UC San Diego UC San Diego Electronic Theses and Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

UC San Diego UC San Diego Electronic Theses and Dissertations UC San Diego UC San Diego Electronic Theses and Dissertations Title Inhibition, recurrent excitation, and neural feedback in computational models of sparse bursting and birdsong sequencing Permalink https://escholarship.org/uc/item/2nm5d3tj Author Gibb, Leif Publication Date 2009 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Inhibition, Recurrent Excitation, and Neural Feedback in Computational Models of Sparse Bursting and Birdsong Sequencing A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Neurosciences with a Specialization in Computational Neurobiology by Leif Gibb Committee in charge: Henry D. I. Abarbanel, Chair Maxim Bazhenov Gert Cauwenberghs Timothy Q. Gentner William B. Kristan Terrence J. Sejnowski 2009 Copyright Leif Gibb, 2009 All rights reserved. Signature Page The Dissertation of Leif Gibb is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2009 iii DEDICATION To my mother, Roberta Gibb, who has always been my greatest source of love, support, and inspiration; my grandmother, Jean Gibb, who helped her raise me and wanted to live to see me earn my PhD; and my grandfather, Prof. Thomas R. P. Gibb, who helped inspire my love of science. iv TABLE OF CONTENTS Signature Page ............................................................................................................... iii Dedication ...................................................................................................................... iv Table of Contents ........................................................................................................... v List of Tables ............................................................................................................... viii List of Figures ................................................................................................................ ix Acknowledgements ....................................................................................................... xi Curriculum Vitae ......................................................................................................... xiv Abstract of the Dissertation ......................................................................................... xix Chapter 1: Inhibition and Recurrent Excitation in a Computational Model of Sparse Bursting in Song Nucleus HVC ..................................................................................... 1 Abstract ............................................................................................................... 1 Introduction ........................................................................................................ 2 Methods .............................................................................................................. 4 Basic spiking model ............................................................................... 4 Modeling HVC RA neurons ...................................................................... 6 Modeling HVC I neurons ......................................................................... 8 Modeling synaptic currents .................................................................. 10 Modeling temperature dependence of neurons and synapses ............... 11 Synapses of physiological strength ...................................................... 12 Poisson synapses .................................................................................. 13 Sparseness index and spike time .......................................................... 14 Results .............................................................................................................. 14 Initial model: Dynamical behavior of a single bistable cluster ............ 14 Mechanisms of inhibition ..................................................................... 19 A model of HVC RA sparse bursting: the limitations of local inhibition ............................................................................................... 25 A model of HVC RA sparse bursting utilizing global inhibition ............ 28 Sparse bursting without clusters or unidirectional HVC RA chains ....... 36 Experimental predictions of the sparse bursting model ....................... 37 Discussion ......................................................................................................... 42 Which type of HVC RA neuron exhibits sparse premotor bursting? ...... 47 2+ Potential role for a Ca current in HVC RA bursting ............................ 47 Cluster size ........................................................................................... 48 A possible role for developmental plasticity in the establishment of HVC I →→→ HVC RA connectivity .............................................................. 49 Acknowledgements .......................................................................................... 51 Grants ............................................................................................................... 52 v References ........................................................................................................ 52 Supplementary Methods ................................................................................... 58 Supplementary Results ..................................................................................... 61 Chapter 2: Inhibition and Neural Feedback in a Computational Model of Birdsong Sequencing ................................................................................................................... 66 Abstract ............................................................................................................. 66 Introduction ...................................................................................................... 67 Methods ............................................................................................................ 74 Basic spiking model ............................................................................. 74 Modeling HVC RA neurons .................................................................... 75 Modeling HVC I neurons ....................................................................... 