmica; Norte (AM), Sul (PR); Amazônia, Mata Atlântica; epicontinental Achnanthidium Kütz. Actinella leontopithecus-rosalia J.C.Costa 7 espécies (nenhuma endêmica), 1 variedade (não endêmica) Referência: Menezes, M. & Dias, I.C.A. (Orgs.) 2001. Achnanthidium affine (Grunow) Czarn. Mus. Nac. Série Livros 9:1-256. Referência: Procopiak, L.K. et al. 2006. Biota Neotrop. Distribuição: nativa; endêmica; Sudeste (RJ); 6(3): 1-28. Mata Atlântica; epicontinental Distribuição: nativa; não endêmica; Sudeste (SP), Actinella mirabilis (Eulenst. ex Grunow) Grunow Sul (PR); marinho Referência: Ferrari et al. 2007. Acta Amazonica 37(1): 1-16. Achnanthidium biasolettianum (Grunow) Round & Distribuição: nativa; não endêmica; Norte (AM); Bukht. Amazônia; epicontinental Referência: Procopiak, L.K. et al. 2006. Biota Neotrop. Actinella peronioides Hust. 6(3): 1-28. Referência: Ferrari et al. 2007. Acta Amazonica 37(1): 1-16. Distribuição: nativa; não endêmica; Sudeste (SP), Distribuição: nativa; não endêmica; Norte (AM); Sul (PR); marinho Amazônia; epicontinental Achnanthidium exiguum (Grunow) Czarn. Actinella robusta Hust. Distribuição: nativa; não endêmica Referência: Raupp, S.V. et al. 2009. Acta Limn. Bras. Achnanthidium exiguum var. constrictum (Torka) 2(2): 227-234. Andresen et al. Distribuição: nativa; não endêmica; Norte (AM); Referência: Menezes, M. & Dias, I.C.A. (Orgs.) 2001. Amazônia; epicontinental Mus. Nac. Série Livros 9:1-256. Actinella siolii Hust. Distribuição: nativa; não endêmica; Sudeste (RJ), Referência: Ferrari et al. 2007. Acta Amazonica 37(1): 1-16. Sul (PR); Mata Atlântica; epicontinental Distribuição: nativa; não endêmica; Norte (AM); Achnanthidium lanceolatum Bréb. ex Kütz. Amazônia; epicontinental Referência: Menezes, M. & Dias, I.C.A. (Orgs.) 2001. Mus. Nac. Série Livros 9:1-256. Distribuição: nativa; não endêmica; Sudeste (RJ); Mata Atlântica; epicontinental 264 Lista de Algas Actinocyclus Ehrenb. Actinocyclus subtilis (W.Greg.) Ralfs 10 espécies (nenhuma endêmica), 6 variedades Referência: Procopiak, L.K. et al. 2006. Biota Neotrop. (nenhuma endêmica) 6(3): 1-28. Actinocyclus alienus Grunow Distribuição: nativa; não endêmica; Norte (PA), Referência: Villac, M.C. et al. 2008. Biota Neotrop. Nordeste (PE), Sudeste (SP, RJ), Sul (PR); marinho 8(3): 151-173. Actinocyclus tenelus (Bréb.) Hust. Distribuição: nativa; não endêmica; Sudeste (SP); marinho Referência: Procopiak, L.K. et al. 2006. Biota Neotrop. Actinocyclus australis Grunow 6(3): 1-28. Referência: Procopiak, L.K. et al. 2006. Biota Neotrop. Distribuição: nativa; não endêmica; Sudeste (SP), 6(3): 1-28. Sul (PR); marinho Distribuição: nativa; não endêmica; Sudeste (SP), Sul (PR); marinho Actinoptychus Ehrenb. Actinocyclus cholnokyi VanLand. 9 espécies (nenhuma endêmica), 3 variedades Referência: Procopiak, L.K. et al. 2006. Biota Neotrop. (nenhuma endêmica) 6(3): 1-28. Actinoptychus adriaticus Grunow Distribuição: nativa; não endêmica; Distribuição: nativa; não endêmica Sudeste (SP), Sul (PR); marinho Actinoptychus adriaticus var. pumila Grunow Actinocyclus curvatulus C.Janisch Referência: Villac, M.C. et al. 2008. Biota Neotrop. Referência: Procopiak, L.K. et al. 2006. Biota Neotrop. 8(3): 151-173. 6(3): 1-28. Distribuição: nativa; não endêmica; Sudeste (SP); marinho Distribuição: nativa; não endêmica; Sudeste (SP), Actinoptychus campanulifer A.W.F.Schmidt
Recommended publications
  • The Plankton Lifeform Extraction Tool: a Digital Tool to Increase The

