Larvikite, Norway

Total Page:16

File Type:pdf, Size:1020Kb

Larvikite, Norway Downloaded from http://sp.lyellcollection.org/ by guest on April 29, 2015 Global stone heritage: Larvikite, Norway TOM HELDAL*, G. B. MEYER & R. DAHL Geological Survey of Norway, Box 6315 Sluppen, 7491 Trondheim, Norway *Corresponding author (e-mail: [email protected]) Abstract: Larvikite is a peculiar and unique monzonitic rock originating in the Carboniferous– Permian Oslo Rift, SE Norway. The blue iridescence in the feldspar crystals made the rock particu- larly attractive as ornamental stone, and since the start of industrial scaled production in 1884, the use of larvikite has reached every corner of the global community. With resources for hundreds of years, the region will produce larvikite blocks far into the future. The production of larvikite has changed significantly during the last decades, towards more sustainable production finding new applications and markets for excess rock in the quarries. The significance of larvikite in the global market has also created a wider appreciation of the rock in the Norwegian society, acknowl- edging the rich history of larvikite production and use. The term ‘Larvikite’ is applied for a range of predominantly in its southern part (Fig. 1). The pio- peculiar monzonitic rocks within the southern part neering work by Brøgger (1890) on these igneous of the Carboniferous 2 Permian Oslo Igneous Pro- rocks made a significant contribution to the under- vince (Fig. 1). They have for more than a hundred standing of rift-related magmatism, and he also years been appreciated as one of the world’s most suggested that the larvikites are the plutonic equiva- attractive ornamental stones, and at present, its pro- lents to the once overlying massive sequences of duction and use is more extensive than ever. The rhomb porphyry lava flows (latite) exposed in the main reason for the continuous success of larvikite surrounding areas. Neumann (1978) later provided on the world market is the blue iridescence dis- geochemical evidence for this. played on polished surfaces, which is caused by A new breakthrough in the interpretation of the optical interference in microscopic lamellae within larvikite complex came in the 1970s. Petersen the ternary feldspars. This feature was beautifully (1978) suggested that the larvikite complex is com- described by Leopold von Buch, who travelled the posed of several, ring-shaped intrusions, becoming area 1806–1808 (von Buch 1810): younger from east to west (Fig. 2). He suggested the presence of eight such ring fragments (numbered All cliffs and rocks shine like they are from a strange world, such we are not used to see. This freshness I–VIII) based on topographic features, magnetic and lustre in the feldspars, such large crystals, the anomalies and field observations of some of the con- extraordinary blue colour and the frequent labradoritic tact zones (chilled margins) (Fig. 2). Furthermore, play of colours. Petersen (1978) observed a systematic change in the mineralogy from quartz-bearing larvikite in the von Buch discovered that these plutonic rocks con- east towards nepheline-bearing larvikite to the tained abundant zircon, and named them zircon- west, approaching the lardalite and nepheline sye- syenite. The name ‘larvikite’ was first applied by nites in the ‘centre’ of the plutonic complex. This the geologist Waldemar Christopher Brøgger led Petersen (1978) to suggest a sequential evolution (1852–1940), who was the first to describe these from saturated to under-saturated magma fluxes. rocks in detail, aided by the newly invented polariz- This could result from either multiple caldera col- ing microscope (Brøgger 1890). The name has its lapses or a system of multiple ring intrusions from origin in the small coastal town of Larvik, situated a deep-seated parental magma chamber (Neumann almost right in the centre of the main plutonic et al. 1977; Neumann 1978, 1980; Petersen 1978; complex of larvikite. Neumann et al. 1988). Neumann (1980) confirmed Petersen’s model of the separate ring intrusions by geochemistry, and Geology of the larvikites also showed geochemical evolution patterns within Magmatism and emplacement each ring intrusion. Dahlgren et al. (1998) con- firmed the progressive evolution of the ring intru- Larvikite and associated plutonic and volcanic sions through time by U–Pb dating, giving a range rocks compose a significant part of the bedrock of ages between 297 + 1.2 Ma (eastern larvikite) within the Carboniferous–Permian Oslo Rift, and 293.2 + 1.3 Ma (western larvikite). Nepheline From:Pereira, D., Marker, B. R., Kramar, S., Cooper,B.J.