76 Modeling other neurons (RA, DM/PAm, Uva, RAm, nXIIts) ............. 77 Modeling synaptic currents .................................................................. 77 Modeling temperature dependence of neurons and synapses ............... 78 Spike time ............................................................................................. 79 Analysis of stimulation results ............................................................. 79 Statistics ................................................................................................ 80 Results .............................................................................................................. 80 Brainstem feedback in a model of syllable sequencing ........................ 80 Variations on and perturbations of the syllable sequencing model ...... 89 The effects of stimulation on model behavior ...................................... 93 Timing dependence of stimulation effects ......................................... 104 Feedback delay and HVC cooling ...................................................... 106 Discussion ....................................................................................................... 113 Absence of syllable transitions in experimental data ......................... 118 Empirical influence of Uva on HVC .................................................. 121 Which brainstem nucleus (if any) is involved in syllable sequencing? ........................................................................................ 122 Thalamic gating and interruption of song at syllable boundaries ....... 123 Acknowledgements ........................................................................................ 124 Grants ............................................................................................................. 125 References ...................................................................................................... 125 Supplementary Figures ................................................................................... 132 Appendix .................................................................................................................... 135 Chapter 1 ........................................................................................................ 135 Extended summary of HVC neuron types .......................................... 135 Roles of other neurons and synaptic connections in the HVC microcircuit ......................................................................................... 137 Anatomical clusters in HVC ............................................................... 140 Chapter 2 ........................................................................................................ 140 Extended summary of inputs and feedback pathways to HVC .......... 140 Extended summary of birdsong sequence variability ......................... 141 vi Extended discussion of the nature and function of bilateral input to HVC ...................................................................................................
Recommended publications
  • A Boltzmann Machine Implementation for the D-Wave
    A Boltzmann Machine Implementation for the D-Wave John E. Dorband Ph.D. Dept. of Computer Science and Electrical Engineering University of Maryland, Baltimore County Baltimore, Maryland 21250, USA [email protected] Abstract—The D-Wave is an adiabatic quantum computer. It is an understatement to say that it is not a traditional computer. It can be viewed as a computational accelerator or more precisely a computational oracle, where one asks it a relevant question and it returns a useful answer. The question is how do you ask a relevant question and how do you use the answer it returns. This paper addresses these issues in a way that is pertinent to machine learning. A Boltzmann machine is implemented with the D-Wave since the D-Wave is merely a hardware instantiation of a partially connected Boltzmann machine. This paper presents a prototype implementation of a 3-layered neural network where the D-Wave is used as the middle (hidden) layer of the neural network. This paper also explains how the D-Wave can be utilized in a multi-layer neural network (more than 3 layers) and one in which each layer may be multiple times the size of the D- Wave being used. Keywords-component; quantum computing; D-Wave; neural network; Boltzmann machine; chimera graph; MNIST; I. INTRODUCTION The D-Wave is an adiabatic quantum computer [1][2]. Its Figure 1. Nine cells of a chimera graph. Each cell contains 8 qubits. function is to determine a set of ones and zeros (qubits) that minimize the objective function, equation (1).
    [Show full text]
  • Spring 2013 Mapping (CBAM)
    UBATOR http://inc.uscd.edu/ In this Issue: UCSD Creates Center for Brain Activity Mapping On the Cover UCSD Creates Responding to President Barack Obama’s “grand challenge” to chart Center for Brain the function of the human brain in unprecedented detail, the University Activity Mapping of California, San Diego has established the Center for Brain Activity Spring 2013 Mapping (CBAM). The new center, under the aegis of the interdisciplinary Kavli Institute for Brain and Sejnowski Elected to Mind, will tackle the technological and biological challenge of developing a new American Academy generation of tools to enable recording of neuronal activity throughout the brain. It of Arts and Sciences will also conduct brain-mapping experiments and analyze the collected data. Pg 3 Ralph Greenspan–one of the original architects of a visionary proposal that eventually led to the national BRAIN Initiative launched by President Obama in April–has been named CBAM’s founding director. (cont on page 2) Faculty Spotlight: Garrison W. Cottrell Pg 4 Faculty Spotlight: Patricia Gorospe Pg 7 INC Events Pg 9 INC at a glance Pg 10 From left, Nick Spitzer, Ralph Greenspan, and Terry Sejnowski. (Photos by Erik Jepsen/UC San Diego Publications) 1 INSTITUTE FOR NEURAL COMPUTATION Brain Activity Mapping, cont from page 1 UC San Diego Chancellor Pradeep K. Khosla, who attended Obama’s unveiling of the BRAIN Initiative, said: “I am pleased to announce the launch of the Spring 2013 Center for Brain Activity Mapping. This new center will require the type of in-depth and impactful research that we are so good at producing at UC San Diego.
