(Iran) – an Evolutionary Centre for Fruit Trees and Shrubs

Total Page:16

File Type:pdf, Size:1020Kb

(Iran) – an Evolutionary Centre for Fruit Trees and Shrubs Genetic Resources and Crop Evolution (2005) 00: 1–11 Ó Springer 2005 DOI 10.1007/s10722-005-7467-8 Notes on neglected and underutilized crops Savadkouh (Iran) – an evolutionary centre for fruit trees and shrubs Korous Khoshbakht1,2,* and Karl Hammer1 1Institute of Crop Science, University of Kassel, Steinstr. 19, D-37213 Witzenhausen, Germany; 2Environmental Science Research Institute, University of Shahid Beheshti, Tehran, Iran; *Author for correspondence (e-mail: [email protected]; phone: +49-5542-98-1243; fax: +49-5542-98-1230) Received 10 March 2005; accepted in revised form 13 May 2005 Key words: Domestication, Ethnobotany, Iran, Evolution, Fruit trees, Neglected crops Abstract Fieldwork was carried out in the north of Iran in April/May 2004. Four zones according to altitude including 20 villages and especially surrounding forests were visited. Data on uses and ethnobotany was collected through interviews that were one-on-one with respondents carefully selected to represent both male and female. Additionally a general survey of the area including other places of Savadkouh has been performed. The fruit trees and shrubs include Berberis sp., Crataegus sp., Cydonia oblonga, Diospyros lotus, Ficus carica, Malus orientalis, Mespilus germanica, Prunus cerasifera ssp. macrocarpa, Prunus spinosa, Punica granatum, and Rubus sp. Most of these are gathered from the wild, or occasionally cultivated in homegardens. The results of this study show that all of these species are used as sources of local foods and medicines. The area should be considered as an important evolutionary centre for fruit trees and shrubs and should be taken into serious consideration for discussions about fruit tree and shrub evolution. Germplasm collection activities, in situ conservation programs and interdisciplinary analysis of socioeconomic aspects of rural communications will be necessary in future studies. Introduction visited the north of Iran and described it as an area of dense deciduous forests, with an excep- Information on uses of indigenous wild fruit tional wealth of wild trees and a mild, subtrop- trees of Iran is scarce and only occasionally ical climate suitable for the production of citrus mentioned in botanical works and inventories fruits (Vavilov 1997). (Sabeti 1997). Although some studies about eth- The present study was conducted to obtain a nobotany and especially about medicinal uses of better understanding of the knowledge of rural plants have been published (e.g. Zargari 1976– populations about fruit tree and shrub species, to 1980; Amin 1991; Shokri and Safaian 1993; identify the potential of these species to improve Emad 1999; Mirhidar 2001), there is no partic- nutrition, to generate new income, to conserve and ular study on the use of fruit trees and shrubs in protect the genetic resources and to contribute to Savadkouh and the essential knowledge about sustainable use of these natural resources. The them remains within the rural populations. In interactions between wild and cultivated plants in 1916 Nicolay Ivanovich Vavilov (1887–1943) this area have been of special interest. 2 Material and methods talis Lipsky, Carpinus betulus L., Quercus casta- neifolia C.A. Mey., Buxus hyrcana Pojark., Study area Parrotia persica (DC.) C.A. Mey., Pterocarya fraxinifolia (Lam.) Spach, Alnus subcordata C.A. Iran comprises a land area of 1.64 million km2.It Mey., Zelkova carpinifolia (Pall.) Dipp., Diospyros lies in the northern part of the temperate zone, lotus L., Carpinus orientalis Miller, Fraxinus between latitudes 25°03¢ to 39°47¢ N and longi- excelsior L., and Carpinus schuschaensis H. Winkl. tudes 44°14¢ to 63°20¢ E. It is bordered on the (Forest and Range Organization of Iran 1986). north by Armenia, Azerbaijan, Turkmenistan, and Savadkouh (Figure 2) with 2078 km2 and hu- the Caspian Sea (the Caucasus Mountains, Middle mid and semi-humid climatic conditions, cold Asian natural regions); on the east by Afghanistan winters, warm summers and mean annual rainfall and Pakistan; on the south by the Persian Gulf 1700 mm, is part of the Hyrcanian biome and lo- and the Gulf of Oman, and on the west by Iraq cated between latitudes 36°01¢ to 36°42¢ N and and Turkey (Anatolian and Mesopotamian re- longitudes 52°46¢ to 53°32¢ E. From the geo- gions). The existence of the high mountains in the graphical point of view, the area is divided into north, the Zagros Range in the west and southwest two parts, lowland areas and Alburz mountainous and the eastern mountains of Iran, which surround area. The Alburz mountain range surrounds the the Iranian plateau, provide Iran with rugged