A 33-Year Evaluation of Resistance and Pathogenicity in the Apple
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Department of Planning and Zoning
Department of Planning and Zoning Subject: Howard County Landscape Manual Updates: Recommended Street Tree List (Appendix B) and Recommended Plant List (Appendix C) - Effective July 1, 2010 To: DLD Review Staff Homebuilders Committee From: Kent Sheubrooks, Acting Chief Division of Land Development Date: July 1, 2010 Purpose: The purpose of this policy memorandum is to update the Recommended Plant Lists presently contained in the Landscape Manual. The plant lists were created for the first edition of the Manual in 1993 before information was available about invasive qualities of certain recommended plants contained in those lists (Norway Maple, Bradford Pear, etc.). Additionally, diseases and pests have made some other plants undesirable (Ash, Austrian Pine, etc.). The Howard County General Plan 2000 and subsequent environmental and community planning publications such as the Route 1 and Route 40 Manuals and the Green Neighborhood Design Guidelines have promoted the desirability of using native plants in landscape plantings. Therefore, this policy seeks to update the Recommended Plant Lists by identifying invasive plant species and disease or pest ridden plants for their removal and prohibition from further planting in Howard County and to add other available native plants which have desirable characteristics for street tree or general landscape use for inclusion on the Recommended Plant Lists. Please note that a comprehensive review of the street tree and landscape tree lists were conducted for the purpose of this update, however, only -
Disease-Resistant Crabapples
Education Center and Info Line practical solutions to everyday questions Toll free Info Line 1-877-398-4769 M-F • 9 AM - 2 PM W • 5 - 7:30 PM Disease-Resistant Crabapples Crabapples are a mainstay of our landscape palette in New England. Their beautiful bloom, small stature, and attractive fruit give them year-round interest…unless they are devastated by disease! Crabapples are susceptible to four major diseases which can cause early defoliation, disfigurement and weakening of trees. Apple scab is the most common and most serious of the diseases. It shows up on leaves as olive green spots with a velvety, grayish surface. In July leaves often turn yellow or orange and drop from the tree. Another serious disease, fire blight, causes the leaves to blacken, shrivel and hang down. Cedar apple rust shows up as conspicuous bright yellow to orange spots on the upper leaf surfaces. And powdery mildew appears in mid-summer as patches of grayish white powder on leaves and fruit. You probably don’t want plants that have to be sprayed in order to be attractive! Many of the older varieties may look great in flower but then succumb to scab or other disease in mid-summer, looking tattered and torn for the remainder of the season. Some cultivars and hybrids that are readily available and have shown good resistance in many trials nationwide are listed below. All have single flowers and small fruit (less than 5/8" diameter). The temperatures at the end of each description are cold hardiness ratings from the Minnesota Landscape Arboretum. -
Apples: Organic Production Guide
A project of the National Center for Appropriate Technology 1-800-346-9140 • www.attra.ncat.org Apples: Organic Production Guide By Tammy Hinman This publication provides information on organic apple production from recent research and producer and Guy Ames, NCAT experience. Many aspects of apple production are the same whether the grower uses low-spray, organic, Agriculture Specialists or conventional management. Accordingly, this publication focuses on the aspects that differ from Published nonorganic practices—primarily pest and disease control, marketing, and economics. (Information on March 2011 organic weed control and