&Schouenborg, B. E. (eds) 2015. Global Heritage Stone: Towards International Recognition of Building and Ornamental Stones. Geological Society, London, Special Publications, 407, 21–34. First published online November 27, 2014, http://dx.doi.org/10.1144/SP407.14 # The Geological Society of London 2015. Publishing disclaimer: www.geolsoc.org.uk/pub_ethics Downloaded from http://sp.lyellcollection.org/ by guest on April 29, 2015 22 T. HELDAL ET AL. Fig. 1. Map of the Oslo Igneous Province, Norway, and main larvikite production area. syenite, being the youngest intrusion in the se- in the rift formation, i.e. between the early volcan- quence, was dated at 292 + 0.8 Ma. More recently, ism (basalt fissure eruptions and plateau basalts) Larsen & Olaussen (2005) made a model for the and later caldera formation. evolution of the Oslo Rift where the larvikite/ Airborne magnetic and radiometric surveys rhomb porphyry lavas define an intermediate step (Mogaard 1998; Beard 1999) confirmed the pattern Downloaded from http://sp.lyellcollection.org/ by guest on April 29, 2015 GLOBAL STONE HERITAGE: LARVIKITE, NORWAY 23 Fig. 2. Structure of the larvikite complex as proposed by Petersen (1978). Figure from Oftedahl & Petersen (1978). of ring-shaped intrusions established by Petersen larvikite types used for dimension stone, the (1978), however, not along exactly the same lines ternary feldspar are composed of flame-like to as he proposed. The magnetic map furthermore dis- patchy intergrowths of various phases of feldspar. plays two large fault structures (Farrisvann Fault, Individual flames and patches range in ‘bulk’ com- east, and Langangen Fault, west) (Fig. 3; Heldal position from alkali feldspar compositions, close et al. 2008). These two faults follow the general pat- to sanidine, towards albite and/or anorthoclase tern of the Oslo Graben and the structures divide the and/or pure plagioclase compositions. Flames and larvikite complex into three blocks, which have dif- patches with iridescence are composed of micro- ferent potential for natural stone deposits (Fig. 4). scopic to sub-microscopic lamellaes of two phases of feldspars. The feldspars in the larvikites have Mineralogy bulk compositions containing significant propor- tions (.5%) of Ab, Or and An. Feldspars of this Larvikite is generally a coarse-grained, grey to composition are sometimes referred to as meso- bluish plutonic rock predominantly consisting of perthites, but here we prefer the more general term tabular to prismatic feldspar crystals. They are gen- ternary feldspars. As pointed out by Ribbe (1975), erally composed of 80–95% feldspar, 1–5% Ca- this composition causes instability in the crystallo- rich pyroxene, 1–5% amphibole, 0–5% olivine, graphic structure and leads to exsolution similar to 1–5% Fe–Ti oxides, 1% apatite, 1–5% biotite, that in alkali feldspars. The bright optical interfer- +1–5% nepheline, +1–5% quartz and the acces- ence colours (iridescence) seen in certain varie- sory minerals zircon, baddeleyite (ZrO2) and ties of larvikite are due to optical refraction in the sphene. Quartz occurs interstitially in the larvikites exsolution pattern of alternating orthoclase and of the northeastern part of the area while nephe- anorthite15–18 lamellae. The intensity, as well as line takes over from quartz in the central to north- the colour of the iridescence depends on the spac- western part (Fig. 2). The bulk composition of ing and geometry of the lamellae, and generally iri- the feldspars are ternary (Barth 1945), with com- descence occurs when the thickness of lamellae is ˚ position in the range An4–30Ab58 – 82Or3–35 (Ofte- within the range of 500–1000 A. dahl 1948; Muir & Smith 1956; Smith & Muir Another kind of variation is in the distribution of 1958; Rosenqvist 1965; Nielsen 2007). In the iridescence within single feldspar crystals, and three Downloaded from http://sp.lyellcollection.org/ by guest on April 29, 2015 24 T. HELDAL ET AL. Fig. 3. Aeromagnetic map of the central larvikite area, displaying ring structures and two major fault structures. main groups can be defined: patchy (irregular Commercial sub-types of larvikite patches within each crystal), homogenous (within a crystal) and zoned (see Fig. 5). Partly, we can In the northwestern part of the area, close to the see a tendency where the younger larvikites (such town of Tønsberg, red larvikite is found (Fig. 6). as the ‘Blue Pearl’ subtype) contain predominantly This variety was named Tønsbergite by Brøgger patchy iridescence patterns, whilst some of the (1898). However, field observations suggest that older (such as the Emerald Pearl subtypes) more this variety is actually hydrothermally altered larvi- commonly have homogeneous or zoned iridescent kite (oxidized), displaying a gradual transition to crystals. grey and bluish varieties. Tønsbergite only occurs Planar alignment of the feldspars is a wide- close to the northern margins of Rings I and II spread feature of the larvikites, and of great impor- (Fig. 2) in what Petersen (1978) defined as a chilled tance in quarrying. The alignment plane represents margin zone. No production takes place in the area both the primary splitting direction of the larvikite at present time. (‘primary cleavage’ or ‘rift’) and the plane along Abandoned quarries in porphyritic varieties are which the blocks should be cut in order to maximize found further to the south at Nøtterøy (southern the visible iridescence on finished slabs. Its strike part of Ring II) and in a light-grey type at Tjøme follows the ring structures, and the dip varies from (Ring III).
