The Domestication and Evolutionary Ecology of Apples 23

Total Page:16

File Type:pdf, Size:1020Kb

The Domestication and Evolutionary Ecology of Apples 23 Our reference: TIGS 1094 P-authorquery-v9 AUTHOR QUERY FORM Journal: TIGS Please e-mail or fax your responses and any corrections to: E-mail: [email protected] Article Number: 1094 Fax: + 31 20 485 2521 Dear Author, Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections within 48 hours. For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions. Please note that the figure resolution in these proofs is lower than the original figures to avoid problems with emailing large file sizes. The figure resolution in the final publication will be equivalent to the original figure submission. Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof. Click on the ‘Q’ link to go to the location in the proof. Location in Query / Remark: click on the Q link to go article Please insert your reply or correction at the corresponding line in the proof Q1 Please confirm that given names and surnames have been identified correctly. Q2 Please check definitions added of CNRS, UMR, UR. Q3 Ref. [4] details added, please check OK. Q4 Ref. [6] details added, please check OK. Q5 Ref. [7] details added, please check OK. Q6 Ref. [8] details added, please check OK. Q7 Ref. [10] details added, please check OK. Q8 Ref. [38] details amended, please check OK. Please check this box or indicate your approval if you have no corrections to make to the PDF file Thank you for your assistance. TIGS 1094r 1 1 19 2 Highlights 20 3 21 4 Trends in Genetics xxx (2013) xxx–xxx 22 5 The domestication and evolutionary ecology of apples 23 6 1,2 1,2 3 4 1,2 24 Amandine Cornille , Tatiana Giraud , Marinus J.M. Smulders , Isabel Rolda´ n-Ruiz , and Pierre Gladieux 7 25 1 8 Centre National de la Recherche Scientifique (CNRS), Unite´ Mixte de Recherche (UMR) 8079, Baˆ timent 360, 91405 Orsay, France 26 2 Universite´ Paris Sud, UMR 8079, Baˆ timent 360, 91405 Orsay, France 9 3 27 Plant Research International, Wageningen University and Research centre (UR) Plant Breeding, Wageningen, The Netherlands 10 4 28 Growth and Development Group, Plant Sciences Unit, Institute for Agricultural and Fisheries Research (ILVO), Melle, Belgium 11 29 12 Several wild crabapples have contributed to the genome of the domesticated apple. 30 13 The domesticated apple now constitutes a panmictic, well-separated species. 31 14 Apple breeding methods have played a major role in the history of the domesticated apple. 32 15 Crabapples are threatened by introgression from domesticated apples. 33 16 Apple is an ideal study system for unraveling adaptive diversification processes. 34 17 35 18 36 TIGS 1094 1–9 Review 1 62 2 63 3 64 4 The domestication and evolutionary 65 5 66 6 67 7 ecology of apples 68 8 69 1,2 1,2 3 9 70 Q1 Amandine Cornille , Tatiana Giraud , Marinus J.M. Smulders , 10 4 1,2 71 Isabel Rolda´ n-Ruiz , and Pierre Gladieux 11 72 1 12 Centre National de la Recherche Scientifique (CNRS), Unite´ Mixte de Recherche (UMR) 8079, Baˆ timent 360, 91405 Orsay, France 73 2 13 Universite´ Paris Sud, UMR 8079, Baˆ timent 360, 91405 Orsay, France 74 3 14 Plant Research International, Wageningen University and Research centre (UR) Plant Breeding, Wageningen, The Netherlands 75 4 15 Q2 Growth and Development Group, Plant Sciences Unit, Institute for Agricultural and Fisheries Research (ILVO), Melle, Belgium 76 16 77 17 78 18 The cultivated apple is a major fruit crop in temperate cultivars of largely unknown history and pedigree [2,3]. 