fertility management in orchards is presented in a separate ATTRA publica- © NCAT tion, Tree Fruits: Organic Production Overview.) This publication introduces the major apple insect pests IP020 and diseases and the most effective organic management methods. It also includes farmer profiles of working orchards and a section dealing with economic and marketing considerations. There is an exten- sive list of resources for information and supplies and an appendix on disease-resistant apple varieties. Contents Introduction ......................1 Geographical Factors Affecting Disease and Pest Management ...........3 Insect and Mite Pests .....3 Insect IPM in Apples - Kaolin Clay ........6 Diseases ........................... 14 Mammal and Bird Pests .........................20 Thinning ..........................20 Weed and Orchard Floor Management ......20 Economics and Marketing ........................22 Conclusion -
The Pathogenicity and Seasonal Development of Gymnosporangium
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1931 The ap thogenicity and seasonal development of Gymnosporangium in Iowa Donald E. Bliss Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agriculture Commons, Botany Commons, and the Plant Pathology Commons Recommended Citation Bliss, Donald E., "The ap thogenicity and seasonal development of Gymnosporangium in Iowa " (1931). Retrospective Theses and Dissertations. 14209. https://lib.dr.iastate.edu/rtd/14209 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMl films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMl a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g.. maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overiaps. -
Handling of Apple Transport Techniques and Efficiency Vibration, Damage and Bruising Texture, Firmness and Quality
Centre of Excellence AGROPHYSICS for Applied Physics in Sustainable Agriculture Handling of Apple transport techniques and efficiency vibration, damage and bruising texture, firmness and quality Bohdan Dobrzañski, jr. Jacek Rabcewicz Rafa³ Rybczyñski B. Dobrzañski Institute of Agrophysics Polish Academy of Sciences Centre of Excellence AGROPHYSICS for Applied Physics in Sustainable Agriculture Handling of Apple transport techniques and efficiency vibration, damage and bruising texture, firmness and quality Bohdan Dobrzañski, jr. Jacek Rabcewicz Rafa³ Rybczyñski B. Dobrzañski Institute of Agrophysics Polish Academy of Sciences PUBLISHED BY: B. DOBRZAŃSKI INSTITUTE OF AGROPHYSICS OF POLISH ACADEMY OF SCIENCES ACTIVITIES OF WP9 IN THE CENTRE OF EXCELLENCE AGROPHYSICS CONTRACT NO: QLAM-2001-00428 CENTRE OF EXCELLENCE FOR APPLIED PHYSICS IN SUSTAINABLE AGRICULTURE WITH THE th ACRONYM AGROPHYSICS IS FOUNDED UNDER 5 EU FRAMEWORK FOR RESEARCH, TECHNOLOGICAL DEVELOPMENT AND DEMONSTRATION ACTIVITIES GENERAL SUPERVISOR OF THE CENTRE: PROF. DR. RYSZARD T. WALCZAK, MEMBER OF POLISH ACADEMY OF SCIENCES PROJECT COORDINATOR: DR. ENG. ANDRZEJ STĘPNIEWSKI WP9: PHYSICAL METHODS OF EVALUATION OF FRUIT AND VEGETABLE QUALITY LEADER OF WP9: PROF. DR. ENG. BOHDAN DOBRZAŃSKI, JR. REVIEWED BY PROF. DR. ENG. JÓZEF KOWALCZUK TRANSLATED (EXCEPT CHAPTERS: 1, 2, 6-9) BY M.SC. TOMASZ BYLICA THE RESULTS OF STUDY PRESENTED IN THE MONOGRAPH ARE SUPPORTED BY: THE STATE COMMITTEE FOR SCIENTIFIC RESEARCH UNDER GRANT NO. 5 P06F 012 19 AND ORDERED PROJECT NO. PBZ-51-02 RESEARCH INSTITUTE OF POMOLOGY AND FLORICULTURE B. DOBRZAŃSKI INSTITUTE OF AGROPHYSICS OF POLISH ACADEMY OF SCIENCES ©Copyright by BOHDAN DOBRZAŃSKI INSTITUTE OF AGROPHYSICS OF POLISH ACADEMY OF SCIENCES LUBLIN 2006 ISBN 83-89969-55-6 ST 1 EDITION - ISBN 83-89969-55-6 (IN ENGLISH) 180 COPIES, PRINTED SHEETS (16.8) PRINTED ON ACID-FREE PAPER IN POLAND BY: ALF-GRAF, UL. -
About Apples & Pears