    [Show full text]
  • SFR27 13 Harris Et Al.Indd
    From “The Neocortex,” edited by W. Singer, T. J. Sejnowski and P. Rakic. Strüngmann Forum Reports, vol. 27, J. R. Lupp, series editor. Cambridge, MA: MIT Press. ISBN 978-0-262-04324-3 13 Functional Properties of Circuits, Cellular Populations, and Areas Kenneth D. Harris, Jennifer M. Groh, James DiCarlo, Pascal Fries, Matthias Kaschube, Gilles Laurent, Jason N. MacLean, David A. McCormick, Gordon Pipa, John H. Reynolds, Andrew B. Schwartz, Terrence J. Sejnowski, Wolf Singer, and Martin Vinck Abstract A central goal of systems neuroscience is to understand how the brain represents and processes information to guide behavior (broadly defi ned as encompassing perception, cognition, and observable outcomes of those mental states through action). These con- cepts have been central to research in this fi eld for at least sixty years, and research efforts have taken a variety of approaches. At this Forum, our discussions focused on what is meant by “functional” and “inter-areal,” what new concepts have emerged over the last several decades, and how we need to update and refresh these concepts and ap- proaches for the coming decade. In this chapter, we consider some of the historical conceptual frameworks that have shaped consideration of neural coding and brain function, with an eye toward what aspects have held up well, what aspects need to be revised, and what new concepts may foster future work. Conceptual frameworks need to be revised periodically lest they become counter- productive and actually blind us to the signifi cance of novel discoveries.
    [Show full text]
  • Studies of Oculomotor-System Neural Connections Ronald S
    Journal of the Arkansas Academy of Science Volume 34 Article 26 1980 How We Look: Studies of Oculomotor-System Neural Connections Ronald S. Remmel University of Arkansas for Medical Sciences Robert D. Skinner University of Arkansas for Medical Sciences Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Sense Organs Commons Recommended Citation Remmel, Ronald S. and Skinner, Robert D. (1980) "How We Look: Studies of Oculomotor-System Neural Connections," Journal of the Arkansas Academy of Science: Vol. 34 , Article 26. Available at: http://scholarworks.uark.edu/jaas/vol34/iss1/26 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 34 [1980], Art. 26 HOW WE LOOK: STUDIES OF OCULOMOTOR-SYSTEM NEURAL CONNECTIONS . R. S. REMMELandR. D. SKINNER i Department of Physiology and Biophysics and Department of Anatomy University of Arkansas forMedical Sciences Little Rock, Arkansas 72205 ABSTRACT The neural connections of the reticular formation (RF) withthe vestibular nuclei (8V)and the ascending medial longitudinal fasciculus (MLF) were studied, because many neurons in these structures carry eye-movement and head-movement (vestibular) signals and are only one or two synaptic connections removed from eye motorneurons.