79 19 zones. Its wild relatives, distributed across temperate Apples are self-incompatible, and it must soon have be- 80 20 Eurasia and growing in diverse habitats, represent po- come apparent that offspring grown from seed frequently 81 21 tentially useful sources of diversity for apple breeding. did not resemble the mother apple tree. This high degree of 82 22 We review here the most recent findings on the genetics variability of the progeny, combined with a long juvenile 83 23 and ecology of apple domestication and its impact on phase, probably complicated and slowed the artificial se- 84 24 wild apples. Genetic analyses have revealed a Central lection of interesting phenotypes by early farmers. The 85 25 Asian origin for cultivated apple, together with an un- introduction of vegetative propagation by grafting, and 86 26 expectedly large secondary contribution from the Euro- the selection of dwarfed apple trees for use as rootstocks, 87 27 pean crabapple. Wild apple species display strong were thus key events in the history of apples, facilitating 88 28 population structures and high levels of introgression 89 29 from domesticated apple, and this may threaten their Glossary 90 30 genetic integrity. Recent research has revealed a major 91 Crabapple: wild apple species, usually producing profuse blossom and small 31 role of hybridization in the domestication of the culti- 92 acidic fruits. The word crab comes from the Old English ‘crabbe’ meaning bitter vated apple and has highlighted the value of apple as an 32 or sharp tasting. Many crabapples are cultivated as ornamental trees and their 93 33 ideal model for unraveling adaptive diversification pro- apples are sometimes used for preserves. In Western Europe the term crabapple 94 is often used to refer to Malus sylvestris (the European crabapple), in the 34 cesses in perennial fruit crops. We discuss the implica- 95 Caucasus this term refers to M. orientalis (the Caucasian crabapple) and, in 35 tions of this knowledge for apple breeding and for the Siberia, to M. baccata (the Siberian crabapple). The native North American 96 36 conservation of wild apples. crabapples are M. fusca, M. coronaria, M. angustifolia, and M. ioensis. Malus 97 37 sieversii, the main progenitor of the cultivated apple, is usually not referred to as 98 a ‘crabapple’. The genus Malus as a model system for understanding 38 Diachronic: changing over time. 99 39 fruit tree evolution Germplasm: collection of genetic resources for a species. 100 Hybridization: the process of interbreeding between individuals from different 40 Apple (Malus domestica Borkh) is one of the most impor- 101 gene pools. 41 tant fruit crops in temperate regions worldwide in terms of Introgression: the transfer of genomic regions from one species into the gene 102 42 production levels (http://faostat.fao.org/), and it occupies a pool of another species through an initial hybridization event followed by 103 repeated backcrosses. 43 central position in folklore, culture, and art [1]. Dessert 104 Isolation by distance: pattern of correlation between genetic differentiation and 44 apples are popular because of their taste, nutritional prop- geographic distance, resulting from a balance between genetic drift and 105 45 erties, storability, and convenience of use. Apple-based dispersal. 106 Panmictic group: random mating population. 46 beverages such as ciders have been consumed for centuries 107 QTL mapping: identification of genomic regions governing a phenotypic trait 47 by the peoples of Eurasia, even before the advent of the by the statistical association of molecular markers with the phenotypic trait in a 108 population derived from a cross between two or more parental lines (a 48 cultivated apple. Humans have been exploiting, selecting, 109 ‘segregating population’) or in a population of unrelated individuals (an and transporting apples for centuries, and several thou- 49 ‘association mapping population’). 