Switching on the Notochord

Total Page:16

File Type:pdf, Size:1020Kb

Switching on the Notochord Downloaded from genesdev.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press PERSPECTIVE Switching on the notochord Vincent T. Cunliffe and Philip W. Ingham1 Developmental Genetics Programme, University of Sheffield, Sheffield S10 2TN, UK The notochord is a defining characteristic of the chor- ductive interactions are nevertheless critical for the es- date embryo. It is a dorsally located rod of tensile meso- tablishment of some cell lineages (Nishida 1997). In dermal tissue that lies immediately beneath the neural these organisms, notochordal fate is induced by vegetal tube. In vertebrates the notochord functions as a skeletal blastomeres in just 10 cells of the 110-cell embryo (Na- element during early embryogenesis and as a source of katani and Nishida 1994). These 10 cells then divide signals that pattern the neural tube and paraxial meso- twice to produce the entire set of 40 cells that comprises derm. Despite the recent identification of mutations af- the larval notochord. Initial expression of the Ciona in- fecting notochord development in zebrafish, the rather testinalis homolog of the vertebrate Brachyury gene, Ci- modest progress in isolating genes expressed in the no- Bra, coincides precisely with the restriction of early blas- tochord during its differentiation has limited our under- tomeres to a notochordal fate (Yasuoh and Satoh 1993). standing of the molecular mechanisms underpinning its Expression of Brachyury is then maintained exclusively structure and function. In a recent study, Takahashi et in the notochord, in contrast to the situation in verte- al. (1999), using embryos of the primitive chordate, the brate embryos, where Brachyury is expressed in both no- ascidian, have redressed the balance, identifying a large tochord and ventral–posterior mesoderm (Fig. 1). More- number of notochord-specific genes by subtractive clon- over, misexpression of ascidian Brachyury in cells of ing. Their approach, although not novel in principle, is non-notochordal lineages is sufficient to impart to them remarkable for its efficacy and promises to set the stage with the morphological characteristics of notochord for significant advances not only in our appreciation of cells without the need for inductive interactions with the formation and function of the notochord but also in vegetal blastomeres (Yasuo and Satoh 1998). Takahashi understanding how this important structure has evolved. et al. (1999) have now extended this observation and demonstrated that misexpression of Brachyury in the en- doderm of ascidian embryos is sufficient to induce fully Notochord specification and the role of Brachyury differentiated ectopic notochord. This contrasts with the in mesodermal patterning induction of ventral–posterior mesoderm observed when Brachyury was misexpressed in Xenopus animal caps In vertebrates, the notochord develops from the axial (Cunliffe and Smith 1992): Only by coexpressing noggin mesoderm of the gastrula via inductive interactions in- with Brachyury could notochord be induced in this tis- volving the transforming growth factor ␤ (TGF␤)-super- sue (Cunliffe and Smith 1994). Significantly, Noggin is family and fibroblast growth factor (FGF)-family signal- known to function by inhibiting bone morphogenetic ing molecules. After neurulation the notochord lies be- protein (BMP) signaling pathways (Zimmerman et al. neath the floor plate of the neural tube, above the 1996); BMP4 can both ventralize dorsal mesoderm and endoderm, and between the paired somites that extend induce epidermal fate in dissociated animal cap cells, the length of the trunk and the tail. Critical to its func- and at high concentrations BMP4 is sufficient to induce tion, the notochord expresses transcription factors en- ventral mesoderm in animal cap tissue (Dale et al. 1992; coded by the Brachyury, HNF-3␤ and floating head genes Jones et al. 1992. Sasai et al. 1995; Schmidt et al. 1995; (Smith et al. 1991; Ruiz i Altaba and Jessell 1992; Talbot Wilson and Hemmati-Brivanlou 1995). Thus, coexpres- et al. 1995), as well as the secreted factor Sonic hedgehog, sion of Noggin with Brachyury in animal caps removes which patterns the somites and the neural tube (for re- the ventralizing constraint of BMP signaling on meso- view, see Ingham 1995). Studies in the mouse, Xenopus, dermal fate induced by Brachyury, yielding notochord and zebrafish have demonstrated that Brachyury is re- and somitic muscle. quired for differentiation of axial midline mesoderm into Although as in vertebrates, BMP signaling is impli- notochord as well as for the formation of posterior me- cated in epidermal induction and the inhibition of neural sodermal tissues (Chesley 1935; Halpern et al. 1993; fate in ascidians, it appears to have no obvious role in the Schulte-Merker et al. 1992; Conlon et al. 1996). dorsoventral patterning of the mesoderm of these ani- Ascidian development is highly autonomous, yet in- mals: Misexpression of BMP4 does not ventralize dorsal mesoderm, and in any case it is not expressed in the appropriate cell lineage (Miya et al. 1997). Similarly, 1Corresponding author. E-MAIL [email protected]; FAX 441142222788. studies of the expression pattern of BMP2/4 in the GENES & DEVELOPMENT 13:1643–1646 © 1999 by Cold Spring Harbor Laboratory Press ISSN 0890-9369/99 $5.00; www.genesdev.org 1643 Downloaded from genesdev.