    [Show full text]
  • Brainstem Dysfunction in Critically Ill Patients
    Benghanem et al. Critical Care (2020) 24:5 https://doi.org/10.1186/s13054-019-2718-9 REVIEW Open Access Brainstem dysfunction in critically ill patients Sarah Benghanem1,2 , Aurélien Mazeraud3,4, Eric Azabou5, Vibol Chhor6, Cassia Righy Shinotsuka7,8, Jan Claassen9, Benjamin Rohaut1,9,10† and Tarek Sharshar3,4*† Abstract The brainstem conveys sensory and motor inputs between the spinal cord and the brain, and contains nuclei of the cranial nerves. It controls the sleep-wake cycle and vital functions via the ascending reticular activating system and the autonomic nuclei, respectively. Brainstem dysfunction may lead to sensory and motor deficits, cranial nerve palsies, impairment of consciousness, dysautonomia, and respiratory failure. The brainstem is prone to various primary and secondary insults, resulting in acute or chronic dysfunction. Of particular importance for characterizing brainstem dysfunction and identifying the underlying etiology are a detailed clinical examination, MRI, neurophysiologic tests such as brainstem auditory evoked potentials, and an analysis of the cerebrospinal fluid. Detection of brainstem dysfunction is challenging but of utmost importance in comatose and deeply sedated patients both to guide therapy and to support outcome prediction. In the present review, we summarize the neuroanatomy, clinical syndromes, and diagnostic techniques of critical illness-associated brainstem dysfunction for the critical care setting. Keywords: Brainstem dysfunction, Brain injured patients, Intensive care unit, Sedation, Brainstem
    [Show full text]
  • Breakthroughs in Brain Research with High Performance Computing 1 High Performance Computing Case Study
    Breakthroughs in Brain Research with High Performance Computing 1 High Performance Computing Case Study. Breakthroughs in Brain Research with High Performance Computing Breakthroughs in Brain Research with High Performance Computing This publication may not be reproduced, in whole or in part, in any form be- yond copying permitted by sections 107 and 108 of the U.S. copyright law and excerpts by reviewers for the public press, without written permission from the publishers. The Council on Competitiveness is a nonprofit, 501 (c) (3) organization as recognized by the U.S. Internal Revenue Service. The Council’s activities are funded by contributions from its members, foundations, and project contributions. To learn more about the Council on Competitiveness, visit us at www.compete.org. Copyright © 2008 Council on Competitiveness Design: Soulellis Studio This work was supported by The National Science Foundation under grant award #0456129. Printed in the United States of America Breakthroughs in Brain Research with High Performance Computing 1 Breakthroughs in Brain Research with High Performance Computing Researchers at the Salk Institute are using supercomputers at the nearby NSF-funded San Diego Supercomputer Center to investigate how the synapses of the brain work. Their research has the potential to help people suffering from mental disorders such as Alzheimer’s, schizophrenia and manic depressive disorders. In addition, the use of supercomputers is helping to change the very nature of biology – from a science that has relied primarily on observation to a science that relies on high performance computing to achieve previously impossible in-depth quantitative results. To paraphrase Yogi Berra, You can see a lot just by like those in a muscle or gland.
    [Show full text]
  • In the Beginning Please Turn to Page 28
    FROM THE EDITOR Mariette DiChristina is editor in chief of Scientific American. Follow her on Twitter @mdichristina sounds so harsh have been beneficial, you ask? To find out, In the Beginning please turn to page 28. The sun’s rays provided vitality for this world. Seeing them There was light. But then what happened? dim temporarily, as they do during a solar eclipse, is awe­inspir­ How did life arise on the third rocky planet orbiting the un­ ing. It’s been nearly a century since a total solar eclipse has remarkable star at the center of our solar system? Humans crossed the U.S. from coast to coast. Starting on page 54, you’ll have been wondering about the answer to that question prob­ find that “The Great Solar Eclipse of 2017,” by Jay M. Pasachoff, ably almost as long as we’ve been able to wonder. In recent tells you everything you need to know about this rare event. And decades scientists have made some a companion piece, “1,000 Years of gains in understanding the conceiv­ Solar Eclipses,” by senior editor Mark able mechanisms, gradually settling Fischetti, with illustrations by senior on a possible picture of our origins graphics editor Jen Christiansen and in the oceans. The idea was that designer Jan Willem Tulp, tells you hydrothermal vents at the bottom of what you will need to know as well. I the seas, protected from cataclysms like to think that the readers of Scien - rending the surface four billion tific American,which turns 172 this years ago, delivered the necessary month, will be enjoying the solar energy and could have sustained the shows well into the future.
