The Foxtail (Setaria) Species-Group

Total Page:16

File Type:pdf, Size:1020Kb

The Foxtail (Setaria) Species-Group Invited Review The Foxtail (Setaria) Species-Group Jack Dekker, Weed Biology Laboratory, Agronomy Department, Iowa State University, Ames, IA 50011 USA; [email protected] Abstract. The weedy Setaria species (giant, green, yellow, knotroot and bristly foxtail) compose one of the worst weed groups interfering with world agriculture, and in other disturbed and managed habitats. These five weed species, together with their crop counterparts (foxtail millet, korali), form the foxtail species-group. Five successive waves of Setaria spp. invasion from pre-agricultural times to the present have resulted in widespread infestation of the disturbed, arable, temperate regions of the earth. These invasions have resulted in considerable economic and environmental costs. The success of the Setaria species-group is due to their intimate evolutionary relationship with humans, disturbance, agriculture and land management. The ability to rapidly adapt to local conditions is the hallmark of this weedy group. Genotypic and phenotypic biodiversity provide this species-group with traits that allow them to invade, colonize, adapt to, and endure in a wide range of habitats around the world. The phenotypic life history traits important to weedy Setaria spp. success begin with the induction of dormancy in seed during embryogenesis. The formation of long-lived, heterogeneous seed pools in the soil is the inevitable consequence of the dormant seed rain. In soil seed pools, after-ripening, the occurance and timing of seedling emergence, and the induction of secondary (summer) dormancy are regulated by seasonally and diurnally varying soil oxygen, water and temperature signals. Precise and variable timing of seedling emergence ensures Setaria a dominant place in disturbed and managed communities during the growth and reproductive phases that follow. Once established in a community, phenotypic plasticity inherent in an individual weedy Setaria sp. plant allow it to maximize its growth, form and reproduction to the specific local conditions it encounters, including competitive interactions with neighbors. Traits controlling the plastic development of plant architecture include the ability to form one or more tillering shoots whose stature and number are precisely sized to local conditions. A complex pattern of branching, from plant to spikelet, provides diverse microenvironments within which different levels of dormancy are induced in individual seeds on a panicle, and among panicles on a common plant. Traits for adaptation to stress in weedy Setaria spp. include tolerance to many inhibitory chemicals (e.g. herbicides, salt), mechanical damage and drought. Genetic traits such as self-pollenation and small genome size contribute to a highly diverse collection of locally adapted genotypes and phenotypes ready to exploit any opportunities provided by a cropping system. Self-pollenating Setaria spp. exist in wild, weed and crop variants, an ideal genetic condition ensuring both long- term stability and novelty. Weedy Setaria spp. populations have low to exceedingly low amounts of total genetic variation, unusually low intra-population genetic diversity, and unusually high genetic diversity between populations compared to an "average" plant species. These traits result spatially in local populations that are unusually homogeneous, typically consisting of a single multilocus genotype. Either a generally- or specifically-adapted genotype of an individual Setaria species might predominate in that local population. Across the landscape different single-genotype populations dominate particular local sites, providing novel genetics to the region via dispersal and gene flow when conditions change. Across North America, populations of S. viridis and S. geniculata are genetically differentiated along a north- 1 Invited Review south gradient. The past history of invasion and colonization, the successful life histories of locally adapted weedy Setaria spp., and the evolutionary potential of this weed group emphasize the need for accurate predictions of its behavior. Weedy Setaria spp. management is the mangement of local selection