Recommended publications
  • National Treasure of Global Significance. Dimension-Stone Deposits in Larvikite, Oslo Igneous Province, Norway
    National treasure of global significance. Dimension-stone deposits in larvikite, Oslo igneous province, Norway Tom Heldal1, Idunn Kjølle2, Gurli B. Meyer1 and Sven Dahlgren3 1Geological Survey of Norway (NGU), 7491 Trondheim, Norway. 2Directorate of mining, 7491 Trondheim, Norway. 3Geological advisor, Buskerud, Telemark and Vestfold, Fylkeshuset, 3126 Tønsberg, Norway. E-mail: [email protected] Larvikite has for more than a hundred years been appreciated as one of the world’s most attractive dimension stones, and at present, its production and use is more extensive than ever. The main reason for the continuous success of larvikite on the world market is the blue iridescence displayed on polished surfaces, which is caused by optical interference in microscopic lamellae within the ternary feldspars. The larvikite complex consists of different intrusions, defining several ring- shaped structures, emplaced during a period of approximately five million years. Following this pattern, several commercial subtypes of larvikite, characterised by their colour and iridescence, have been mapped. Four of these subtypes are being exploited at the present time and define the most important reserves in the short run. Some other subtypes are less attractive in the present market situation, but may provide an interesting potential for the future. However, the industrial value of the larvikite also depends on other geological features, such as various types of dykes, faults and fractures, ductile deformation zones, late-stage magmatic and hydrothermal alteration and deep weathering. When combining the distribution pattern of such features with the map of the larvikite subtypes, it is possible to delineate various types of larvikite deposit that are considered to have commercial value in the short or long term.
    [Show full text]
  • The Permo-Carboniferous Oslo Rift Through Six Stages and 65 Million Years
    52 by Bjørn T. Larsen1, Snorre Olaussen2, Bjørn Sundvoll3, and Michel Heeremans4 The Permo-Carboniferous Oslo Rift through six stages and 65 million years 1 Det Norske Oljeselskp ASA, Norway. E-mail: [email protected] 2 Eni Norge AS. E-mail: [email protected] 3 NHM, UiO. E-mail: [email protected] 4 Inst. for Geofag, UiO. E-mail: [email protected] The Oslo Rift is the northernmost part of the Rotliegen- des basin system in Europe. The rift was formed by lithospheric stretching north of the Tornquist fault sys- tem and is related tectonically and in time to the last phase of the Variscan orogeny. The main graben form- ing period in the Oslo Region began in Late Carbonif- erous, culminating some 20–30 Ma later with extensive volcanism and rifting, and later with uplift and emplacement of major batholiths. It ended with a final termination of intrusions in the Early Triassic, some 65 Ma after the tectonic and magmatic onset. We divide the geological development of the rift into six stages. Sediments, even with marine incursions occur exclusively during the forerunner to rifting. The mag- matic products in the Oslo Rift vary in composition and are unevenly distributed through the six stages along the length of the structure. Introduction The Oslo Palaeorift (Figure 1) contributed to the onset of a pro- longed period of extensional faulting and volcanism in NW Europe, which lasted throughout the Late Palaeozoic and the Mesozoic eras. Widespread rifting and magmatism developed north of the foreland of the Variscan Orogen during the latest Carboniferous and contin- ued in some of the areas, like the Oslo Rift, all through the Permian period.