    [Show full text]
  • The Scientist : Physics Meets the Brain
    The Scientist : Physics Meets the Brain http://www.the-scientist.com/article/display/36676/ Welcome (Institutional Subscriber : Free Anniversary Access) Please login or register Search 7:14:38 PM Volume 20 | Issue 12 | Page 54 | Reprints | Issue Contents Comment on this article By Karen Hopkin PROFILE Physics Meets the Brain How Terry Sejnowski went from December 2006 a grad student in theoretical physics to computational Table of Contents neuroscience's White Knight. Editorial Columns Features It was Editorial Advisory Board the grueling Courtesy of the Salk Institute 1 of 7 12/1/2006 7:14 PM The Scientist : Physics Meets the Brain http://www.the-scientist.com/article/display/36676/ The Daily: Sign up for The Scientist's qualifying exam for his doctorate in theoretical physics daily e-mail. in the 1970's that sparked Terry Sejnowski's interest in neuroscience. The exam "takes a week in which every Blogs: Latest Posts morning or afternoon is a different topic in physics," he says. "Cramming all of physics into your head for that week is so concentrated that you need to be able to take Podcast: a break and do something else. That summer I started TheWeek to read books about the brain." Now on iTunes subscribe now His light summer reading revealed, among other things, that neuroscientists had a lot to learn. "They didn't know the answers to basic questions, fundamental Media Kit questions, like how memory is stored," says Sejnowski. His full transformation from a theoretical physicist to Web Advertising an experimental neuroscientist didn't take place until Print Advertising 1978, when Sejnowski, then a postdoc at Princeton, signed up for a summer course in neurobiology at Woods Contact the Advertising Department Hole.
    [Show full text]
  • Brainstem Dysfunction in Critically Ill Patients
    Benghanem et al. Critical Care (2020) 24:5 https://doi.org/10.1186/s13054-019-2718-9 REVIEW Open Access Brainstem dysfunction in critically ill patients Sarah Benghanem1,2 , Aurélien Mazeraud3,4, Eric Azabou5, Vibol Chhor6, Cassia Righy Shinotsuka7,8, Jan Claassen9, Benjamin Rohaut1,9,10† and Tarek Sharshar3,4*† Abstract The brainstem conveys sensory and motor inputs between the spinal cord and the brain, and contains nuclei of the cranial nerves. It controls the sleep-wake cycle and vital functions via the ascending reticular activating system and the autonomic nuclei, respectively. Brainstem dysfunction may lead to sensory and motor deficits, cranial nerve palsies, impairment of consciousness, dysautonomia, and respiratory failure. The brainstem is prone to various primary and secondary insults, resulting in acute or chronic dysfunction. Of particular importance for characterizing brainstem dysfunction and identifying the underlying etiology are a detailed clinical examination, MRI, neurophysiologic tests such as brainstem auditory evoked potentials, and an analysis of the cerebrospinal fluid. Detection of brainstem dysfunction is challenging but of utmost importance in comatose and deeply sedated patients both to guide therapy and to support outcome prediction. In the present review, we summarize the neuroanatomy, clinical syndromes, and diagnostic techniques of critical illness-associated brainstem dysfunction for the critical care setting. Keywords: Brainstem dysfunction, Brain injured patients, Intensive care unit, Sedation, Brainstem
    [Show full text]
  • Talking Nets: an Oral History of Neural Networks 6
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Artificial Intelligence 119 (2000) 287–293 Book Review J.A. Anderson and E. Rosenfeld (Eds.), Talking Nets: An Oral History of Neural Networks ✩ Noel E. Sharkey 1 University of Sheffield, Department of Computer Science, Regent Court, 221 Portobello Street, Sheffield S1 4DP, UK Drugs, tragedy, romance, success, misfortune, luck, pathos, bitterness, jealousy and struggle are not words that we expect in a review of an academic book of interviews with some of the great and good of neural network research. But this book is not just concerned with the science and engineering of neural network research as seen in the literature; it deals with the motivation from the childhood and early developments of each of the 17 interviewees and with informal accounts of their scientific endeavours. This is an attempt to get to an understanding of the science through an understanding of the scientists themselves, their schooling, their interests, and their major influences. It is a wonderfully charming book and well worth reading. To maintain the historical sequence of events, the editors have placed the interviews in the order of the birth dates of the interviewees. This works well in many cases but there are some notable exceptions. For example, the Werbos interview is sandwiched between Sejnowski and Hinton when he had actually carried out significant work much earlier. Then there is Leon Cooper who, although fourth oldest, should really belong, historically, at position 12 because he first had a Nobel winning career in Physics.