Today’s program will be recorded and posted on our website and our Facebook page. https://ucanr.edu/sites/Amador_County_MGs/ Look under “Classes & Events” then “Handouts & Presentations” from our home page. Today’s handouts will also be posted here. https://www.facebook.com/UCCEAmadorMG/ Look for “Facebook Live” during the meeting or find the video link on our feed. Have a Gardening Question? UC Master Gardeners of Amador County are working by phone and email to answer your gardening questions! Phone: 209-223-6838 Email: [email protected] Facebook: @UCCEAmadorMG Not in Amador County? Find your local Master Gardener program by doing a web search for “UCCE Master Gardener” and your county name. Your Home Orchard: APPLES & PEARS by UCCE Amador County Master Gardeners John Otto & Hack Severson - October 10, 2020 To be discussed • Home Orchard Introduction • What are Apples & Pears? • History & “Lore” • Orchard Planning • Considerations for Selection • Varieties for the foothills Home Orchard Introduction 8,500’ 4,000’ 3,000’ 2,000’ 1,000’ 300’ Amador County There are a variety of fruit and nut trees grown in the Sierra Foothills but elevations and micro-climates make selection an adventure. Stone Fruits: Almond, Apricot, Cherry, Nectarine, Peach, Plumb, Prunes, Plumcots Nut Crops: Chestnuts, Filberts (Hazelnut), Pecans, Walnut, Almond (truly a stone fruit) Citrus: Lemon Lime, Orange (incl. Mandarin, Tangarine, others), Grapefruit, Kumquat, Tangelo Pome Fruits: Apple; Pear; Pomegranates; Quince “The Home Orchard”, ANR publication #3485 https://anrcatalog.ucanr.edu/Details.aspx?itemNo=3485 Apples and Pears Are?? • How are Apples and Pears different from other fruits?? • They are “Pome” fruit (also pomegranate & quince). -
Maine Coefficient of Conservatism
Coefficient of Coefficient of Scientific Name Common Name Nativity Conservatism Wetness Abies balsamea balsam fir native 3 0 Abies concolor white fir non‐native 0 Abutilon theophrasti velvetleaf non‐native 0 3 Acalypha rhomboidea common threeseed mercury native 2 3 Acer ginnala Amur maple non‐native 0 Acer negundo boxelder non‐native 0 0 Acer pensylvanicum striped maple native 5 3 Acer platanoides Norway maple non‐native 0 5 Acer pseudoplatanus sycamore maple non‐native 0 Acer rubrum red maple native 2 0 Acer saccharinum silver maple native 6 ‐3 Acer saccharum sugar maple native 5 3 Acer spicatum mountain maple native 6 3 Acer x freemanii red maple x silver maple native 2 0 Achillea millefolium common yarrow non‐native 0 3 Achillea millefolium var. borealis common yarrow non‐native 0 3 Achillea millefolium var. millefolium common yarrow non‐native 0 3 Achillea millefolium var. occidentalis common yarrow non‐native 0 3 Achillea ptarmica sneezeweed non‐native 0 3 Acinos arvensis basil thyme non‐native 0 Aconitum napellus Venus' chariot non‐native 0 Acorus americanus sweetflag native 6 ‐5 Acorus calamus calamus native 6 ‐5 Actaea pachypoda white baneberry native 7 5 Actaea racemosa black baneberry non‐native 0 Actaea rubra red baneberry native 7 3 Actinidia arguta tara vine non‐native 0 Adiantum aleuticum Aleutian maidenhair native 9 3 Adiantum pedatum northern maidenhair native 8 3 Adlumia fungosa allegheny vine native 7 Aegopodium podagraria bishop's goutweed non‐native 0 0 Coefficient of Coefficient of Scientific Name Common Name Nativity -
Genetic Divergence Studies in Indigenous Malus Baccata Biotypes
International Journal of Chemical Studies 2019; 7(3): 4237-4244 College of Medicine, Hebei University, Baoding 071000, China P-ISSN: 2349–8528 E-ISSN: 2321–4902 IJCS 2019; 7(3): 4237-4244 Genetic divergence studies in indigenous Malus © 2019 IJCS Received: 16-03-2019 baccata biotypes by using the random amplified Accepted: 18-04-2019 decamer primers Vikrant Department of Biotechnology, Dr YS Parmar University of Vikrant and Manju Modgil Horticulture and Forestry, Nauni, Solan,Himachal Pradesh, Abstract India Study of genetic diversity is an important aspect to be covered for proper utilization of the germplasm for ManjuModgil breeding purpose and crop improvement programme. Keeping in view, genetic divergence studies in Department