pressure and the consequential adaptation. Farmers, land managers, policy-makers and regulators, homeowners and consumers need accurate information about weedy Setaria spp. to predict and guide management decisions based on economics, risk and environmental sustainability. Nomeclature: green foxtail , Setaria viridis, subspecies viridis (L.) Beauv. SETVI; foxtail millet, Setaria viridis, subspecies italica) SETIT; yellow foxtail, Setaria glauca (Weigel) Hubb. SETLU; giant foxtail, S. faberii Herrm. SETFA; bristly foxtail, Setaria verticillata (L.) Beauv. SETVE; knotroot foxtail, S. geniculata SETGE INTRODUCTION The foxtails are members of the Setaria genus and are one of the worst weed groups interfering with North American and world agriculture and land management (Holm et al., 1977, 1979, 1997). The weedy Setaria spp. include S. viridis subspecies viridis (L.) Beauv. (green foxtail), S. glauca (Weigel) Hubb. (yellow foxtail), S. faberii Herrm. (giant foxtail), S. verticillata (L.) Beauv. (bristly foxtail), and S. geniculata (Lamarck) Beauv. (knotroot foxtail) (Pohl, 1951, 1966; Rominger, 1962). The genus Setaria also contains the crop foxtail millet (S. viridis subsp. italica) whose geographic distribution and evolutionary history is intimately connected with the weedy members of Setaria (de Wet, 1979, 1995). Therefore, a review of the agricultural Setaria appropriately begins at the level of the Setaria species-group (a group of closely related species, usually with partially overlapping ranges; Lincoln et al., 1998), a wild-crop-weed complex (de Wet, 1966). Herein the term Setaria species-group (spp.-gp.) will be used when referring to properties shared by the five foxtail weed species and foxtail millet. Reviews of Setaria spp.-gp. have been published previously (S. glauca and S. verticillata, Steel et al., 1983; S. viridis, Douglas et al., 1985; Setaria spp.-gp., Dekker, 2003). The success of the Setaria spp.-gp. is due to their intimate evolutionary relationship with humans, disturbance, agriculture, and land management. Genotypic and phenotypic biodiversity provide this species-group with traits that allow them to invade, colonize, adapt to and endure in a wide range of disturbed habitats in temperate, tropical, and sub-tropical regions. Why have the weedy Setaria spp. spread globally over the last 5-9000 years? How did they get to be such a major weedy pest? What are the specific traits that allow them to dominate agricultural fields? Why is Setaria still a dominant species-group in North American agriculture after continuous use of highly effective herbicides for almost 50 years? What will the Setaria species-group do in the future? What do we know, not know, and need to know to manage them? The answer to these questions begins with the history of global invasion of the Setaria spp.-gp. Subsequent success of the foxtails is revealed by their local adaptation. The consequences of this local adaptation and evolution are apparent in its life history. The conclusions implied by Setaria spp.-gp. invasion, local adaptation and life history could advise future management systems. 2 Invited Review HISTORY OF GLOBAL INVASION `There appears to be five major phases, or waves, of wild-weed-crop Setaria spp. invasion in earth's history. The origin of the genus and the original wild Eurasian Setaria sp. was probably Africa, based on the large number of Setaria spp. from there (74 of 125), as well as genomic evidence of tropical origins (Lakshmi and Ranjekar, 1984; Prasado Rao, 1987; Rominger, 1962; Simpson, 1990; Stapf and Hubbard, 1930). The tropical genus Setaria dispersed to Eurasia and adapted to a wider range of environmental conditions and habitats. In the second phase, a S. viridis weedy progenitor species spread over Eurasia as a wild colonizing species. The wild, progenitor Setaria spp. that invaded Eurasia in many locations after leaving its African home was most likely a diploid annual similar to S. viridis, subsp. viridis (Kihara and Kishimoto, 1942; Koernicke and Werner, 1885a, b; Li, 1934; Li et al., 1942, 1945; Prasado Rao et al., 1987; Rominger, 1962; Simpson, 1990; Werth, 1937; Willweber-Kishimoto, 1962). Speciation and adaptation followed this spread in geographic distribution to