    [Show full text]
  • Graveyard Geology
    GRAVEYARD GEOLOGY A Guide to Rocks in Graveyards and Cemeteries Wendy Kirk Department of Earth Sciences, David Cook University College London & Aldersbrook Geological Society London Geodiversity Partnership Introduction Walk around graveyards and cemeteries (in this case, those of London and the southeast of England) and it becomes apparent that, prior to the latter part of the twentieth century, many memorials were made out of just a few different rock types. These were chosen for reasons of appearance, cost, workability and ease of transport to the cemetery, as well as for resistance to weathering and dependence on local regulations. In the last few decades, a range of different, interesting and beautiful stones have appeared, many brought in from abroad, enhancing the diversity of materials used. The intention of this guide is to help a non-specialist identify the main rock types, to recognize some of the varieties and to know where some of these might have come from. Graveyards are a wonderful resource for those with an interest in geology at any level, wildlife, plants, history or sculpture. We hope you gain as much pleasure as we have done. First things first A useful place to start is to be able to distinguish between igneous, sedimentary and metamorphic rocks. Igneous rocks form from melted rock called magma. If this erupts at the surface, it is called lava. It cools and crystallizes quickly, so the grains are too small to see even with a hand lens (magnifying glass). If the lava erupt explosively to form a spray, the cooled fragments are known as volcanic ash.
    [Show full text]
  • Petrology of Nepheline Syenite Pegmatites in the Oslo Rift, Norway: Zr and Ti Mineral Assemblages in Miaskitic and Agpaitic Pegmatites in the Larvik Plutonic Complex
    MINERALOGIA, 44, No 3-4: 61-98, (2013) DOI: 10.2478/mipo-2013-0007 www.Mineralogia.pl MINERALOGICAL SOCIETY OF POLAND POLSKIE TOWARZYSTWO MINERALOGICZNE __________________________________________________________________________________________________________________________ Original paper Petrology of nepheline syenite pegmatites in the Oslo Rift, Norway: Zr and Ti mineral assemblages in miaskitic and agpaitic pegmatites in the Larvik Plutonic Complex Tom ANDERSEN1*, Muriel ERAMBERT1, Alf Olav LARSEN2, Rune S. SELBEKK3 1 Department of Geosciences, University of Oslo, PO Box 1047 Blindern, N-0316 Oslo Norway; e-mail: [email protected] 2 Statoil ASA, Hydroveien 67, N-3908 Porsgrunn, Norway 3 Natural History Museum, University of Oslo, Sars gate 1, N-0562 Oslo, Norway * Corresponding author Received: December, 2010 Received in revised form: May 15, 2012 Accepted: June 1, 2012 Available online: November 5, 2012 Abstract. Agpaitic nepheline syenites have complex, Na-Ca-Zr-Ti minerals as the main hosts for zirconium and titanium, rather than zircon and titanite, which are characteristic for miaskitic rocks. The transition from a miaskitic to an agpaitic crystallization regime in silica-undersaturated magma has traditionally been related to increasing peralkalinity of the magma, but halogen and water contents are also important parameters. The Larvik Plutonic Complex (LPC) in the Permian Oslo Rift, Norway consists of intrusions of hypersolvus monzonite (larvikite), nepheline monzonite (lardalite) and nepheline syenite. Pegmatites ranging in composition from miaskitic syenite with or without nepheline to mildly agpaitic nepheline syenite are the latest products of magmatic differentiation in the complex. The pegmatites can be grouped in (at least) four distinct suites from their magmatic Ti and Zr silicate mineral assemblages.