of Biotechnology, indigenous crab apple biotypes (Malus baccata var. Himaliaca) maintained at two field gene banks of Dr YS Parmar University of Himachal Pradesh state of India was carried out by using the RAPD molecular markers. A total of 119 Horticulture and Forestry, decamer primers were initially screened to check these biotypes during the genotypic screening out of Nauni, Solan, Himachal which 94 showed clear and scorable bands. In samples collected from IARI Regional Station, Shimla, Pradesh, India these primers revealed 67.47% of polymorphism and PIC value ranged between 0.497 to 0.867, whereas average number of alleles per primer was 4.84. Jaccard’s similarity coefficient ranged from 0.44 to 0.65 which showed the divergence among the biotypes. Comparatively low percentage polymorphism (53.37%) was observed in seven biotypes maintained at NBPGR, Regional Station, Shimla, while almost similar PIC value range 0.47-0.87 was obtained as in case of former. -
Managing Fire Blight by Choosing Decreased Host Susceptibility Levels and Rootstock Traits , 2020 , January 15 January
Managing Fire Blight by Choosing Decreased Host Susceptibility Levels and Rootstock Traits , 2020 , January 15 January Awais Khan Plant Pathology and Plant-microbe Biology, SIPS, Cornell University, Geneva, NY F ire blight bacterial infection of apple cells Khan et al. 2013 Host resistance and fire blight management in apple orchards Host resistance is considered most sustainable option for disease management due to Easy to deploy/implement in the orchards Low input and cost-effective Environment friendly No choice to the growers--most of the new and old cultivars are highly susceptible Apple breeding to develop resistant cultivars Domestication history of the cultivated apple 45-50 Malus species-----Malus sieversii—Gene flow Malus baccata Diameter: 1 cm Malus sieversii Malus baccata Diameter: up to 8 cm Malus orientalis Diameter: 2-4 cm Malus sylvestris Diameter: 1-3 cm Duan et al. 2017 Known sources of major/moderate resistance to fire blight to breed resistant cultivars Source Resistance level Malus Robusta 5 80% Malus Fusca 66% Malus Arnoldiana, Evereste, Malus floribunda 821 35-55% Fiesta, Enterprise 34-46% • Fruit quality is the main driver for success of an apple cultivar • Due to long juvenility of apples, it can take 20-25 years to breed resistance from wild crab apples Genetic disease resistance in world’s largest collection of apples Evaluation of fire blight resistance of accessions from US national apple collection o Grafted 5 replications: acquired bud-wood and rootstocks o Inoculated with Ea273 Erwinia amylovora strain -
Malus Sieversii Belongs to the Rose Family, Rosaceae (Making It Related to Other Fruit Trees, Including Apricots, Plums, Cherries and Almonds)
| REPORT © Georgy Georgy Lazkov - Malus sieversii – wild apple wild FAUNA & FLORA INTERNATIONAL’S М a l u s s i e v e r s i i – w i l d a p p l e : s p e c i e s s t a t u s review and action plan for its conservation in Childukhtaron a n d D a s h t i j u m r e s e r v e s , T a j i k i s t a n |PREPARED BY: Gulazor Miravalova, FFI Intern David Gill, Programme Manager, Central Asia, FFI Mario Boboev, Director of Kulob Botanical Garden Rasima Sabzalieva, Project Assistant, FFI Tajikistan April 2020 Мalus sieversii – wild apple: species status review and action plan for its conservation in Childukhtaron and Dashtijum reserves, Tajikistan Written by: Gulazor Miravalova, FFI Intern Edited by: David Gill, Programme Manager, Central Asia, FFI Mario Boboev, Director of Kulob Botanical Garden Rasima Sabzalieva, Project Assistant, FFI Tajikistan Photo credit: Mario Boboev April 2020 2 Table of contents 1. SPECIES DESCRIPTION ............................................................................................... 4 1.1.TAXONOMY .................................................................................................................... 4 1.2 STATUS .......................................................................................................................... 4 1.3. BIOLOGY/ DESCRIPTION ................................................................................................. 4 2. CURRENT DISTRIBUTION............................................................................................. 6 2.1.GLOBAL ........................................................................................................................ -