subtropical, and then temperate, regions. Parallel to this, with possibly more ancient antecedants, S. glauca arose and spread throughout China. With domestication, both S. viridis and S. glauca then spread as a weed and a crop (foxtail millet and korali). Foxtail millet was a crop in China 6000 years B.P. (Before Present) (Cheng, 1973; Li and Wu, 1996; Naeiri and Belliard, 1987), while its use as a crop in Europe dates to 3600 B.P. (Dembinska, 1976; Helbaek, 1960; Neuweiler, 1946; de Wet and Harlan, 1975). Setaria glauca seed were gathered from wild plants and later cultivated in India (de Wet et al., 1979; de Wet, 1992). Other weedy Setaria species arose from S. viridis-like ancestors (Khosla and Sharma, 1973), including polyploid specialists such as S. verticillata, S. verticillata and S. faberii. In the third wave, weedy Setaria spp. spread to the New World at two different times: pre-Columbian (before ca. 1500 A.D.) and post-Columbian invasions (after ca. 1500 A.D.). The pre-Columbian origins of S. geniculata, the only weedy Setaria native to the New World, suggest an ancient dispersal event eastward from the Eurasia to the Americas (Rominger,
Recommended publications
  • Crop Profile for Alfalfa in Kansas
    Crop Profile for Alfalfa in Kansas Prepared September 2000 Updated September 2005 General Production Information The Northern and Central Plains are major regions for alfalfa production, contributing 15% and 16%, respectively, to the total U.S. production during 2002 and 2003. South Dakota led the region in alfalfa production, followed by NE, KS, and ND. SD ranked 4th in U.S. alfalfa production during 2002 and 2003 respectively, whereas NE ranked 5th/5th, KS ranked 6th/12th, and ND ranked 21st/21st during the same years. Alfalfa production varied within the region. In SD, the northwest region contributed significantly more than any other region, accounting for approximately one-fifth of total SD alfalfa production in 2003. The following table summarizes alfalfa area, yield, production, price per unit, ranks, and value of production in the Northern and Central Plains during 2002 and 2003 (http://www.nass.usda.gov:81/ipedb/grains.htm) Harvested Yield Production Price per Unit Value of production Year State Rank Acres - thousand tons 1000 tons $ / ton X $1,000 2002 KS 950 3.7 3515 97 340955 6 2002 NE 1350 3 4050 85.5 346275 5 2002 ND 1450 1.3 1885 70 131950 21 2002 SD 2250 1.5 3375 82 275520 4 2002 Total 6000 12825 1094700 2002 Proportion 26.17% 17.57% 15.22% 2002 US Total 22923 3.19 73014 100 7193786 2003 KS 1000 3.4 3400 75 255000 12 2003 NE 1450 3.6 5220 65.5 341910 5 2003 ND 1600 1.65 2640 55.5 146520 21 2003 SD 2700 1.9 5130 67 343710 4 2003 Total 6750 16390 1087140 2003 Proportion 28.63% 21.48% 15.71% 2003 US Total 23578 3.24 76307 98 6921508 Pesticide Usage on Alfalfa for Year 2003 The Crop Profile/PMSP database, including this document, is supported by USDA NIFA.
    [Show full text]
  • Reference Genome Sequence of the Model Plant Setaria
    UC Davis UC Davis Previously Published Works Title Reference genome sequence of the model plant Setaria Permalink https://escholarship.org/uc/item/2rv1r405 Journal Nature Biotechnology, 30(6) ISSN 1087-0156 1546-1696 Authors Bennetzen, Jeffrey L Schmutz, Jeremy Wang, Hao et al. Publication Date 2012-05-13 DOI 10.1038/nbt.2196 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ARTICLES Reference genome sequence of the model plant Setaria Jeffrey L Bennetzen1,13, Jeremy Schmutz2,3,13, Hao Wang1, Ryan Percifield1,12, Jennifer Hawkins1,12, Ana C Pontaroli1,12, Matt Estep1,4, Liang Feng1, Justin N Vaughn1, Jane Grimwood2,3, Jerry Jenkins2,3, Kerrie Barry3, Erika Lindquist3, Uffe Hellsten3, Shweta Deshpande3, Xuewen Wang5, Xiaomei Wu5,12, Therese Mitros6, Jimmy Triplett4,12, Xiaohan Yang7, Chu-Yu Ye7, Margarita Mauro-Herrera8, Lin Wang9, Pinghua Li9, Manoj Sharma10, Rita Sharma10, Pamela C Ronald10, Olivier Panaud11, Elizabeth A Kellogg4, Thomas P Brutnell9,12, Andrew N Doust8, Gerald A Tuskan7, Daniel Rokhsar3 & Katrien M Devos5 We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The ~400-Mb assembly covers ~80% of the genome and >95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with >1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion.