110 50 sand apple cultivars have been documented [2]. Much of Rootstocks: part of a plant (usually the underground part) onto which a graft is 111 fixed. In apples, the genotypes of the rootstocks used often result in dwarf 51 the diversity present in domesticated apples is currently 112 apple trees. maintained in germplasm (see Glossary) repositories 52 Self-incompatible: a plant incapable of self-fertilization because its own pollen 113 53 and amateur collections, including a broad spectrum of is prevented from germinating on the stigma or because the pollen tube is 114 54 blocked before it reaches the ovule. 115 Simple sequence repeats (SSR): in other words microsatellites, the repetition Corresponding author: Cornille, A. ([email protected]). 55 in tandem of di-, tri- or tetranucleotide motifs. 116 Keywords: QTL; archaeological record; crabapple; genome; microsatellites; Malus SSR marker (or microsatellite marker): a marker based on PCR amplification 56 domestica. 117 57 and separation of SSR alleles with differences in repeat length. 118 0168-9525/$ – see front matter Vegetative propagation: natural or assisted asexual reproduction in plants 58 ß 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tig.2013.10.002 through the regeneration of tissues or plant organs from one plant part or 119 59 tissue. Natural vegetative propagation methods include bulbs or corms, for 120 example. Horticultural vegetative propagation may involve stem or root 60 121 cuttings or grafting. Grafting is often used for the propagation and 61 maintenance of cultivars of interest in perennial fruit crops. 122 Trends in Genetics xx (2013) 1–9 1 TIGS 1094 1–9 Review Trends in Genetics xxx xxxx, Vol. xxx, No. x 123 184 the selection and propagation of superior genotypes de- of habitats and environmental conditions in which wild 124 185 rived from open-pollination progenies (i.e., ‘chance seed- apples grow.
Recommended publications
  • Osher Lifelong Learning Institute
    USDA-ARS National Plant Germplasm System Conservation of Fruit & Nut Genetic Resources Joseph Postman Plant Pathologist & Curator National Clonal Germplasm Repository Corvallis, Oregon May 2010 Mission: Collect – Preserve Evaluate – Enhance - Distribute World Diversity of Plant Genetic Resources for Improving the Quality and Production of Economic Crops Important to U.S. and World Agriculture Apple Accessions at Geneva Malus angustifolia ( 59 Accessions) Malus sikkimensis ( 14 Accessions) Malus baccata ( 67 Accessions) Malus sp. ( 41 Accessions) Malus bhutanica ( 117 Accessions) Malus spectabilis ( 9 Accessions) Malus brevipes ( 2 Accessions) Malus sylvestris ( 70 Accessions) Malus coronaria ( 98 Accessions) Malus toringo ( 122 Accessions) Malus domestica ( 1,389 Accessions) Malus transitoria ( 63 Accessions) Malus doumeri ( 2 Accessions) Malus trilobata ( 2 Accessions) Malus florentina ( 4 Accessions) Malus tschonoskii ( 3 Accessions) Malus floribunda ( 12 Accessions) Malus x adstringens ( 2 Accessions) Malus fusca ( 147 Accessions) Malus x arnoldiana ( 2 Accessions) Malus halliana ( 15 Accessions) Malus x asiatica ( 20 Accessions) Malus honanensis ( 4 Accessions) Malus x astracanica ( 1 Accessions) Malus hupehensis ( 185 Accessions) Malus x atrosanguinea ( 2 Accessions) Malus hybrid ( 337 Accessions) Malus x dawsoniana ( 2 Accessions) Malus ioensis ( 72 Accessions) Malus x hartwigii ( 5 Accessions) Malus kansuensis ( 45 Accessions) Malus x magdeburgensis ( 2 Accessions) Malus komarovii ( 1 Accessions) Malus x micromalus ( 25 Accessions)