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Cunliffe and Ingham Novel genes involved in notochord specification and function A subtractive library comprising 599 cDNA clones was produced, 501 of which were up-regulated in embryos expressing the Ci-fkh/Ci-Bra construct. Of these, 38 ex- hibited a notochord-specific expression pattern by in situ hybridization, representing a frequency of 6% of the clones in the original library. Another 84 (14%) induced cDNA clones exhibited expression in notochord and other discrete locations in the embryo, giving a total fre- quency of 20% notochord-induced cDNAs. However, a further 81 (14%) of the induced clones exhibited specific expression patterns in locations other than the noto- chord, suggesting that signaling by ectopic notochord in- duces gene expression in other tissues. Figure 1. Expression of Brachyury in ascidian and Xenopus Twenty of the 38 notochord-specific genes are sug- embryos. (a) In situ localization of Ci-Bra mRNA in mid-tailbud gested by Takahashi et al. (1999) to encode proteins with embryo of C. intestinalis. Signal is strongest in posterior noto- no sequence similarities in available databases. Given chord cells (1997). Anterior is to the left; dorsal is up.(b) Noto- the number and size of the existing model genome and chord-specific expression of the lacZ transgene under the con- expressed sequence tag (EST) databases, this suggests trol of the 3.5-kb Ci-Bra promoter in the mid-tailbud embryo of that there are likely to be many specialized aspects of C. intestinalis (a,b) Reprinted, with permission, from Corbo et notochord function that remain to be understood. The al. 1997. Anterior is to the left; dorsal is up.(c) In situ localiza- tion of Xbra mRNA in late gastrula stage Xenopus embryo. remaining 18 genes encode products with sequence simi- Posterior view; dorsal is up. The signal is visible in two do- larity to proteins of known function. These include ex- mains: notochord and ventral–posterior mesoderm. tracellular matrix proteins, cell adhesion molecules, and cytoplasmic signaling pathway components. One gene that is expressed relatively late in notochord formation is a member of the ezrin–radixin–moesin (ERM) family cephalochordate Amphioxus indicate a function for this of polypeptides, which tether components of the plasma gene in specification of ectodermal fate but not in dor- membrane to the actin cytoskeleton (Tsukita and Yone- soventral patterning of the mesoderm (Panopoulou et al. mura 1997). Perhaps this ERM protein plays a role in cell 1998). The absence of a ventralizing function of ascidian intercalation, maintaining the integrity of the notochord BMP4 may therefore explain how misexpression of or producing the changes in notochord cell shape that Brachyury in ascidian endoderm leads directly to the for- contribute to tail extension. mation of ectopic notochord. Taken together, the observations of Ci-Bra and Xeno- pus Brachyury (Xbra) function have implications for the Other Brachyury-inducible genes evolution of mesodermal patterning mechanisms. It is possible that the earliest evolutionary role for Brachyury Tada et al. (1998) previously used a subtractive hybrid- in chordate development was to specify notochord, and ization approach to isolate genes that were activated that of BMP signaling may have been to induce epider- when Xbra was misexpressed in Xenopus animal cap tis- mal fate. Subsequently, the function of BMP signaling in sue. Because no notochord is induced in this scenario, evolution may have been modified to influence the regu- the functions of these putative Xbra target genes are un- latory program under control of Brachyury. This would likely to be related to those characterized by Takahashi then have enabled the specification and patterning of et al. (1999). Of 37 cDNA clones from the subtracted several types of mesodermal tissues in the vertebrates in library, 4 were identified as Brachyury inducible. One addition to notochord, including somite, mesenchyme, cDNA clone that was isolated identified a family of ho- and mesothelium, in a BMP concentration-dependent meodomain protein-encoding cDNAs related to the manner. Mix.1 family of genes. This cDNA, Bix1, is expressed in The simple switch effect of Brachyury in ascidians has mesoderm and endoderm at late blastula and gastrula been exploited by Takahashi et al. (1999) to stunning stages but it is excluded from the dorsal marginal zone of effect. A high efficiency electroporation technique was the early gastrula that is fated to form the notochord. used to introduce plasmid DNA encoding Ci-Bra under Misexpression of Bix1 in the dorsal marginal zone pre- the control of the ascidian fork head/HNF-3␤ (Ci-fkh) vented notochord formation, whereas misexpression of promoter.