    [Show full text]
  • Breeding System Diversification and Evolution in American Poa Supersect. Homalopoa (Poaceae: Poeae: Poinae)
    Annals of Botany Page 1 of 23 doi:10.1093/aob/mcw108, available online at www.aob.oxfordjournals.org Breeding system diversification and evolution in American Poa supersect. Homalopoa (Poaceae: Poeae: Poinae) Liliana M. Giussani1,*, Lynn J. Gillespie2, M. Amalia Scataglini1,Marıa A. Negritto3, Ana M. Anton4 and Robert J. Soreng5 1Instituto de Botanica Darwinion, San Isidro, Buenos Aires, Argentina, 2Research and Collections Division, Canadian Museum of Nature, Ottawa, Ontario, Canada, 3Universidad de Magdalena, Santa Marta, Colombia, 4Instituto Multidisciplinario de Biologıa Vegetal (IMBIV), CONICET-UNC, Cordoba, Argentina and 5Department of Botany, Smithsonian Institution, Washington, DC, USA *For correspondence. E-mail [email protected] Received: 11 December 2015 Returned for revision: 18 February 2016 Accepted: 18 March 2016 Downloaded from Background and Aims Poa subgenus Poa supersect. Homalopoa has diversified extensively in the Americas. Over half of the species in the supersection are diclinous; most of these are from the New World, while a few are from South-East Asia. Diclinism in Homalopoa can be divided into three main types: gynomonoecism, gynodioe- cism and dioecism. Here the sampling of species of New World Homalopoa is expanded to date its origin and diver- sification in North and South America and examine the evolution and origin of the breeding system diversity. Methods A total of 124 specimens were included in the matrix, of which 89 are species of Poa supersect. http://aob.oxfordjournals.org/ Homalopoa sections Acutifoliae, Anthochloa, Brizoides, Dasypoa, Dioicopoa, Dissanthelium, Homalopoa sensu lato (s.l.), Madropoa and Tovarochloa, and the informal Punapoa group. Bayesian and parsimony analyses were conducted on the data sets based on four markers: the nuclear ribosomal internal tanscribed spacer (ITS) and exter- nal transcribed spacer (ETS), and plastid trnT-L and trnL-F.
    [Show full text]
  • Reproductive Phasirna Loci and DICER-LIKE5, but Not Microrna
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.25.061721; this version posted April 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Reproductive phasiRNA loci and DICER‐LIKE5, but not microRNA loci, diversified in monocotyledonous plants Parth Patel2§, Sandra M. Mathioni1§, Reza Hammond2, Alex E. Harkess1, Atul Kakrana2, Siwaret Arikit3, Ayush Dusia2, and Blake C. Meyers1,2,4* 1Donald Danforth Plant Science Center, Saint Louis, Missouri 63132 2Center for Bioinformatics and Computational Biology, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19716 3Department of Agronomy, Kamphaeng Saen and Rice Science Center, Kasetsart University, Nakhon Pathom 73140, Thailand 4Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211 §These authors contributed equally to this work. *Corresponding author: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.04.25.061721; this version posted April 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Abstract (200 words) 2 In monocots other than maize and rice, the repertoire and diversity of microRNAs (miRNAs) and 3 the populations of phased, secondary, small interfering RNAs (phasiRNAs) are poorly 4 characterized. To remedy this, we sequenced small RNAs from vegetative and dissected 5 inflorescence tissue in 28 phylogenetically diverse monocots and from several early‐diverging 6 angiosperm lineages, as well as publicly available data from 10 additional monocot species.