    [Show full text]
  • CHLOROPLAST Matk GENE PHYLOGENY of SOME IMPORTANT SPECIES of PLANTS
    AKDENİZ ÜNİVERSİTESİ ZİRAAT FAKÜLTESİ DERGİSİ, 2005, 18(2), 157-162 CHLOROPLAST matK GENE PHYLOGENY OF SOME IMPORTANT SPECIES OF PLANTS Ayşe Gül İNCE1 Mehmet KARACA2 A. Naci ONUS1 Mehmet BİLGEN2 1Akdeniz University Faculty of Agriculture Department of Horticulture, 07059 Antalya, Turkey 2Akdeniz University Faculty of Agriculture Department of Field Crops, 07059 Antalya, Turkey Correspondence addressed E-mail: [email protected] Abstract In this study using the chloroplast matK DNA sequence, a chloroplast-encoded locus that has been shown to be much more variable than many other genes, from one hundred and forty two plant species belong to the families of 26 plants we conducted a study to contribute to the understanding of major evolutionary relationships among the studied plant orders, families genus and species (clades) and discussed the utilization of matK for molecular phylogeny. Determined genetic relationship between the species or genera is very valuable for genetic improvement studies. The chloroplast matK gene sequences ranging from 730 to 1545 nucleotides were downloaded from the GenBank database. These DNA sequences were aligned using Clustal W program. We employed the maximum parsimony method for phylogenetic reconstruction using PAUP* program. Trees resulting from the parsimony analyses were similar to those generated earlier using single or multiple gene analyses, but our analyses resulted in strict consensus tree providing much better resolution of relationships among major clades. We found that gymnosperms (Pinus thunbergii, Pinus attenuata and Ginko biloba) were different from the monocotyledons and dicotyledons. We showed that Cynodon dactylon, Panicum capilare, Zea mays and Saccharum officiarum (all are in the C4 metabolism) were improved from a common ancestors while the other cereals Triticum Avena, Hordeum, Oryza and Phalaris were evolved from another or similar ancestors.
    [Show full text]
  • Malus Diversity in Wild and Agricultural Ecosystems
    Malus Diversity in Wild and Agricultural Ecosystems Item Type text; Electronic Dissertation Authors Routson, Kanin Josif Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 06/10/2021 10:49:17 Link to Item http://hdl.handle.net/10150/223381 MALUS DIVERSITY IN WILD AND AGRICULTURAL ECOSYSTEMS By Kanin J. Routson _________________________________________________________________________________________________ A Dissertation SuBmitteD to the Faculty of the GRADUATE INTERDISCIPLINARY PROGRAM IN ARID LANDS RESOURCE SCIENCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2012 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have reaD the dissertation prepared By Kanin J. Routson, entitled “Malus Diversity in Wild and Agricultural Ecosystems” anD recommenD that it Be accepteD as fulfilling the Dissertation requirement for the Degree of Doctor of Philosophy. _______________________________________________Date: April 20, 2012 Gary Paul NaBhan _______________________________________________Date: April 20, 2012 Gayle M. Volk _______________________________________________Date: April 20, 2012 Steven Smith _______________________________________________Date: April 20, 2012 Paul F. RobBins _______________________________________________Date: April 20, 2012 Stuart E. Marsh Final approval and acceptance of this dissertation is contingent upon the candidate’s suBmission of the final copies of the Dissertation to the GraDuate College. I hereBy certify that I have reaD this Dissertation prepareD unDer my Direction anD recommenD that it Be accepteD as fulfilling the Dissertation requirement.