Recommended publications
  • Works Neuroembryology
    Swarthmore College Works Biology Faculty Works Biology 1-1-2017 Neuroembryology D. Darnell Scott F. Gilbert Swarthmore College, [email protected] Follow this and additional works at: https://works.swarthmore.edu/fac-biology Part of the Biology Commons Let us know how access to these works benefits ouy Recommended Citation D. Darnell and Scott F. Gilbert. (2017). "Neuroembryology". Wiley Interdisciplinary Reviews: Developmental Biology. Volume 6, Issue 1. DOI: 10.1002/wdev.215 https://works.swarthmore.edu/fac-biology/493 This work is brought to you for free by Swarthmore College Libraries' Works. It has been accepted for inclusion in Biology Faculty Works by an authorized administrator of Works. For more information, please contact [email protected]. HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Wiley Interdiscip Manuscript Author Rev Dev Manuscript Author Biol. Author manuscript; available in PMC 2018 January 01. Published in final edited form as: Wiley Interdiscip Rev Dev Biol. 2017 January ; 6(1): . doi:10.1002/wdev.215. Neuroembryology Diana Darnell1 and Scott F. Gilbert2 1University of Arizona College of Medicine 2Swarthmore College and University of Helsinki Abstract How is it that some cells become neurons? And how is it that neurons become organized in the spinal cord and brain to allow us to walk and talk, to see, recall events in our lives, feel pain, keep our balance, and think? The cells that are specified to form the brain and spinal cord are originally located on the outside surface of the embryo. They loop inward to form the neural tube in a process called neurulation.
    [Show full text]
  • The Genetic Basis of Mammalian Neurulation
    REVIEWS THE GENETIC BASIS OF MAMMALIAN NEURULATION Andrew J. Copp*, Nicholas D. E. Greene* and Jennifer N. Murdoch‡ More than 80 mutant mouse genes disrupt neurulation and allow an in-depth analysis of the underlying developmental mechanisms. Although many of the genetic mutants have been studied in only rudimentary detail, several molecular pathways can already be identified as crucial for normal neurulation. These include the planar cell-polarity pathway, which is required for the initiation of neural tube closure, and the sonic hedgehog signalling pathway that regulates neural plate bending. Mutant mice also offer an opportunity to unravel the mechanisms by which folic acid prevents neural tube defects, and to develop new therapies for folate-resistant defects. 6 ECTODERM Neurulation is a fundamental event of embryogenesis distinct locations in the brain and spinal cord .By The outer of the three that culminates in the formation of the neural tube, contrast, the mechanisms that underlie the forma- embryonic (germ) layers that which is the precursor of the brain and spinal cord. A tion, elevation and fusion of the neural folds have gives rise to the entire central region of specialized dorsal ECTODERM, the neural plate, remained elusive. nervous system, plus other organs and embryonic develops bilateral neural folds at its junction with sur- An opportunity has now arisen for an incisive analy- structures. face (non-neural) ectoderm. These folds elevate, come sis of neurulation mechanisms using the growing battery into contact (appose) in the midline and fuse to create of genetically targeted and other mutant mouse strains NEURAL CREST the neural tube, which, thereafter, becomes covered by in which NTDs form part of the mutant phenotype7.At A migratory cell population that future epidermal ectoderm.