    [Show full text]
  • Glyphosate-Tolerant Asiatic Dayflower (Commelina Communis
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2012 Glyphosate-tolerant Asiatic dayflower (Commelina communis L.): Ecological, biological and physiological factors contributing to its adaptation to Iowa agronomic systems Jose Maria Gomez Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Agriculture Commons, and the Agronomy and Crop Sciences Commons Recommended Citation Gomez, Jose Maria, "Glyphosate-tolerant Asiatic dayflower (Commelina communis L.): Ecological, biological and physiological factors contributing to its adaptation to Iowa agronomic systems" (2012). Graduate Theses and Dissertations. 12332. https://lib.dr.iastate.edu/etd/12332 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Glyphosate-tolerant Asiatic dayflower ( Commelina communis L.): Ecological, biological and physiological factors contributing to its adaptation to Iowa agronomic systems by José María Gómez Vargas A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Crop Production and Physiology (Weed Science) Program of Study Committee: Micheal D.K. Owen, Major Professor Lynn G. Clark Robert Hartzler Allen Knapp Iowa State University Ames, Iowa 2012 ii TABLE OF CONTENTS ACKNOWLEDGEMENTS v THESIS ORGANIZATION vi CHAPTER 1. GENERAL INTRODUCTION 1 Introduction 1 Literature review 2 General description of Commelina species 2 Asiatic dayflower history and general characteristics 2 Glyphosate and glyphosate-tolerant crops 5 Weed shifts in glyphosate-tolerant crops 6 Herbicide resistance and tolerance 7 Weed seed bank and seed burial depth 8 Literature cited 11 CHAPTER 2.
    [Show full text]
  • An Annotated Checklist of the Vascular Plant Flora of Guthrie County, Iowa
    Journal of the Iowa Academy of Science: JIAS Volume 98 Number Article 4 1991 An Annotated Checklist of the Vascular Plant Flora of Guthrie County, Iowa Dean M. Roosa Department of Natural Resources Lawrence J. Eilers University of Northern Iowa Scott Zager University of Northern Iowa Let us know how access to this document benefits ouy Copyright © Copyright 1991 by the Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/jias Part of the Anthropology Commons, Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Science and Mathematics Education Commons Recommended Citation Roosa, Dean M.; Eilers, Lawrence J.; and Zager, Scott (1991) "An Annotated Checklist of the Vascular Plant Flora of Guthrie County, Iowa," Journal of the Iowa Academy of Science: JIAS, 98(1), 14-30. Available at: https://scholarworks.uni.edu/jias/vol98/iss1/4 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Journal of the Iowa Academy of Science: JIAS by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Jour. Iowa Acad. Sci. 98(1): 14-30, 1991 An Annotated Checklist of the Vascular Plant Flora of Guthrie County, Iowa DEAN M. ROOSA 1, LAWRENCE J. EILERS2 and SCOTI ZAGER2 1Department of Natural Resources, Wallace State Office Building, Des Moines, Iowa 50319 2Department of Biology, University of Northern Iowa, Cedar Falls, Iowa 50604 The known vascular plant flora of Guthrie County, Iowa, based on field, herbarium, and literature studies, consists of748 taxa (species, varieties, and hybrids), 135 of which are naturalized.
    [Show full text]
  • Proso and Foxtail Millet Production
    Proso and foxtail millet production R.L. Croissant and J.F. Shanahan1 no. 0.118 self-pollinated, but some outcrossing may occur when two Quick Facts varieties are planted side by side. Foxtail millet (Setaria italica) is an annual warm Proso and foxtail millet grain may be used as season grass with slender leafy stems up to 40 inches tall. livestock feed or in birdseed mixture. The inflorescence is a dense, cylindrical, bristly panicle. Foxtail millet produces a high-quality forage when The lemma and palea covering the threshed seed may be harvested at the bloom stage. white, yellow, orange or other shades including green and Millet is a very efficient utilizer of soil water and purple. Like proso, foxtail millet is highly self-pollinated, can produce grain or forage in drought but may show some outcrosses when different varieties are conditions. planted side by side. Proso millet and foxtail millet generally require swathing when harvested for grain. Acreage planted to millet annually depends on soil Climatic Requirements moisture at planting time, the price and demand for millet grain and millet hay, and Proso millet is a short season crop requiring 50 to 90 government acreage control for other crops. days from sowing to maturity for early to midseason varieties while foxtail millet requires 55 to 70 days to reach a suitable stage for hay, and 75 to 90 days for seed production. The millets, grown world-wide, are important as feed Both types of millet require relatively warm weather and food sources. During 1965 to 1985, millet production for germination and plant growth.