    The Plankton Lifeform Extraction Tool: a Digital Tool to Increase The

    Discussions https://doi.org/10.5194/essd-2021-171 Earth System Preprint. Discussion started: 21 July 2021 Science c Author(s) 2021. CC BY 4.0 License. Open Access Open Data The Plankton Lifeform Extraction Tool: A digital tool to increase the discoverability and usability of plankton time-series data Clare Ostle1*, Kevin Paxman1, Carolyn A. Graves2, Mathew Arnold1, Felipe Artigas3, Angus Atkinson4, Anaïs Aubert5, Malcolm Baptie6, Beth Bear7, Jacob Bedford8, Michael Best9, Eileen 5 Bresnan10, Rachel Brittain1, Derek Broughton1, Alexandre Budria5,11, Kathryn Cook12, Michelle Devlin7, George Graham1, Nick Halliday1, Pierre Hélaouët1, Marie Johansen13, David G. Johns1, Dan Lear1, Margarita Machairopoulou10, April McKinney14, Adam Mellor14, Alex Milligan7, Sophie Pitois7, Isabelle Rombouts5, Cordula Scherer15, Paul Tett16, Claire Widdicombe4, and Abigail McQuatters-Gollop8 1 10 The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK. 2 Centre for Environment Fisheries and Aquacu∑lture Science (Cefas), Weymouth, UK. 3 Université du Littoral Côte d’Opale, Université de Lille, CNRS UMR 8187 LOG, Laboratoire d’Océanologie et de Géosciences, Wimereux, France. 4 Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK. 5 15 Muséum National d’Histoire Naturelle (MNHN), CRESCO, 38 UMS Patrinat, Dinard, France. 6 Scottish Environment Protection Agency, Angus Smith Building, Maxim 6, Parklands Avenue, Eurocentral, Holytown, North Lanarkshire ML1 4WQ, UK. 7 Centre for Environment Fisheries and Aquaculture Science (Cefas), Lowestoft, UK. 8 Marine Conservation Research Group, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK. 9 20 The Environment Agency, Kingfisher House, Goldhay Way, Peterborough, PE4 6HL, UK. 10 Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen, AB11 9DB, UK.
  • Biovolumes and Size-Classes of Phytoplankton in the Baltic Sea

    Biovolumes and Size-Classes of Phytoplankton in the Baltic Sea

    Baltic Sea Environment Proceedings No.106 Biovolumes and Size-Classes of Phytoplankton in the Baltic Sea Helsinki Commission Baltic Marine Environment Protection Commission Baltic Sea Environment Proceedings No. 106 Biovolumes and size-classes of phytoplankton in the Baltic Sea Helsinki Commission Baltic Marine Environment Protection Commission Authors: Irina Olenina, Centre of Marine Research, Taikos str 26, LT-91149, Klaipeda, Lithuania Susanna Hajdu, Dept. of Systems Ecology, Stockholm University, SE-106 91 Stockholm, Sweden Lars Edler, SMHI, Ocean. Services, Nya Varvet 31, SE-426 71 V. Frölunda, Sweden Agneta Andersson, Dept of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden, Umeå Marine Sciences Centre, Umeå University, SE-910 20 Hörnefors, Sweden Norbert Wasmund, Baltic Sea Research Institute, Seestr. 15, D-18119 Warnemünde, Germany Susanne Busch, Baltic Sea Research Institute, Seestr. 15, D-18119 Warnemünde, Germany Jeanette Göbel, Environmental Protection Agency (LANU), Hamburger Chaussee 25, D-24220 Flintbek, Germany Slawomira Gromisz, Sea Fisheries Institute, Kollataja 1, 81-332, Gdynia, Poland Siv Huseby, Umeå Marine Sciences Centre, Umeå University, SE-910 20 Hörnefors, Sweden Maija Huttunen, Finnish Institute of Marine Research, Lyypekinkuja 3A, P.O. Box 33, FIN-00931 Helsinki, Finland Andres Jaanus, Estonian Marine Institute, Mäealuse 10 a, 12618 Tallinn, Estonia Pirkko Kokkonen, Finnish Environment Institute, P.O. Box 140, FIN-00251 Helsinki, Finland Iveta Ledaine, Inst. of Aquatic Ecology, Marine Monitoring Center, University of Latvia, Daugavgrivas str. 8, Latvia Elzbieta Niemkiewicz, Maritime Institute in Gdansk, Laboratory of Ecology, Dlugi Targ 41/42, 80-830, Gdansk, Poland All photographs by Finnish Institute of Marine Research (FIMR) Cover photo: Aphanizomenon flos-aquae For bibliographic purposes this document should be cited to as: Olenina, I., Hajdu, S., Edler, L., Andersson, A., Wasmund, N., Busch, S., Göbel, J., Gromisz, S., Huseby, S., Huttunen, M., Jaanus, A., Kokkonen, P., Ledaine, I.
  • Improved Methodology for Identification of Cryptomonads: Combining Light Microscopy and PCR Amplification