    [Show full text]
  • Handling of Apple Transport Techniques and Efficiency Vibration, Damage and Bruising Texture, Firmness and Quality
    Centre of Excellence AGROPHYSICS for Applied Physics in Sustainable Agriculture Handling of Apple transport techniques and efficiency vibration, damage and bruising texture, firmness and quality Bohdan Dobrzañski, jr. Jacek Rabcewicz Rafa³ Rybczyñski B. Dobrzañski Institute of Agrophysics Polish Academy of Sciences Centre of Excellence AGROPHYSICS for Applied Physics in Sustainable Agriculture Handling of Apple transport techniques and efficiency vibration, damage and bruising texture, firmness and quality Bohdan Dobrzañski, jr. Jacek Rabcewicz Rafa³ Rybczyñski B. Dobrzañski Institute of Agrophysics Polish Academy of Sciences PUBLISHED BY: B. DOBRZAŃSKI INSTITUTE OF AGROPHYSICS OF POLISH ACADEMY OF SCIENCES ACTIVITIES OF WP9 IN THE CENTRE OF EXCELLENCE AGROPHYSICS CONTRACT NO: QLAM-2001-00428 CENTRE OF EXCELLENCE FOR APPLIED PHYSICS IN SUSTAINABLE AGRICULTURE WITH THE th ACRONYM AGROPHYSICS IS FOUNDED UNDER 5 EU FRAMEWORK FOR RESEARCH, TECHNOLOGICAL DEVELOPMENT AND DEMONSTRATION ACTIVITIES GENERAL SUPERVISOR OF THE CENTRE: PROF. DR. RYSZARD T. WALCZAK, MEMBER OF POLISH ACADEMY OF SCIENCES PROJECT COORDINATOR: DR. ENG. ANDRZEJ STĘPNIEWSKI WP9: PHYSICAL METHODS OF EVALUATION OF FRUIT AND VEGETABLE QUALITY LEADER OF WP9: PROF. DR. ENG. BOHDAN DOBRZAŃSKI, JR. REVIEWED BY PROF. DR. ENG. JÓZEF KOWALCZUK TRANSLATED (EXCEPT CHAPTERS: 1, 2, 6-9) BY M.SC. TOMASZ BYLICA THE RESULTS OF STUDY PRESENTED IN THE MONOGRAPH ARE SUPPORTED BY: THE STATE COMMITTEE FOR SCIENTIFIC RESEARCH UNDER GRANT NO. 5 P06F 012 19 AND ORDERED PROJECT NO. PBZ-51-02 RESEARCH INSTITUTE OF POMOLOGY AND FLORICULTURE B. DOBRZAŃSKI INSTITUTE OF AGROPHYSICS OF POLISH ACADEMY OF SCIENCES ©Copyright by BOHDAN DOBRZAŃSKI INSTITUTE OF AGROPHYSICS OF POLISH ACADEMY OF SCIENCES LUBLIN 2006 ISBN 83-89969-55-6 ST 1 EDITION - ISBN 83-89969-55-6 (IN ENGLISH) 180 COPIES, PRINTED SHEETS (16.8) PRINTED ON ACID-FREE PAPER IN POLAND BY: ALF-GRAF, UL.
    [Show full text]
  • Diversity Captured in the USDA-ARS National Plant Germplasm System Apple Core Collection
    J. AMER.SOC.HORT.SCI. 138(5):375–381. 2013. Diversity Captured in the USDA-ARS National Plant Germplasm System Apple Core Collection Briana L. Gross University of Minnesota Duluth, 207 Swenson Science Building, 1035 Kirby Drive, Duluth, MN 55812 Gayle M. Volk2, Christopher M. Richards, Patrick A. Reeves, and Adam D. Henk USDA-ARS National Center for Genetic Resources Preservation, 1111 S. Mason Street, Fort Collins, CO 80521 Philip L. Forsline1, Amy Szewc-McFadden, Gennaro Fazio, and C. Thomas Chao USDA-ARS Plant Genetic Resources Unit, Geneva, NY 14456 ADDITIONAL INDEX WORDS. Malus, simple sequence repeat, clonal crop ABSTRACT. The USDA-ARS National Plant Germplasm System Malus collection is maintained by the Plant Genetic Resources Unit (PGRU) in Geneva, NY. In the 1990s, a core subset of 258 trees was hand-selected to be representative of the grafted Malus collection. We used a combination of genotypic and phenotypic data to compare the diversity of the 198 diploid trees in the original core subset with that of 2114 diploid trees in the grafted field collection for which data were available. The 198 trees capture 192 of the 232 total microsatellite alleles and have 78 of the 95 phenotypic characters. An addition of 67 specific individuals increases the coverage to 100% of the allelic and phenotypic character states. Several de novo core sets that capture all the allelic and phenotypic character states in 100 individuals are also provided. Use of these proposed sets of individuals will help ensure that a broad range of Malus diversity is included in evaluations that use the core subset of grafted trees in the PGRU collection.