    [Show full text]
  • The Setaria Viridis Genome and Diversity Panel Enables Discovery of a Novel
    bioRxiv preprint doi: https://doi.org/10.1101/744557; this version posted August 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title: The Setaria viridis genome and diversity panel enables discovery of a novel domestication gene Authors: Pu Huang1,5, Sujan Mamidi2, Adam Healey2, Jane Grimwood2, Jerry Jenkins2, Kerrie Barry3, Avinash Sreedasyam2, Shengqiang Shu3, Maximilian Feldman1,6, Jinxia Wu1,7, Yunqing Yu1, Cindy Chen3, Jenifer Johnson3, Hitoshi Sakakibara4,8, Takatoshi Kiba4,9, Tetsuya Sakurai4,9, Daniel Rokhsar3, Ivan Baxter1, Jeremy Schmutz2,3, Thomas P. Brutnell1,7, Elizabeth A. Kellogg1,* 1 Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA 2 HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA 3 Department of Energy Joint Genome Institute, Walnut Creek, California, USA 4 RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan 5 present address: BASF Corporation, 26 Davis Dr., Durham, NC 27709, USA 6 present address: USDA-ARS Temperate Tree Fruit and Vegetable Research Unit, 24106 N. Bunn Rd., Prosser, WA 99350, USA 7 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China 8 present address: Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan 1 bioRxiv preprint doi: https://doi.org/10.1101/744557; this version posted August 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Genetic Glass Ceilings Gressel, Jonathan
    Genetic Glass Ceilings Gressel, Jonathan Published by Johns Hopkins University Press Gressel, Jonathan. Genetic Glass Ceilings: Transgenics for Crop Biodiversity. Johns Hopkins University Press, 2008. Project MUSE. doi:10.1353/book.60335. https://muse.jhu.edu/. For additional information about this book https://muse.jhu.edu/book/60335 [ Access provided at 2 Oct 2021 23:39 GMT with no institutional affiliation ] This work is licensed under a Creative Commons Attribution 4.0 International License. Genetic Glass Ceilings Transgenics for Crop Biodiversity This page intentionally left blank Genetic Glass Ceilings Transgenics for Crop Biodiversity Jonathan Gressel Foreword by Klaus Ammann The Johns Hopkins University Press Baltimore © 2008 The Johns Hopkins University Press All rights reserved. Published 2008 Printed in the United States of America on acid-free paper 987654321 The Johns Hopkins University Press 2715 North Charles Street Baltimore, Maryland 21218-4363 www.press.jhu.edu Library of Congress Cataloging-in-Publication Data Gressel, Jonathan. Genetic glass ceilings : transgenics for crop biodiversity / Jonathan Gressel. p. cm. Includes bibliographical references and index. ISBN 13: 978-0-8018-8719-2 (hardcover : alk. paper) ISBN 10: 0-8018-8719-4 (hardcover : alk. paper) 1. Crops—Genetic engineering. 2. Transgenic plants. 3. Plant diversity. 4. Crop improvement. I. Title. II. Title: Transgenics for crop biodiversity. SB123.57.G74 2008 631.5Ј233—dc22 20007020365 A catalog record for this book is available from the British Library. Special discounts are available for bulk purchases of this book. For more information, please contact Special Sales at 410-516-6936 or [email protected]. Dedicated to the memory of Professor Leroy (Whitey) Holm, the person who stimulated me to think differently.