Wild Apple Growth and Climate Change in Southeast Kazakhstan
Article Wild Apple Growth and Climate Change in Southeast Kazakhstan Irina P. Panyushkina 1,* ID , Nurjan S. Mukhamadiev 2, Ann M. Lynch 1,3, Nursagim A. Ashikbaev 2, Alexis H. Arizpe 1, Christopher D. O’Connor 4, Danyar Abjanbaev 2, Gulnaz Z. Mengdbayeva 2 and Abay O. Sagitov 2 1 Laboratory of Tree-Ring Research, University of Arizona, 1215 W. Lowell St., Tucson, AZ 85721, USA; [email protected] (A.M.L.); [email protected] (A.H.A.) 2 Z.H. Zhiembaev Research Institute of Plant Protections and Quarantine, Almaty 050070, Kazakhstan; [email protected] (N.S.M.); [email protected] (N.A.A.); [email protected] (D.A.); [email protected] (G.Z.M.); [email protected] (A.O.S.) 3 U.S. Forest Service, Rocky Mountain Research Station, Tucson, AZ 85721, USA; [email protected] 4 U.S. Forest Service, Rocky Mountain Research Station, Missoula, MT 59801, USA; [email protected] * Correspondence: [email protected] Received: 31 August 2017; Accepted: 22 October 2017; Published: 26 October 2017 Abstract: Wild populations of Malus sieversii [Ldb.] M. Roem are valued genetic and watershed resources in Inner Eurasia. These populations are located in a region that has experienced rapid and on-going climatic change over the past several decades. We assess relationships between climate variables and wild apple radial growth with dendroclimatological techniques to understand the potential of a changing climate to influence apple radial growth. Ring-width chronologies spanning 48 to 129 years were developed from 12 plots in the Trans-Ili Alatau and Jungar Alatau ranges of Tian Shan Mountains, southeastern Kazakhstan. -
Apple Scab (Venturia Inaequalis) and Pests in Organic Orchards
Apple Scab (Venturia inaequalis) and Pests in Organic Orchards Boel Sandskär Department of Crop Science, Alnarp Doctoral Thesis Swedish University of Agricultural Sciences Alnarp 2003 2 Abstract Sandskär, B. Apple Scab (Venturia inaequalis) and Pests in Organic Orchards Doctoral Dissertation ISSN 1401-6249, ISBN 91-576-6416-1 Domestication of apples goes back several thousand years in time and archaeological findings of dried apples from Östergötland in Sweden have been dated to ca 2 500 B.C. Worldwide, apples are considered an attractive and healthy fruit to eat. Organic production of apples is increasing abroad but is still at very low levels in Sweden. This study deals with major disease and pest problems in organic growing of apples. It concentrates on the most severe disease, the apple scab (Venturia inaequalis). Resistance to apple scab was evaluated during three years in over 450 old and new apple cultivars at Alnarp and Balsgård in southern Sweden. There were significant differences between the cultivars and years. About ten per cent of the cultivars had a high level of resistance against apple scab. The correlation between foliar and fruit scab was stronger when the scab infection pressure was high (1998-1999), compared to when it was low (2000). Polygenic resistance is a desirable trait since such resistance is more difficult to overcome by the pathogen. A common denominator for polygenic resistance among the cultivars assessed was 'Worcester Pearmain'. The leaf infection of apple scab was compared at three locations: Alnarp, Kivik and Rånna (Skövde) in an observation trial for 22 new apple cultivars. The ranking of the cultivars was similar at the three locations.