    [Show full text]
  • Role of Notochord in Specification of Cardiac Left-Right Orientation In
    DEVELOPMENTAL BIOLOGY 177, 96±103 (1996) ARTICLE NO. 0148 Role of Notochord in Speci®cation of Cardiac Left± View metadata, citation and similar papers at core.ac.uk brought to you by CORE Right Orientation in Zebra®sh and Xenopus provided by Elsevier - Publisher Connector Maria C. Danos and H. Joseph Yost1 Department of Cell Biology and Neuroanatomy, University of Minnesota, 4-135 Jackson Hall, 321 Church Street S.E., Minneapolis, Minnesota 55455 The left±right body axis is coordinately aligned with the orthogonal dorsoventral and anterioposterior body axes. The developmental mechanisms that regulate axis coordination are unknown. Here it is shown that the cardiac left±right orientation in zebra®sh (Danio rerio) is randomized in notochord-defective no tail and ¯oating head mutants. no tail (Brachyury) and ¯oating head (Xnot) encode putative transcription factors that are expressed in the organizer and notochord, structures which regulate dorsoventral and anterioposterior development in vertebrate embryos. Results from dorsal tissue extirpation and cardiac primordia explantation indicate that cardiac left±right orientation is dependent on dorsoanterior structures including the notochord and is speci®ed during neural fold stages in Xenopus laevis. Thus, the notochord coordinates the development of all three body axes in the vertebrate body plan. q 1996 Academic Press, Inc. INTRODUCTION lations early in development or by genetic mutation, re- sulting in a population frequency of approximately 50% In all vertebrates examined, left±right asymmetries are reversal of the normal left±right orientations (for review, consistently aligned with respect to the anterioposterior see Yost, 1995b). This suggests that in the absence of normal and dorsoventral axes.
    [Show full text]
  • Update on the Notochord Including Its Embryology, Molecular Development, and Pathology: a Primer for the Clinician
    Open Access Review Article DOI: 10.7759/cureus.1137 Update on the Notochord Including its Embryology, Molecular Development, and Pathology: A Primer for the Clinician Tushar Ramesh 1 , Sai V. Nagula 1 , Gabrielle G. Tardieu 2 , Erfanul Saker 2 , Mohammadali Shoja 3 , Marios Loukas 2 , Rod J. Oskouian 4 , R. Shane Tubbs 5 1. Neurology, University of Alabama at Birmingham 2. Department of Anatomical Sciences, St. George's University School of Medicine, Grenada, West Indies 3. Neurological Surgery, University of Alabama at Birmingham 4. Swedish Neuroscience Institute 5. Neurosurgery, Seattle Science Foundation Corresponding author: Gabrielle G. Tardieu, [email protected] Abstract The notochord is a rod-like embryological structure, which plays a vital role in the development of the vertebrate. Though embryological, remnants of this structure have been observed in the nucleus pulposus of the intervertebral discs of normal adults. Pathologically, these remnants can give rise to slow-growing and recurrent notochord-derived tumors called chordomas. Using standard search engines, the literature was reviewed regarding the anatomy, embryology, molecular development, and pathology of the human notochord. Clinicians who interpret imaging or treat patients with pathologies linked to the notochord should have a good working knowledge of its development and pathology. Categories: Genetics, Neurology, Other Keywords: notochord, nucleus pulposus, chordoma, spine, embryology, development Introduction And Background The notochord, namesake of the phylum chordata (Figure 1), plays a central role in vertebrate development. It is most prominent in the first trimester, wherein it guides the folding of the embryo and regulates the differentiation and maturation of surrounding tissues. It is a transient embryologic entity in humans, thought to be completely absent or present in minute quantities, within the nucleus pulposus of intervertebral discs in adults.