    Improved Methodology for Identification of Cryptomonads: Combining Light Microscopy and PCR Amplification

    J. Microbiol. Biotechnol. (2013), 23(3), 289–296 http://dx.doi.org/10.4014/jmb.1203.03057 First published online November 24, 2012 pISSN 1017-7825 eISSN 1738-8872 Improved Methodology for Identification of Cryptomonads: Combining Light Microscopy and PCR Amplification Xia, Shuang1,2, Yingyin Cheng3, Huan Zhu1,2, Guoxiang Liu1*, and Zhengyu Hu1 1Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China 2Graduate School of Chinese Academy of Sciences, Beijing 100039, China 3Center for Water Environment and Human Health, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China Received: March 26, 2012 / Revised: August 6, 2012 / Accepted: October 16, 2012 Cryptomonads are unicellular, biflagellate algae. Generally, Key words: Cryptomonad, fixative, glutaraldehyde, Lugol’s cryptomonad cells cannot be preserved well because of solution, morphology, PCR amplification their fragile nature, and an improved methodology should be developed to identify cryptomonads from natural habitats. In this study, we tried using several cytological Cryptomonads are unicellular, biflagellate algae, which are fixatives, including glutaraldehyde, formaldehyde, and cosmopolitan in distribution, living as important primary their combinations to preserve field samples collected producers in both freshwater and marine habitats [4, 15, from various waters, and the currently used fixative, 25, 26, 32, 37]. They often assume dominant phytoplankton Lugol’s solution was tested for comparison. Results status in various waters [27], and sometimes even form showed that among the fixatives tested, glutaraldehyde nuisance blooms [1, 9, 34]. However, the cell density of preserved the samples best, and the optimal concentration cryptomonads was low in preserved samples and their of glutaraldehyde was 2%.
  • Bioproductivity and Biodiversity in Shallow

    Bioproductivity and Biodiversity in Shallow

    BIOPRODUCTIVITY AND BIODIVERSITY IN SHALLOW FRESHWATER LAKES A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN MOLECULAR BIOSCIENCES AND BIOENGINEERING DECEMBER 2012 By Tsu-Chuan Lee DISSERTATION COMMITTEE: Clark Liu, Chairperson Tao Yan Winston Su Yong Li Keywords: Lake Eutrophication, Biodiversity, Bioproductivity, DGGE ACKNOWLEDGEMENTS I would like to thank Dr. Clark Liu for his excellent advisces and support during my Ph D program. Without his support, it would not have been possible to complete my disserataion research successfully. I must offer my heartfelt thanks to committee members, Dr. Tao Yan, Dr. Winston Su, and Dr. Yong Li for their willingness to share their space, resource, criticism and recommendations. Dr. Yan provided me lab bench, materials, instruments and his lab notes. During my comprehensive examination, Dr. Su guided me an idea regarding the experiment on the behavior of algal transition. Dr. Li allowed me to use his instruments when I have problems in my lab. Many thanks are also extended to all of members for their assistance in the HOLME 286 lab. I express my gratitude to Bunnie and Joe for helping in lab works and Krispin and Card in field data collection. iii ABSTRACT To address the lake eutrophication problem, a research framework integrating molecular biotechnology with environmental engineering was developed. Initially, the lake-like microcosms (Trophic State-Classified Algal Reactors, TSCARs) were designed and constructed for using scenario assessment. As the results, several patterns of algal growth were observed under many replication experiments performed.
  • Cation and Anion Channelrhodopsins: Sequence Motifs and Taxonomic 2 Distribution