    [Show full text]
  • Crystallization and Metasomatism of Nepheline Syenite Xenoliths in Quartz-Bearing Intrusive Rocks in the Permian Oslo Rift, SE Norway
    Crystallization and metasomatism of nepheline syenite xenoliths in quartz-bearing intrusive rocks in the Permian Oslo rift, SE Norway TOM ANDERSEN & HENNING SØRENSEN Andersen, T. & Sørensen, H.: Crystallization and metasomatism of nepheline syenite xenoliths in quartz-bearing intrusive rocks in the Permian Oslo rift, SE Norway. Norsk Geologisk Tidsskrift, Vol. 73, pp. 250-266. Oslo 1993. ISSN 0029-196X. Small bodies of metasomatized nepheline syenite occur as xenoliths in syenitic and granitic intrusions in the Mykle area, ca. 30 km N of the Larvik pluton in the Vestfold Graben of the late Paleozoic Qslo rift of SE Norway. The nepheline syenite has a metaluminous major element composition, and its primary igneous mineralogy is: alkali feldspar + nepheline + clinopyroxene + titanite + magnetite + apatite ± amphibole. The mafic silicate minerals have lower (Na + K)/AI than comparable minerals in other fe lsic intrusions in the Oslo Rift. Gamet (grossular-andradite), analcime, sodalite, thomsonite and gonnardite occur as interstitial minerals in the )east altered parts of the nepheline syenite. The xenoliths were metasomatized as a result of interaction between nepheline syenite and younger silica-saturated to oversaturated magrnas and their associated fluids. Early, pervasive metasomatism led to breakdown of nepheline, replacement of pyroxene by biotite ± garnet and crystallization of quartz. Recrystallization took place at solidus-near temperatures (700-725°C), and was controlled by an increase in silica activity and oxygen fugacity. Titanite + magnetite were replaced by rutile + quartz + hematite + calcite at a late stage of the metasomatic history, at oxygen fugacities above the HM buffer, and T < 450°C. The xenoliths indicate the former presence of larger bodies of nepheline syenite in an area where no such rocks were known previously.
    [Show full text]
  • Colour Plates
    Plate 1. Top row left to right: Pink tourmaline, round brilliant cut: yellow topaz, step cut rectangle; pink tourmaline, scissor cut rectangle; Tropical Green from India- classified as a grey granite, course grained with essential minerals blue quartz and grey feldspar, accessory minerals are hornblende and mica. Middle row, left to right: Tarn from France - Quartz/biotite granite; Sapphire Brown from India - pink porphyritic granite, essential minerals quartz and orthoclase feldspar with perfect cleavage; Bahama Blue from India - course grained granite, equigran- ular, quartz and feldspar essential and hornblende as accessory; Balmoral Red from Sweden - quartz/biotite gran- ite. Bottom row, left to right: Ruby Red from India - pink pegmatite, quartz and pink felspar are essentials, no accessories; Paradiso from India - fine grained grey granite, essential minerals are quartz and orthoclase feldspar, accessories are rare with a few minute flakes of mica; Star Galaxy from India - medium grained diorite, plagioclase and pyroxene in equal pro- portions; Blue Pearl from Norway - larvikite with crystals of labradorite. Pictures of cut stones www.customgemstones.com Pictures of Rock samples Lidster stonemasons: www.lidster.co.uk Plate 2. Overall winner and feature category. Sea Stack, Cathedral Cove, New Zealand. Ignimbrite of the Whitianga Group Rhyolites. Linda McArdell Plate 3. Winner of geologically inspired landscape category: Lower lias limestone cliffs, overlying a Lower Lias platform, Southerndown, Glamorgan Lisa Duff Plate 4. Winner of Geological humour category. Bareback riding on a Carnosaurus, Scilly Isles. Pauline Kirtley Plate 5. Above: Satellite image of Tenerife showing many geological features. Much of the pink colour is man- made constructions.
    [Show full text]
  • Contributions to the Mineralogy of Norway, No. 43 a Note on a New
    Contributions to the mineralogy of Norway, No. 43 A Note on a New Occurrence of Baddeleyite in Larvikite from Larvik, Norway LENNART WIDENFALK & ROLAND GORBATSCHEV Widenfalk, L. & Gorbatschev, R.: A note on a new occurrence of baddeleyite in larvikite from Larvik, Norway. Contribution to the mineralogy of Norway, No. 43. Norsk Geologisk Tidsskrift, Vol. 51, pp. 193-194. Oslo 1971. L. Widenfalk & R. Gorbatschev, Department of Mineralogy and Geology, Uppsala University, Box 555, S-751 22, Uppsala l, Sweden. Baddeleyite has been discovered in larvikite from the central parts of the town of Larvik, Norway. The mineral was identified by microprobe and optical means. Microprobe analysis shows virtually pure Zr0.2, the contents of U and Th are below the limit of detectability. The optic axial angle is 2 V ( - ) = 30°, refraction is high, birefringence weak, color in thin-section is dirty yellowish-brown. Sets of twinning lamellae possibly coinciding with poorly developed cleavage run parallel to (110). The crystals are tabular Fig. l. Baddeleyite crystal in larvikite. The crystal is tabular parallel to (100). Twinning, which is distinguishable as sets of light lamellae runs parallel to (110) which is also the orientation of the terminating crystal surfaces. Crossed nicols, 135 X. 194 L. WIDENF ALK & R. GORBATSCHEV parallel to (100), other identified crystal surfaces being (110). The largest discovered crystal had a thin-section maximum diameter of 0.7 mm (Fig. 1). The mineral association of the investigated larvikite comprises alkali feldspar, oligoclase, nepheline, olivine, biotite, augite, Ca-amphibole, apatite, magnetite, and ilmenite. As is evident from this composition, the occurrence of baddeleyite in larvikite is due to the undersaturation of the rock in Si.