    [Show full text]
  • The Dorsal Neural Tube Organizes the Dermamyotome and Induces Axial Myocytes in the Avian Embryo
    Development 122, 231-241 (1996) 231 Printed in Great Britain © The Company of Biologists Limited 1996 DEV3253 The dorsal neural tube organizes the dermamyotome and induces axial myocytes in the avian embryo Martha S. Spence1, Joseph Yip2 and Carol A. Erickson1,* 1Section of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA 2Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA *Author for correspondence (e-mail: [email protected]) SUMMARY Somites, like all axial structures, display dorsoventral reported previously to induce sclerotome. Thus, we have polarity. The dorsal portion of the somite forms the der- demonstrated that in the context of the embryonic envi- mamyotome, which gives rise to the dermis and axial mus- ronment, a dorsalizing signal from the dorsal neural tube culature, whereas the ventromedial somite disperses to can compete with the diffusible ventralizing signal from the generate the sclerotome, which later comprises the notochord. vertebrae and intervertebral discs. Although the neural In contrast to dorsal neural tube, pieces of ventral neural tube and notochord are known to regulate some aspects of tube, dorsal ectoderm or neural crest cells, all of which this dorsoventral pattern, the precise tissues that initially have been postulated to control dermamyotome formation specify the dermamyotome, and later the myotome from it, or to induce myogenesis, either fail to do so or provoke only have been controversial. Indeed, dorsal and ventral neural minimal inductive responses in any of our assays. However, tube, notochord, ectoderm and neural crest cells have all complicating the issue, we find consistent with previous been proposed to influence dermamyotome formation or to studies that following ablation of the entire neural tube, regulate myocyte differentiation.
    [Show full text]
  • An AOP-Based Ontology for Neural Tube Closure Caused by Disturbance in Retinoic Acid Signaling
    An AOP-based Ontology for Neural Tube Closure Caused by Disturbance in Retinoic Acid Signaling Cellular behavior Authors: Yvonne C.M. Staal1, Nancy Baker2, 3 4 Lyle D. Burgoon , George Daston , For each cell type information on its behavior was 5 1 Thomas B. Knudsen , Aldert H. Piersma collected from the available literature to map molecular interactions and genetic signals. 1. RIVM: National Institute of Public Health and the Environment, Bilthoven, The Netherlands; 2. Leidos, RTP, NC, United States; Table 1: example of information on cellular behavior for neuroectoderm fusion. 3. US Army Engineer Research and Development Center, RTP, NC, United States; Cell type Behavior Signal 4. Proctor & Gamble Company, Cincinnati OH, …. …. …. …. United States; neuroectoderm fusion inhibited by BMP 5. NCCT, US EPA/ORD, RTP, NC, United States neuroectoderm fusion requires Grhl2 Contact: [email protected] neuroectoderm fusion requires correct cell polarity Retinoic acid (RA) balance and leading neuroectoderm fusion inhibited by RhoA to neural tube defects neuroectoderm fusion requires Lrp6 Retinoid signaling plays an important role in embryo- neuroectoderm fusion involves Ephrin fetal development and its disruption is teratogenic. The biology of the RA pathway, leading to defects in neuroectoderm fusion requires Grhl2 neural tube closure was the basis for the construction of an ontology for developmental toxicity. neuroectoderm fusion requires Lrp6 We are constructing an ontology from an AOP network neuroectoderm fusion requires Traf4 that incorporates feedback-loops, which can be used for risk assessment. neuroectoderm fusion requires Cdx2 Fig 1: Schematic visualization (top to bottom) of neural tube closure. BMP inhibits dorso-lateral hinge point neuroectoderm fusion requires Pax3 (DLHP) formation, whereas this is stimulated by Noggin.
    [Show full text]
  • Embryology and Teratology in the Curricula of Healthcare Courses
    ANATOMICAL EDUCATION Eur. J. Anat. 21 (1): 77-91 (2017) Embryology and Teratology in the Curricula of Healthcare Courses Bernard J. Moxham 1, Hana Brichova 2, Elpida Emmanouil-Nikoloussi 3, Andy R.M. Chirculescu 4 1Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, Wales, United Kingdom and Department of Anatomy, St. George’s University, St George, Grenada, 2First Faculty of Medicine, Institute of Histology and Embryology, Charles University Prague, Albertov 4, 128 01 Prague 2, Czech Republic and Second Medical Facul- ty, Institute of Histology and Embryology, Charles University Prague, V Úvalu 84, 150 00 Prague 5 , Czech Republic, 3The School of Medicine, European University Cyprus, 6 Diogenous str, 2404 Engomi, P.O.Box 22006, 1516 Nicosia, Cyprus , 4Department of Morphological Sciences, Division of Anatomy, Faculty of Medicine, C. Davila University, Bucharest, Romania SUMMARY Key words: Anatomy – Embryology – Education – Syllabus – Medical – Dental – Healthcare Significant changes are occurring worldwide in courses for healthcare studies, including medicine INTRODUCTION and dentistry. Critical evaluation of the place, tim- ing, and content of components that can be collec- Embryology is a sub-discipline of developmental tively grouped as the anatomical sciences has biology that relates to life before birth. Teratology however yet to be adequately undertaken. Surveys (τέρατος (teratos) meaning ‘monster’ or ‘marvel’) of teaching hours for embryology in US and UK relates to abnormal development and congenital medical courses clearly demonstrate that a dra- abnormalities (i.e. morphofunctional impairments). matic decline in the importance of the subject is in Embryological studies are concerned essentially progress, in terms of both a decrease in the num- with the laws and mechanisms associated with ber of hours allocated within the medical course normal development (ontogenesis) from the stage and in relation to changes in pedagogic methodol- of the ovum until parturition and the end of intra- ogies.