    Cation and Anion Channelrhodopsins: Sequence Motifs and Taxonomic 2 Distribution

    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.23.436664; this version posted March 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Cation and anion channelrhodopsins: Sequence motifs and taxonomic 2 distribution 3 Elena G. Govorunova1, Oleg A. Sineshchekov1, Hai Li1, Yumei Wang1, Leonid S. Brown2, Alyssa 4 Palmateer2, Michael Melkonian3, Shifeng Cheng4, Eric Carpenter5, Jordan Patterson5, Gane K.-S. 5 Wong5,6, and John L. Spudich1# 6 1Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The 7 University of Texas Health Science Center at Houston McGovern Medical School, Houston, 8 Texas, USA 9 2Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, 10 Ontario, Canada 11 3Max Planck Institute for Plant Breeding Research, Integrative Bioinformatics, Cologne, 12 Germany 13 4Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 14 Shenzhen, China 15 5Departments of Biological Sciences and of Medicine, University of Alberta, Edmonton, Alberta, 16 Canada 17 6Beijing Genomics Institute-Shenzhen, Shenzhen, China 18 Running title: Cation and anion channelrhodopsins 19 #Address correspondence to John L. Spudich, [email protected]. 20 Word count Abstract: 227 21 Word count Text: 4,360 22 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.23.436664; this version posted March 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 23 ABSTRACT 24 Cation and anion channelrhodopsins (CCRs and ACRs, respectively) primarily from two algal 25 species, Chlamydomonas reinhardtii and Guillardia theta, have become widely used as 26 optogenetic tools to control cell membrane potential with light.
  • Nusuttodinium Aeruginosum/Acidotum As a Case Study

    Nusuttodinium Aeruginosum/Acidotum As a Case Study

    Acquisition of Photoautotrophy in Kleptoplastic Dinoflagellates – Nusuttodinium aeruginosum/acidotum as a case study I n a u g u r a l – D i s s e r t a t i o n zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln vorgelegt von Sebastian Wittek aus Krefeld 2018 Berichterstatter: Prof. Dr. Michael Melkonian Prof. Dr. Hartmut Arndt Prof. Dr. John M. Archibald Tag der mündlichen Prüfung: 16.01.2017 Kurzzusammenfassung in deutscher Sprache ------------------------------------------------------------------------------------------------------------------------------ Kurzzusammenfassung in deutscher Sprache Die Integrierung stabiler Plastiden durch Endosymbiosen führte zu einer enormen Vielfalt an photosynthetischen eukaryotischen Organismen auf der Erde. Allerdings sind die Schritte während der Etablierung stabiler Endosymbiosen nur schlecht verstanden. Um Licht auf diesen frühen Schritt der Evolution zu werfen, wurden viele Studien an Organismen mit vorübergehenden Plastiden durchgeführt. Ursprünglich heterotroph, sind diese Organismen in der Lage, Photoautotrophie durch die Aufnahme photosynthetischer Beute zu erwerben. Anstatt verdaut zu werden, behält die Beute ihre Fähigkeit zur Photosynthese bei und versorgt den Wirt mit Photosyntheseprodukten. Der Beuteorganismus kann entweder zu einem Endosymbiont oder sogar zu einem Plastid reduziert werden. Im letzteren Fall werden die Plastiden der photosynthetischen Beute gestohlen und daher ‚Kleptoplastiden‘ genannt. Kleptoplastiden sind innerhalb der Eukaryoten weit verbreitet und kommen in vielzelligen, wie auch in einzelligen Organismen vor. Eine der bekanntesten Gruppen, welche Kleptoplastiden beherbergt, sind die Dinoflagellaten. Diese Studie fokussiert auf Süßwasserisolate der Kleptoplastiden beherbergenden Gattung Nusuttodinium mit einem besonderen Fokus auf die Art N. aeruginosum/acidotum, welche ihre Kleptoplastiden von der blau-grünen cryptophytischen Gattung Chroomonas erlangt. Es wurden von N. aeruginosum/acidotum, sowie einer weiteren Art, N.
  • Protista (PDF)

    Protista (PDF)