    [Show full text]
  • About Apples & Pears
    Today’s program will be recorded and posted on our website and our Facebook page. https://ucanr.edu/sites/Amador_County_MGs/ Look under “Classes & Events” then “Handouts & Presentations” from our home page. Today’s handouts will also be posted here. https://www.facebook.com/UCCEAmadorMG/ Look for “Facebook Live” during the meeting or find the video link on our feed. Have a Gardening Question? UC Master Gardeners of Amador County are working by phone and email to answer your gardening questions! Phone: 209-223-6838 Email: [email protected] Facebook: @UCCEAmadorMG Not in Amador County? Find your local Master Gardener program by doing a web search for “UCCE Master Gardener” and your county name. Your Home Orchard: APPLES & PEARS by UCCE Amador County Master Gardeners John Otto & Hack Severson - October 10, 2020 To be discussed • Home Orchard Introduction • What are Apples & Pears? • History & “Lore” • Orchard Planning • Considerations for Selection • Varieties for the foothills Home Orchard Introduction 8,500’ 4,000’ 3,000’ 2,000’ 1,000’ 300’ Amador County There are a variety of fruit and nut trees grown in the Sierra Foothills but elevations and micro-climates make selection an adventure. Stone Fruits: Almond, Apricot, Cherry, Nectarine, Peach, Plumb, Prunes, Plumcots Nut Crops: Chestnuts, Filberts (Hazelnut), Pecans, Walnut, Almond (truly a stone fruit) Citrus: Lemon Lime, Orange (incl. Mandarin, Tangarine, others), Grapefruit, Kumquat, Tangelo Pome Fruits: Apple; Pear; Pomegranates; Quince “The Home Orchard”, ANR publication #3485 https://anrcatalog.ucanr.edu/Details.aspx?itemNo=3485 Apples and Pears Are?? • How are Apples and Pears different from other fruits?? • They are “Pome” fruit (also pomegranate & quince).
    [Show full text]
  • Malus Sieversii Belongs to the Rose Family, Rosaceae (Making It Related to Other Fruit Trees, Including Apricots, Plums, Cherries and Almonds)
    | REPORT © Georgy Georgy Lazkov - Malus sieversii – wild apple wild FAUNA & FLORA INTERNATIONAL’S М a l u s s i e v e r s i i – w i l d a p p l e : s p e c i e s s t a t u s review and action plan for its conservation in Childukhtaron a n d D a s h t i j u m r e s e r v e s , T a j i k i s t a n |PREPARED BY: Gulazor Miravalova, FFI Intern David Gill, Programme Manager, Central Asia, FFI Mario Boboev, Director of Kulob Botanical Garden Rasima Sabzalieva, Project Assistant, FFI Tajikistan April 2020 Мalus sieversii – wild apple: species status review and action plan for its conservation in Childukhtaron and Dashtijum reserves, Tajikistan Written by: Gulazor Miravalova, FFI Intern Edited by: David Gill, Programme Manager, Central Asia, FFI Mario Boboev, Director of Kulob Botanical Garden Rasima Sabzalieva, Project Assistant, FFI Tajikistan Photo credit: Mario Boboev April 2020 2 Table of contents 1. SPECIES DESCRIPTION ............................................................................................... 4 1.1.TAXONOMY .................................................................................................................... 4 1.2 STATUS .......................................................................................................................... 4 1.3. BIOLOGY/ DESCRIPTION ................................................................................................. 4 2. CURRENT DISTRIBUTION............................................................................................. 6 2.1.GLOBAL ........................................................................................................................