    [Show full text]
  • NIH Public Access Author Manuscript Dev Dyn
    NIH Public Access Author Manuscript Dev Dyn. Author manuscript; available in PMC 2006 November 13. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Dev Dyn. 2004 January ; 229(1): 201±218. T-box Genes in Early Embryogenesis Chris Showell, Olav Binder, and Frank L. Conlon* Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina Abstract The T-box gene family, encoding related DNA-binding transcriptional regulators, plays an essential role in controlling many aspects of embryogenesis in a wide variety of organisms. The T-box genes exhibit diverse patterns of spatial and temporal expression in the developing embryo, and both genetic and molecular embryological studies have demonstrated their importance in regulating cell fate decisions that establish the early body plan, and in later processes underlying organogenesis. Despite these studies, little is known of either the regulation of the T-box genes or the identities of their transcriptional targets. The aim of this review is to examine the diverse yet conserved roles of several T-box genes in regulating early patterning in chordates and to discuss possible mechanisms through which this functional diversity might arise. Keywords T-box; T-domain; Brachyury; Eomesodermin; VegT; spadetail; no tail; tbx6; mesoderm; transcription INTRODUCTION Adult multicellular organisms typically contain a variety of different specialized cell types, their cooperative activity underpinning the function of the organism as a whole. The cellular diversity in the adult arises during embryogenesis, and one of the aims of modern developmental biology is to gain an understanding of the molecular mechanisms through which this process occurs.
    [Show full text]
  • The Xenopus Brachyury Promoter Is Activated by FGF and Low Concentrations of Activin and Suppressed by High Concentrations of Ac
    Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press The Xenopus Brachyury promoter is activated by FGF and low concentrations of activin and suppressed by high concentrations of activin and by paired-type homeodomain proteins Brancko V. Latinkic´, Muriel Umbhauer,1 Kathy A. Neal, Walter Lerchner, James C. Smith,3 and Vincent Cunliffe2 Division of Developmental Biology, National Institute for Medical Research (NIMR), The Ridgeway, London NW7 1AA, UK The mesoderm of Xenopus laevis arises through an inductive interaction in which signals from the vegetal hemisphere of the embryo act on overlying equatorial cells. One candidate for an endogenous mesoderm-inducing factor is activin, a member of the TGFb superfamily. Activin is of particular interest because it induces different mesodermal cell types in a concentration-dependent manner, suggesting that it acts as a morphogen. These concentration-dependent effects are exemplified by the response of Xbra, expression of which is induced in ectodermal tissue by low concentrations of activin but not by high concentrations. Xbra therefore offers an excellent paradigm for studying the way in which a morphogen gradient is interpreted in vertebrate embryos. In this paper we examine the trancriptional regulation of Xbra2, a pseudoallele of Xbra that shows an identical response to activin. Our results indicate that 381 bp 5* of the Xbra2 transcription start site are sufficient to confer responsiveness both to FGF and, in a concentration-dependent manner, to activin. We present evidence that the suppression of Xbra expression at high concentrations of activin is mediated by paired-type homeobox genes such as goosecoid, Mix.1, and Xotx2.