    1 = Astasiopsis distortum (Dujardin,1841) Bütschli,1885 South Scandinavian Marine Protoctista ? Dingensia Patterson & Zölffel,1992, in Patterson & Larsen (™ Heteromita angusta Dujardin,1841) Provisional Check-list compiled at the Tjärnö Marine Biological * Taxon incertae sedis. Very similar to Cryptaulax Skuja Laboratory by: Dinomonas Kent,1880 TJÄRNÖLAB. / Hans G. Hansson - 1991-07 - 1997-04-02 * Taxon incertae sedis. Species found in South Scandinavia, as well as from neighbouring areas, chiefly the British Isles, have been considered, as some of them may show to have a slightly more northern distribution, than what is known today. However, species with a typical Lusitanian distribution, with their northern Diphylleia Massart,1920 distribution limit around France or Southern British Isles, have as a rule been omitted here, albeit a few species with probable norhern limits around * Marine? Incertae sedis. the British Isles are listed here until distribution patterns are better known. The compiler would be very grateful for every correction of presumptive lapses and omittances an initiated reader could make. Diplocalium Grassé & Deflandre,1952 (™ Bicosoeca inopinatum ??,1???) * Marine? Incertae sedis. Denotations: (™) = Genotype @ = Associated to * = General note Diplomita Fromentel,1874 (™ Diplomita insignis Fromentel,1874) P.S. This list is a very unfinished manuscript. Chiefly flagellated organisms have yet been considered. This * Marine? Incertae sedis. provisional PDF-file is so far only published as an Intranet file within TMBL:s domain. Diplonema Griessmann,1913, non Berendt,1845 (Diptera), nec Greene,1857 (Coel.) = Isonema ??,1???, non Meek & Worthen,1865 (Mollusca), nec Maas,1909 (Coel.) PROTOCTISTA = Flagellamonas Skvortzow,19?? = Lackeymonas Skvortzow,19?? = Lowymonas Skvortzow,19?? = Milaneziamonas Skvortzow,19?? = Spira Skvortzow,19?? = Teixeiromonas Skvortzow,19?? = PROTISTA = Kolbeana Skvortzow,19?? * Genus incertae sedis.
  • Baffinellaceae Fam. Nov., Cryptophyceae) from Baffin Bay: Morphology, Pigment Profile, Phylogeny, and Growth Rate Response to Three Abiotic Factors1

    Baffinellaceae Fam. Nov., Cryptophyceae) from Baffin Bay: Morphology, Pigment Profile, Phylogeny, and Growth Rate Response to Three Abiotic Factors1

    J. Phycol. *, ***–*** (2018) © 2018 Phycological Society of America DOI: 10.1111/jpy.12766 BAFFINELLA FRIGIDUS GEN. ET SP. NOV. (BAFFINELLACEAE FAM. NOV., CRYPTOPHYCEAE) FROM BAFFIN BAY: MORPHOLOGY, PIGMENT PROFILE, PHYLOGENY, AND GROWTH RATE RESPONSE TO THREE ABIOTIC FACTORS1 Niels Daugbjerg,2 Andreas Norlin Marine Biological Section, Department of Biology, University of Copenhagen, Universitetsparken 4, Copenhagen Ø DK-2100, Denmark and Connie Lovejoy Departement de Biologie, Universite Laval, 1045 avenue de la Medecine, Quebec, Quebec, G1V 0A6, Canada Twenty years ago an Arctic cryptophyte was Abbreviations: BA, Bayesian analysis; BS, bootstrap isolated from Baffin Bay and given strain number support; Cr-PC, cryptophyte-phycocyanin; Cr-PE, CCMP2045. Here, it was described using cryptophyte-phycoerythrin; ML, maximum likeli- morphology, water- and non-water soluble pigments hood; PP, posterior probability and nuclear-encoded SSU rDNA. The influence of temperature, salinity, and light intensity on growth rates was also examined. Microscopy revealed = typical cryptophyte features but the chloroplast Cryptophytes ( cryptomonads) are ubiquitous in color was either green or red depending on the marine and freshwater ecosystems worldwide and a few species have been recorded to form blooms light intensity provided. Phycoerythrin (Cr-PE 566) was only produced when cells were grown under (e.g., Laza-Martınez 2012, Supraha et al. 2014, and À À low-light conditions (5 lmol photons Á m 2 Á s 1). references therein). However, they also reside in Non-water-soluble pigments included chlorophyll a, more extreme environments, for example, soil (Paulsen et al. 1992), snow (Javornicky and Hindak c2 and five major carotenoids. Cells measured 8.2 3 5.1 lm and a tail-like appendage gave them a 1970), and inside ikaite columns (Ikka fjord, South- comma-shape.
  • Kingdom Chromista)

    Kingdom Chromista)