    [Show full text]
  • Wild Apple Growth and Climate Change in Southeast Kazakhstan
    Article Wild Apple Growth and Climate Change in Southeast Kazakhstan Irina P. Panyushkina 1,* ID , Nurjan S. Mukhamadiev 2, Ann M. Lynch 1,3, Nursagim A. Ashikbaev 2, Alexis H. Arizpe 1, Christopher D. O’Connor 4, Danyar Abjanbaev 2, Gulnaz Z. Mengdbayeva 2 and Abay O. Sagitov 2 1 Laboratory of Tree-Ring Research, University of Arizona, 1215 W. Lowell St., Tucson, AZ 85721, USA; [email protected] (A.M.L.); [email protected] (A.H.A.) 2 Z.H. Zhiembaev Research Institute of Plant Protections and Quarantine, Almaty 050070, Kazakhstan; [email protected] (N.S.M.); [email protected] (N.A.A.); [email protected] (D.A.); [email protected] (G.Z.M.); [email protected] (A.O.S.) 3 U.S. Forest Service, Rocky Mountain Research Station, Tucson, AZ 85721, USA; [email protected] 4 U.S. Forest Service, Rocky Mountain Research Station, Missoula, MT 59801, USA; [email protected] * Correspondence: [email protected] Received: 31 August 2017; Accepted: 22 October 2017; Published: 26 October 2017 Abstract: Wild populations of Malus sieversii [Ldb.] M. Roem are valued genetic and watershed resources in Inner Eurasia. These populations are located in a region that has experienced rapid and on-going climatic change over the past several decades. We assess relationships between climate variables and wild apple radial growth with dendroclimatological techniques to understand the potential of a changing climate to influence apple radial growth. Ring-width chronologies spanning 48 to 129 years were developed from 12 plots in the Trans-Ili Alatau and Jungar Alatau ranges of Tian Shan Mountains, southeastern Kazakhstan.
    [Show full text]
  • Temperate Fruit Crop Breeding James F
    Temperate Fruit Crop Breeding James F. Hancock Editor Temperate Fruit Crop Breeding Germplasm to Genomics James F. Hancock Michigan State University Dept. Horticulture East Lansing MI 48824 USA [email protected] ISBN 978-1-4020-6906-2 e-ISBN 978-1-4020-6907-9 Library of Congress Control Number: 2007939760 c 2008 Springer Science+Business Media B.V. No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Cover photograph by: Joseph D. Postman at the US National Clonal Germplasm Repository, Corvallis, Oregon Printed on acid-free paper 987654321 springer.com Preface This book is intended to be a brief compilation of the information available on the breeding of temperate fruit crops. The goal is to provide overviews on the evolution of each crop, the history of domestication, the breeding methods employed and the underlying genetics. A serious effort is made to fully integrate conventional and biotechnological breeding approaches. A discussion is also provided on licensing and patenting. It is hoped that this book can be used as a springboard for breeders desiring an update, horticulturalists who wonder what the fruit breeders are doing and genomi- cists who are searching for a way to contribute to fruit breeding efforts. By far the fastest progress can be made when we all talk the same language.
    [Show full text]
  • Index Seminum 2018-2019
    UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II ORTO BOTANICO INDEX SEMINUM 2018-2019 In copertina / Cover “La Terrazza Carolina del Real Orto Botanico” Dedicata alla Regina Maria Carolina Bonaparte da Gioacchino Murat, Re di Napoli dal 1808 al 1815 (Photo S. Gaudino, 2018) 2 UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II ORTO BOTANICO INDEX SEMINUM 2018 - 2019 SPORAE ET SEMINA QUAE HORTUS BOTANICUS NEAPOLITANUS PRO MUTUA COMMUTATIONE OFFERT 3 UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II ORTO BOTANICO ebgconsortiumindexseminum2018-2019 IPEN member ➢ CarpoSpermaTeca / Index-Seminum E- mail: [email protected] - Tel. +39/81/2533922 Via Foria, 223 - 80139 NAPOLI - ITALY