    [Show full text]
  • 31295002021987.Pdf (16.44Mb)
    POPULATION DYNAMICS OF RODENTS OF THE MESQUITE PLAINS-HIGH PLAINS ECOTONE by DANIEL ROBERT WOMOCHEL, B.S. A THESIS IN ZOOLOGY Submitted to the Graduate Faculty of Texas Technological College in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Approved Accepted June, 1968 I' % nc. 7T ACKNOWLEDGMENTS I am grateful to Dr. Robert L. Packard for his di­ rection of my research and preparation of this thesis, and to my parents and grandmother for their encouragement and assistance. Thanks also are due Mr. Allan Wallace, vjho kindly permitted me to conduct this study on his ranch. ii TABLE OF CONTENTS Page ACKNOWLEDGMENTS ii LIST OF TABLES iv LIST OP ILLUSTRATIONS vi CHAPTER I. INTRODUCTION 1 II. DESCRIPTION OF THE AREA 3 III. METHODS AND MATERIALS 12 IV. SPECIES ACCOUNTS l6 Sigmodon hispidus l6 Perognathus flavus 33 "Perognathus hispidus 47 Reithrodontomys montanus 59 Peromyscus maniculatus 64 Dipodomys ordii 65 Peromyscus leucopus 65 Citellus spilosoma 66 V. POPULATION RELATIONSHIPS 67 VI. SUMI4ARY AND CONCLUSIONS 73 LITERATURE CITED 77 iii LIST OF TABLES TABLE Page 1. Plants of the Study Area 10 2. Density of Cotton Rats Based on Average Num­ ber Trapped Per Acre 17 3. Population Density of Cotton Rats Based on the Lincoln Index l8 h. Monthly Distribution of Immature and Re- productively Active Nonresident Males and Females 21 5. Monthly Distribution of Immature and Re- productively Active Resident Males and Females 22 6. Home Ranges of Adult Male Cotton Rats ... 26 7. Home Ranges of Adult Female Cotton Rats ... 27 8. Average Home Ranges of All Cotton Rats ..
    [Show full text]
  • Millet Forage Management
    Millets IOWA STATE UNIVERSITY University Extension Forage Management By Brian Lang, Extension Crop Specialist Fact Sheet BL-55, June 2001 Introduction Forage Selection for Livestock Millets are major grain crops world wide, but in Iowa All millet forages are good feed for beef and sheep. The their use is mainly as annual summer forage production choice of millet is largely dependent on seasonal needs as hay, silage, green-chop, and pasture. The and intended harvest management @ silage, pasture, sudan/sorghum forages are often the first choice for green-chop, hay, etc. summer annual forage production, but millets have been Dairy -- There is some evidence1 that Pearl Millet may gaining in popularity. cause butterfat depression in milk. Therefore, Millets grown in Iowa include: recommendations for use of Pearl Millet with lactating · Pearl Millet -- also called Cattail Millet. dairy are either to: · limit feed the millet and monitor butterfat levels · Japanese Millet -- also called Barnyard Millet. Seed · or simply avoid its use for lactating dairy shatter may lead to Barnyardgrass weed problems. · Foxtail Millet -- German and Siberian varieties seem Horses -- Do not feed Foxtail Millet as a major 2 to be the most popular for forage use. component of their diet. Foxtail Millet acts as a laxative and contains a glucoside called setarian that may damage · Proso Millet -- also called hog, hershey, and the kidneys, liver, and bones3. broomcorn millet. Table 1. Establishment and Harvest Information for Millet Forages. Typical dry matter Days from planting Harvest at boot Height when to graze, Forage Seeding yield & cutting to 36-inch height stage or 36-inch Height to graze to, millet rate schedule or boot stage height down to… Grazing interval lbs./ac.
    [Show full text]
  • MILLET in Your Meals
    MILLET in your Meals Issued in public interest by - An ISO 22000 Company Publication supported by NABARD (National Bank for Agriculture and Rural Development) Let’s welcome Millets back into our meals Millets - Millet is the name given to a group of cereals other than wheat, rice, maize & barley. They are mostly tiny in size, round in shape & ready for usage as it is. It is acknowledged that during the Stone Age, the Millet plant was grown by the lake inhabitants of Switzerland. History reveals that since the Neolithic Era, millet, a prehistoric seed was cultivated in the dry climates of Africa and northern China. Interestingly it was millets and not rice that was a staple food in Indian, Chinese Neolithic and Korean civilizations. Eventually, millets spread all over the world. It was heavy, it was tall, It sprouted, it eared, It nodded, it hung, Indeed the lucky grains were sent down to us The black millet, the double kernelled, millet, pink sprouted and white. So goes the folk song from China- a melodious litany to the treasure trove of nutrition, the oldest food know to mankind! There are about 6,000 varieties of millet throughout the world with grains varying in colour from pale yellow, to gray, white, and red. Archaeologists say that foxtail millet is so old that no wild plant of the species is known to exist today. The Millet Story - The origin of millet is diverse with varieties coming from both Africa and Asia. Pearl millet for example comes from tropical West Africa and finger millet from Uganda or neighboring areas.
    [Show full text]