    J Mol Evol (2006) 62:388–420 DOI: 10.1007/s00239-004-0353-8 Phylogeny and Megasystematics of Phagotrophic Heterokonts (Kingdom Chromista) Thomas Cavalier-Smith, Ema E-Y. Chao Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK Received: 11 December 2004 / Accepted: 21 September 2005 [Reviewing Editor: Patrick J. Keeling] Abstract. Heterokonts are evolutionarily important gyristea cl. nov. of Ochrophyta as once thought. The as the most nutritionally diverse eukaryote supergroup zooflagellate class Bicoecea (perhaps the ancestral and the most species-rich branch of the eukaryotic phenotype of Bigyra) is unexpectedly diverse and a kingdom Chromista. Ancestrally photosynthetic/ major focus of our study. We describe four new bicil- phagotrophic algae (mixotrophs), they include several iate bicoecean genera and five new species: Nerada ecologically important purely heterotrophic lineages, mexicana, Labromonas fenchelii (=Pseudobodo all grossly understudied phylogenetically and of tremulans sensu Fenchel), Boroka karpovii (=P. uncertain relationships. We sequenced 18S rRNA tremulans sensu Karpov), Anoeca atlantica and Cafe- genes from 14 phagotrophic non-photosynthetic het- teria mylnikovii; several cultures were previously mis- erokonts and a probable Ochromonas, performed ph- identified as Pseudobodo tremulans. Nerada and the ylogenetic analysis of 210–430 Heterokonta, and uniciliate Paramonas are related to Siluania and revised higher classification of Heterokonta and its Adriamonas; this clade (Pseudodendromonadales three phyla: the predominantly photosynthetic Och- emend.) is probably sister to Bicosoeca. Genetically rophyta; the non-photosynthetic Pseudofungi; and diverse Caecitellus is probably related to Anoeca, Bigyra (now comprising subphyla Opalozoa, Bicoecia, Symbiomonas and Cafeteria (collectively Anoecales Sagenista). The deepest heterokont divergence is emend.). Boroka is sister to Pseudodendromonadales/ apparently between Bigyra, as revised here, and Och- Bicoecales/Anoecales.
  • The Freshwater Algal Flora of the British Isles: an Identification Guide to Freshwater and Terrestrial Algae: Second Edition Edited by David M

    The Freshwater Algal Flora of the British Isles: an Identification Guide to Freshwater and Terrestrial Algae: Second Edition Edited by David M

    Cambridge University Press 978-0-521-19375-7 - The Freshwater Algal Flora of the British Isles: An Identification Guide to Freshwater and Terrestrial Algae: Second Edition Edited by David M. John, Brian A. Whitton, and Alan J. Brook Index More information TAXONOMIC INDEX Algal genera and higher taxa are in CAPITALS, recognized species and infraspecific taxa in roman type, and synonyms in italic type. Page numbers are in bold type where a genus, subgeneric taxon or other taxonomic category is described, in italic type where illustrated and in roman type where simply mentioned. ACANTHOCERAS 350 Actinotaenium diplosporum Acutodesmus dimorphus 419, AMPHORA 351, 353 ACANTHOCOCCUS 369, 419 636, 637, 736 420, 421 422, 444, 468 ANABAENA 31, 32, 38, 39, Acanthococcus aciculiferus Actinotaenium diplosporum Acutodesmusincrassatulus468 80, 106, 108, 119, 125, 130, 412, 419 fo. maius 626, 637 Acutodesmus obliquus 419, 149, 379 Acanthococcus asper 498 Actinotaenium 420, 421, 444, 468 Anabaena aequalis 120, 121 Acanthococcus reticularis 498 didymocarpum 637 Acutodesmus pectinatus 419, Anabaena affinis 120 Acanthoica schilleri 280 Actinotaenium gelidum 637 420, 421, 444, 458, 468 Anabaena ACHNANTHES 349, 351 Actinotaenium habeebense 637 Acutodesmus pectinatus var. aphanizomenoides149 Achnanthes bijuga 421 Actinotaenium bernardii 419, 422, 444 Anabaena augstumalis 120 Achnanthes dimorpha 421 inconspicuum 637 Acutodesmus raciborski 419, Anabaena augstumalis var. Achnanthes obliquus 421 Actinotaenium lagenarioides 422, 423 incrassata 120, 121 ACHNANTHIDIUM 351 637 Acutodesmus wisconsinensis Anabaena augstumalis var. Achnanthidium Actinotaenium 419, 422, 423 marchica 120, 121 minutissimum 149 minutissimum 637 ADLAFIA 352, 353 Anabaena catenula 119, 120, Acrocladium cuspidatum Pl. 5A Actinotaenium AEGAGROPILA 557, 560 121, 124 ACHROMATIUM 4 minutissimum var. Aegagropia linnaei 534, 560, 568 Anabaena crassa Pi.
  • CRYPTOMONAD EVOLUTION: NUCLEAR 18S Rdna PHYLOGENY VERSUS CELL MORPHOLOGY and PIGMENTATION1