    [Show full text]
  • Permo-Carboniferous Magmatism and Rifting in Europe: Introduction
    Downloaded from http://sp.lyellcollection.org/ by guest on September 28, 2021 Permo-Carboniferous magmatism and rifting in Europe: introduction M. WILSON l, E.-R. NEUMANN 2, G. R. DAVIES 3, M. J. TIMMERMAN 4, M. HEEREMANS 5 & B. T. LARSEN 6 ~School of Earth Sciences, Leeds University, Leeds LS2 9JT, UK (e-mail: M. Wilson @ earth.leeds.ac, uk) 2physics of Geological Processes, University of Oslo, P.O. Box 1048, Blindern, N-0316 Oslo, Norway 3Faculty of Earth and Life Sciences, Vrije University, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands 4Institut fdr Geowissenschaften, Universitdt Potsdam, Postfach 60 15 53, 14415 Potsdam, Germany 5Institute for Geology, University of Oslo, P.O. Box 1047, Blindern, N-0316 Oslo, Norway 6Norsk Hydro ASA/Saga Petroleum ASA, Oslo, Norway An extensive rift system developed within the Westphalian series (e.g. McCann 1996) (Fig. 2). northern foreland of the Variscan orogenic belt Regional uplift coincides with the onset of during Late Carboniferous-Early Permian voluminous magmatism across the region, rais- times, post-dating the Devonian-Early Carbo- ing the possibility that uplift could have been niferous accretion of various Neoproterozoic related to the presence of a widespread thermal Gondwana-derived terranes on to the southern anomaly within the upper mantle (i.e. a mantle margin of Laurussia (Laurentia-Baltica; Fig. 1). plume or, possibly, several plumes). In detail, Rifting was associated with widespread magma- however, it is likely that uplift was induced by a tism and with a fundamental change, at the complex combination of wrench-related litho- Westphalian-Stephanian boundary, in the regio- spheric deformation, magmatic inflation of the nal stress field affecting western and central lithosphere and thermal erosion of the base of Europe (Ziegler 1990; Ziegler & Cloetingh 2003).
    [Show full text]
  • Earth Sciences and Sustainable Environment
    Nordic International Geological Congress in 2008 Earth Sciences and Sustainable Environment Oslo 5-14 August 2008 Interim bidding document prepared by the Nordic countries for the IGC steering committee 08 OSLO Florence, October 3-5th 2002 Nordic International Geological Congress in 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY . 5 INTRODUCTION . 6 Nordic Natural Science Legacy . 6 Nordic Earth Sciences Today . 6 The Geology of the Nordic Realm . 9 THE CONGRESS . 10 Invitation. 10 Organisation and timing of the congress. 10 Congress structure and scientific program . 11 Symposia. 11 General Symposia. 11 Special Symposia . 11 Topical Symposia . 12 Example of Symposia Themes . 12 Arctic Environment, Resources and Global Climate. 12 Physics of Geological Processes. 13 How Earth sustains life – Integrating Ecology, Biology and Geoscience . 14 Medical Geosciences . 15 Earth processes in Space and Time . 15 Onshore and Offshore virtual reality . 15 Educational opportunities . 16 FIELD TRIPS . 17 Excursion 1: Isua, West Greenland – the oldest rocks on Planet Earth . 18 Excursion 2: Ice core drilling site, Greenland Ice Sheet. 19 Excursion 3: The Skaergaard Layered Intrusion, East Greenland . 19 Excursion 4: Jameson Land, East Greenland, as the petroleum geology analogues Excursion 4 for the Norwegian continental shelf . 20 Excursion 5: Tectonics and active rift-volcanism in South and Southwest Iceland. 21 Excursion 6: Subglacial volcanic activity in Southwest and West Iceland, Excursion 6: terrestrial processes as an excursion to Mars . 22 Excursion 7: A diverging plate boundary. One-day excursion to the Excursion 7: Reykjanes Peninsula in Southwest Iceland. 22 Excursion 8: The Tertiary formation of Iceland-plateau basalts and Excursion 6:central volcanoes, with Krafla as a modern analogue.