http://www.ortobotanico.unina.it/OBN4/6_index/index.htm 4 Sommario / Contents Prefazione / Foreword 7 Dati geografici e climatici / Geographical and climatic data 9 Note / Notices 11 Mappa dell’Orto Botanico di Napoli / Botanical Garden map 13 Legenda dei codici e delle abbreviazioni / Key to signs and abbreviations 14 Index Seminum / Seed list: Felci / Ferns 15 Gimnosperme / Gymnosperms 18 Angiosperme / Angiosperms 21 Desiderata e condizioni di spedizione / Agreement and desiderata 55 Bibliografia e Ringraziamenti / Bibliography and Acknowledgements 57 5 INDEX SEMINUM UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II ORTO BOTANICO Prof. PAOLO CAPUTO Horti Praefectus Dr. MANUELA DE MATTEIS TORTORA Seminum curator STEFANO GAUDINO Seminum collector 6 Prefazione / Foreword L'ORTO BOTANICO dell'Università ha lo scopo di introdurre, curare e conservare specie vegetali da diffondere e proteggere,
    [Show full text]
  • Apple, Reaktion Books
    apple Reaktion’s Botanical series is the first of its kind, integrating horticultural and botanical writing with a broader account of the cultural and social impact of trees, plants and flowers. Already published Apple Marcia Reiss Bamboo Susanne Lucas Cannabis Chris Duvall Geranium Kasia Boddy Grasses Stephen A. Harris Lily Marcia Reiss Oak Peter Young Pine Laura Mason Willow Alison Syme |ew Fred Hageneder APPLE Y Marcia Reiss reaktion books Published by reaktion books ltd 33 Great Sutton Street London ec1v 0dx, uk www.reaktionbooks.co.uk First published 2015 Copyright © Marcia Reiss 2015 All rights reserved No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers Printed and bound in China by 1010 Printing International Ltd A catalogue record for this book is available from the British Library isbn 978 1 78023 340 6 Contents Y Introduction: Backyard Apples 7 one Out of the Wild: An Ode and a Lament 15 two A Rose is a Rose is a Rose . is an Apple 19 three The Search for Sweetness 43 four Cider Chronicles 59 five The American Apple 77 six Apple Adulation 101 seven Good Apples 123 eight Bad Apples 137 nine Misplaced Apples 157 ten The Politics of Pomology 169 eleven Apples Today and Tomorrow 185 Apple Varieties 203 Timeline 230 References 234 Select Bibliography 245 Associations and Websites 246 Acknowledgements 248 Photo Acknowledgements 250 Index 252 Introduction: Backyard Apples Y hree old apple trees, the survivors of an unknown orchard, still grow around my mid-nineteenth-century home in ∏ upstate New York.
    [Show full text]
  • Hybridations Inter-Spécifiques Chez Le Pommier Et Co-Évolution Hôte-Pathogène Alice Feurtey
    Hybridations inter-spécifiques chez le pommier et co-évolution hôte-pathogène Alice Feurtey To cite this version: Alice Feurtey. Hybridations inter-spécifiques chez le pommier et co-évolution hôte-pathogène. Géné- tique des populations [q-bio.PE]. Université Paris Saclay (COmUE), 2016. Français. NNT : 2016SACLS446. tel-01941395 HAL Id: tel-01941395 https://tel.archives-ouvertes.fr/tel-01941395 Submitted on 1 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Introduction générale de la section 1 NNT : 2016SACLS446 THÈSE DE DOCTORAT DE L’UNIVERSITÉ PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Biologie Par Madame Alice Feurtey Hybridations inter -spécifiques chez le pommier et co-évolution hôte-pathogène Thèse présentée et soutenue à Orsay, le 29 novembre 2016 : Composition du Jury : M. Dominique de Vienne Professeur, Université Paris-Sud Président du jury Mme Véronique Decroocq DR, INRA Rapporteur M. Rémy Petit DR, INRA Rapporteur M. Pascal Frey DR, INRA Examinateur Mme Tatiana Giraud DR, CNRS Directrice de thèse - 1 - Remerciements : - 2 - Introduction générale de la section 1 Seen in the light of evolution, biology is, perhaps, intellectually the most satisfying and inspiring science.
    [Show full text]