    CRYPTOMONAD EVOLUTION: NUCLEAR 18S Rdna PHYLOGENY VERSUS CELL MORPHOLOGY and PIGMENTATION1

    J. Phycol. 38, 1236–1244 (2002) CRYPTOMONAD EVOLUTION: NUCLEAR 18S rDNA PHYLOGENY VERSUS CELL MORPHOLOGY AND PIGMENTATION1 James A. Deane, Isabelle M. Strachan, Gary W. Saunders,2 David R. A. Hill, and Geoffrey I. McFadden3 School of Botany, University of Melbourne, Parkville, Victoria 3052, Australia A nuclear18S rDNA phylogeny for cryptomonad as internal organization and cell surface (periplast) algae is presented, including 11 species yet to be in- detail (Novarino and Lucas 1993). Recently, DNA se- vestigated by molecular means. The phylogenetic po- quence data have been used to test hypotheses con- sitions of the cryptomonad genera Campylomonas cerning cryptomonad evolution. Molecular phyloge- and Plagioselmis are assessed for the first time. nies constructed from cryptomonad nuclear (host cell Campylomonas groups most closely with morphologi- nucleus) 18S rDNA genes suggest that plastid-lacking cally similar species with the same accessory pigment flagellates from the genus Goniomonas are basal cryp- from the genus Cryptomonas. Plagioselmis groups with tomonads that diverged before the cryptomonad plas- the genera Teleaulax and Geminigera forming a clade tidial complex was acquired (McFadden et al. 1994b, whose members are united by unusual thylakoid ar- Marin et al. 1998). However, the freshwater species rangement. Nuclear 18S rDNA phylogeny divides Goniomonas truncata is presently the only representa- cryptomonads into seven major lineages, two of tive of its genus for which 18S rDNA sequence has which consist of the monospecific genera Proteomo- been determined. The most detailed phylogenies to nas and Falcomonas. Analysis of nuclear18S rDNA se- date demonstrate the existence of a number of well- quence supports suggestions that a Falcomonas-like supported cryptomonad lineages and suggest that a cryptomonad gave rise to all other blue-green crypto- clade consisting of freshwater species with two plastids monads.
  • Acta Botanica Brasilica - 34(4): 599-614

    Acta Botanica Brasilica - 34(4): 599-614

    Acta Botanica Brasilica - 34(4): 599-614. October-December 2020. doi: 10.1590/0102-33062020abb0309 Review What we really know about the composition and function of microalgae cell coverings? - an overview Cíntia de Almeida Gonçalves1 and Cleber Cunha Figueredo1* Received: June 30, 2020 Accepted: September 6, 2020 ABSTRACT . Cell coverings can be observed in all major groups of organisms, which include animals, plants, fungi, protists and prokaryotes. They play a key role in assuring cell survival or adaptation to certain environmental conditions. Since the term algae refers to a polyphyletic and very artificial group, the cell coverings of these organisms are very diverse in molecular composition and with different arrangements. Differences have taxonomic value since they allow microalgae phyla or even minor taxonomic groups, such as classes, orders or families, to be distinguished. Understanding the structure of cell coverings is also fundamental for the use of microalgae to obtain products of commercial value. Despite its importance, the composition and architecture of microalgae coverings is still poorly understood, especially considering the great diversity of organisms. Diatom frustules are the most studied coverings due their uses in areas of bio- and nanotechnology. There is a lack of information about the cell wall, lorica, periplast, amphiesma and scales. This study is a review with the aim of synthesizing literature information on microalgae cell coverings to describe their compositions, arrangements, functions and industrial uses. Keywords: algal coverings variety, biological interactions, cell surface, molecular structures, taxonomical value adapt to many different environments, such as freshwater, Introduction seawater, salt lakes, soil, arctic environments, deserts (Raja et al.