    [Show full text]
  • Stone List and Descriptions
    www.ablecrystals.com WE NORMALLY HAVE SAMPLES OF ALL OF THE FOLLOWING IN STOCK. They may be specimen, rough, tumbled, shaped or in jewelry. We will add items as we find more and ask you to contact us if you are looking for something not listed. We can often source it for you. As you can see we've added MANY NEW STONES and have not had time to post the properties but we wanted you to be aware WE ARE STOCKING THEM. Forgive us please if we are temporarily sold out of the item you want. The only items we will have pictures and prices for will be found under the Featured Products section of our website: www.ablecrystals.com. These will be special items of higher value so if you have a list of smaller items you want please email it and we will quote. Disclaimer : The metaphysical and healing properties of gems and crystals outlined in this section are for inspiration and reference only. These properties are suggested by myriad sources and are their attitudes and beliefs. We do not necessarily agree with all the attributes suggested but offer this information as "that of common belief'. In no way is this offering meant to replace diagnosis or treatment by a qualified therapist or physician. Content Source Disclaimer: The material in the crystal descriptions is a compilation of pieces often verbatim and mostly without reference as the sources include many books and many sites which very often had identical information. The material is automatically out of date anyway as the crystal consciousness is evolving as are we.
    [Show full text]
  • Killala L. Alkalic Rock Complex
    THESE TERMS GOVERN YOUR USE OF THIS DOCUMENT Your use of this Ontario Geological Survey document (the “Content”) is governed by the terms set out on this page (“Terms of Use”). By downloading this Content, you (the “User”) have accepted, and have agreed to be bound by, the Terms of Use. Content: This Content is offered by the Province of Ontario’s Ministry of Northern Development and Mines (MNDM) as a public service, on an “as-is” basis. Recommendations and statements of opinion expressed in the Content are those of the author or authors and are not to be construed as statement of government policy. You are solely responsible for your use of the Content. You should not rely on the Content for legal advice nor as authoritative in your particular circumstances. Users should verify the accuracy and applicability of any Content before acting on it. MNDM does not guarantee, or make any warranty express or implied, that the Content is current, accurate, complete or reliable. MNDM is not responsible for any damage however caused, which results, directly or indirectly, from your use of the Content. MNDM assumes no legal liability or responsibility for the Content whatsoever. Links to Other Web Sites: This Content may contain links, to Web sites that are not operated by MNDM. Linked Web sites may not be available in French. MNDM neither endorses nor assumes any responsibility for the safety, accuracy or availability of linked Web sites or the information contained on them. The linked Web sites, their operation and content are the responsibility of the person or entity for which they were created or maintained (the “Owner”).
    [Show full text]
  • A Walking Tour of Building Stones from Senate House to Tottenham Court Road
    A Walking Tour of Building Stones from Senate House to Tottenham Court Road London Illustrated News Dr Ruth Siddall UCL Earth Sciences Gower Street London WC1E 6BT r.siddall@ ucl.ac.uk Ruth Siddall, 1 UCL Earth Sciences 2012 A Walking Tour of Building Stones from Senate House to Tottenham Court Road Ruth Siddall This guide is an update of parts of Eric Robinson’s tour, originally published in 1985. Tottenham Court Road has transformed since then, but many of the stones still remain. The Walk Start Point: Senate House, University of London. 1. Senate House Senate House and Library where designed by Charles Holden and built during 1932-37. This is actually a paired-down version of Holden’s original plans which included buildings occupying the land now taken by Birkbeck College, ULU and the piazza behind these buildings, leading from Byng Place. Nevertheless Senate House is a striking building. The major building material is dressed Portland Stone which has retained a good white colour. The lower courses are of axe-dressed Cornish Granite, probably from Carnsew Quarry. The spacious foyer is both paved and clad with Tivoli Travertine. Leave Senate House via the main entrance onto Malet Street, cross over and continue straight ahead along Keppel Street, pausing at the entrance to the London School of Hygiene and Tropical Medicine on the corner of Keppel Street and Gower Street. 2. London School of Hygiene and Tropical Medicine Also built primarily of beautifully dressed Portland Stone, the London School of Hygiene and Tropical Medicine’s building is of interest architecturally.
    [Show full text]