    [Show full text]
  • Ectoderm: Neurulation, Neural Tube, Neural Crest
    4. ECTODERM: NEURULATION, NEURAL TUBE, NEURAL CREST Dr. Taube P. Rothman P&S 12-520 [email protected] 212-305-7930 Recommended Reading: Larsen Human Embryology, 3rd Edition, pp. 85-102, 126-130 Summary: In this lecture, we will first consider the induction of the neural plate and the formation of the neural tube, the rudiment of the central nervous system (CNS). The anterior portion of the neural tube gives rise to the brain, the more caudal portion gives rise to the spinal cord. We will see how the requisite numbers of neural progenitors are generated in the CNS and when these cells become post mitotic. The molecular signals required for their survival and further development will also be discussed. We will then turn our attention to the neural crest, a transient structure that develops at the site where the neural tube and future epidermis meet. After delaminating from the neuraxis, the crest cells migrate via specific pathways to distant targets in an embryo where they express appropriate target-related phenotypes. The progressive restriction of the developmental potential of crest-derived cells will then be considered. Additional topics include formation of the fundamental subdivisions of the CNS and PNS, as well as molecular factors that regulate neural induction and regional distinctions in the nervous system. Learning Objectives: At the conclusion of the lecture you should be able to: 1. Discuss the tissue, cellular, and molecular basis for neural induction and neural tube formation. Be able to provide some examples of neural tube defects caused by perturbation of neural tube closure.
    [Show full text]
  • Early Evolution of the T-Box Transcription Factor Family
    Early evolution of the T-box transcription factor family Arnau Sebé-Pedrósa,b,1, Ana Ariza-Cosanoc,1, Matthew T. Weirauchd, Sven Leiningere, Ally Yangf, Guifré Torruellaa, Marcin Adamskie, Maja Adamskae, Timothy R. Hughesf, José Luis Gómez-Skarmetac,2, and Iñaki Ruiz-Trilloa,b,g,2 aInstitut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), 08003 Barcelona, Spain; bDepartament de Genètica, Universitat de Barcelona, 08028 Barcelona, Spain; cCentro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide-Junta de Andalucía, 41013 Sevilla, Spain; dCenter for Autoimmune Genomics and Etiology and Divisions of Rheumatology and Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229; eSars International Centre for Marine Molecular Biology, 5008 Bergen, Norway; fTerrence Donnelly Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada M5S 3E1; and gInstitució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain Edited by W. Ford Doolittle, Dalhousie University, Halifax, NS, Canada, and approved August 13, 2013 (received for review May 24, 2013) Developmental transcription factors are key players in animal and metazoan Brachyury genes and whether T-box genes are multicellularity, being members of the T-box family that are present in other unicellular lineages remained unclear. among the most important. Until recently, T-box transcription Here, we report a taxon-wide survey of T-box genes in several factors were thought to be exclusively present in metazoans. eukaryotic genomes and transcriptomes, including previously Here, we report the presence of T-box genes in several nonmeta- undescribed genomic data from several close relatives of meta- zoan lineages, including ichthyosporeans, filastereans, and fungi.
    [Show full text]
  • Embryology of the Spine and Associated Congenital Abnormalities Kevin M
    The Spine Journal 5 (2005) 564–576 Review Article Embryology of the spine and associated congenital abnormalities Kevin M. Kaplan, MDa,*, Jeffrey M. Spivak, MDa,b, John A. Bendo, MDa,b aNew York University-Hospital for Joint Diseases, Department of Orthopaedic Surgery, 14th Floor, 301 East 17th Street, New York, NY 10003, USA bHospital for Joint Diseases Spine Center, Department of Orthopaedic Surgery, 14th Floor, 301 East 17th Street, New York, NY 10003, USA Received 11 June 2004; accepted 18 October 2004 Abstract BACKGROUND CONTEXT: The spine is a complex and vital structure. Its function includes not only structural support of the body as a whole, but it also serves as a conduit for safe passage of the neural elements while allowing proper interaction with the brain. Anatomically, a variety of tissue types are represented in the spine. Embryologically, a detailed cascade of events must occur to result in the proper formation of both the musculoskeletal and neural elements of the spine. Alterations in these embryologic steps can result in one or more congenital abnormalities of the spine. Other body systems forming at the same time embryologically can be affected as well, resulting in associated defects in the cardiopulmonary system and the gastrointestinal and genito- urinary tracts. PURPOSE: This article is to serve as a review of the basic embryonic development of the spine. We will discuss the common congenital anomalies of the spine, including their clinical presentation, as examples of errors of this basic embryologic process. STUDY DESIGN/SETTING: Review of the current literature on the embryology of the spine and associated congenital abnormalities.
    [Show full text]