    [Show full text]
  • Francis Crick's Legacy for Neuroscience
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Open access, freely available online Obituary Francis Crick’s Legacy for Neuroscience: Between the α and the Ω Ralph M. Siegel*, Edward M. Callaway ‘You’, your joys and your sorrows, your memories Hubel and Wiesel wrote of functional new ideas of a theoretical neurology and your ambitions, your sense of personal architectures, embedded in beautiful, to the brain (Marr 1969, 1970). And identity and free will, are in fact no more than almost crystalline structure. The he saw the tragedy of Marr being cut the behavior of a vast assembly of nerve cells…” comprehension of mind invoked by a off from solving the big problems for —Crick (1994, p. 3) biological mechanism appeared ripe which he was so clearly destined. for the sort of thoughtful, theoretical During those early years, Francis rancis Crick was an evangelical science he had applied to DNA. Francis must have thought that consciousness atheist. He believed that scientifi c was now sixty years old and moved from was tractable—if only the right way of Funderstanding removed the need Cambridge to the Salk Institute in La thinking was brought to bear on it. for religious explanations of natural Jolla, California. Francis began with the Francis’s brain was capable of collecting phenomena. From James Watson’s brightest young minds he could fi nd. and fi ling away many disparate and his early work, the structure of David Marr was a young data, which he could then combine DNA explained the α, the origins of mathematician and physiologist uniquely and imaginatively, leading life.
    [Show full text]
  • A Noncholinergic Action of Acetylcholinesterase (ACHE) in the Brain: from Neuronal Secretion to the Generation of Movement
    Cellular and Molecular Neurobiology, Vol. 11, No. 1, 1991 Review A Noncholinergic Action of Acetylcholinesterase (ACHE) in the Brain: From Neuronal Secretion to the Generation of Movement Susan A. Greenfield ~ Received November 20, 1989; accepted March 21, 1990 KEY WORDS: acetylcholinesterase; substantia nigra; dendrites; calcium conductances; release; neuromodulation; movement. SUMMARY 1. In various brain regions, there is a puzzling disparity between large amounts of acetylcholinesterase and low levels of acetylcholine. One such area is the substantia nigra. Furthermore, within the substantia nigra, a soluble form of acetylcholinesterase is released from the dendrites of dopamine-containing nigrostriatal neurons, independent of cholinergic transmission. These two issues have prompted the hypothesis that acetylcholinesterase released in the substantia nigra has an unexpected noncholinergic function. 2. Electrophysiological studies demonstrate that this dendritic release is a function, not of the excitability of the cell from which the acetylcholinesterase is released, but of the inputs to it. In order to explore this phenomenon at the behavioral level, a novel system has been developed for detecting release of acetylcholinesterase "on-line." It can be seen that release of this protein within the substantia nigra can reflect, but is not causal to, movement. 3. Once released, the possible actions of acetylcholinesterase can be studied at both the cellular and the behavioral level. Independent of its catalytic site, acetylcholinesterase has a "modulatory" action on nigrostriatal neurons. The functional consequences of this modulation would be to enhance the sensitivity of the cells to synaptic inputs. 4. Many basic questions remain regarding the release and action of acetylcholinesterase within the substantia nigra and, indeed, within other areas of 1 University Department of Pharmacology, South Parks Road, Oxford OX1 3QT, U.K.
    [Show full text]