coastal strip and coastal plains like a high wall. mountains and spectacular terrain. Both in the Due to permanent breezes of the sea and local north and the south of the country, there exist winds from the southern and eastern coasts of the wide plains, which include the low coastal lands Caspian Sea, there have been formed sandy hills (the Caspian Sea À26 m below sea level) (Firuz that have caused the appearance of a low natural 1974). The height of some of the mountains is over barrier between the sea and the plain. The nature 4000 m. of the area is under the influence of geographical Most of Iran is located in the Palaearctic realm latitude, Alburz heights, elevation from sea level, and is considered the centre of origin of many distance from the sea, local and regional wind genetic resources of the world, including many currents, and diverse vegetation cover. The climate original landraces of commercially valuable crop of the area is divided into two types: (1) moderate species such as Diospyros lotus L., Spinacia olera- Caspian weather with hot and humid summers, cea L. and Amygdalus persica L. (Zeven and de mild and humid winters especially in the low lands Wet 1982). The Iranian vascular plant flora com- and (2) cold mountainous weather with long prises approximately 8000 species, with about 20% freezing winters and short cool summers, espe- of them being endemic, based on the published cially in the mountains. The main rivers are the and forthcoming volumes of Flora Iranica Talar, Keselyian and Sheshroudbar, and rice (Rechinger 1963–2001). (Oryza sativa L.), wheat (Triticum aestivum L.), The Hyrcanian region is located south of the barley (Hordeum vulgare L.), vegetables and citrus Caspian Sea (Figure 1). The Iranian part of this trees (in low lands) are the main agricultural region covers approximately 50,000 km2 and is products in this area. located within the Iranian provinces Gilan, Maz- Indigenous people living in rural areas depend andaran and Golestan (Figure 2). The region ex- on the wild fruit trees in their diet. They use them tends throughout the south coast of the Caspian as table fruit, conserve and local food as well as Sea – which was called the Hyrcanian Ocean in folk medicine. The villagers often have consider- antiquity – and the northern part of Iran. It has able knowledge about wild fruit trees especially high production capacity due to humid temperate about using of them in treatment of sickness. The climate and suitable soil. Because of extensive most important characteristic of the populations, concentration of human life and their activities in which live in this area, is inclination to migration the lower altitudes, large parts of the lowland because of uneconomic conditions in agricultural forests have been deforested and converted into activities. Apart from the seasonal migration, there human settlements, cultivated areas, industry etc. is a definite tendency for permanent migration, as Hyrcanian forests extend for 800 km in length and those who can find a permanent job decide to stay the main tree and shrub species are: Fagus orien- in the cities. 3 Figure 1. Hyrcanian region (dark grey part, after Meusel and Ja¨ger 1992). Methodology interviews were carried out. The interviews were one-on-one and respondents were carefully se- Fieldwork was carried out in the north of Iran in lected to represent both male and female but they April/May 2004. Four zones according to altitude had to be 40 or more years of age. Experience has including 20 villages and especially surrounding shown that older people have more traditional forests were visited (Table 1). Altogether 75 knowledge than younger people do. The interviews were carried out mainly in afternoons when the local people were either resting at home or at the shopping centers. In addition to the data recorded directly by interviews, further information was registered from informal market surveys, local specialists and rural experts. Additionally, in 2004 a general sur- vey of the area including many other places of Savadkouh has been performed. Results and discussion Eleven fruit tree and shrub genera were identified in the north of Iran, all as wild species, some of them cultivated, which people use as a part of their diet regime. The species are arranged in alpha- betical order. Indigenous knowledge reported here was obtained from the responses in the visited Figure 2. Hyrcanian region in Iran and Savadkouh area. zones, additional data from literature. 4 Table 1. Geographical characteristics of different sites. Zones Sites Longitude (N) Latitude (E) Altitude ..° ..¢ ..° ..¢ (m.asl.) Zone 1 Shirdar-kala 36 23 52 45 190 Kati-lateh 36 21 52 51 280 (Altitudes Shirjeh-kala 36 19 52 52 280 lower than Alam-kala 36 14 52 49 345 500 m.asl.) Sorkh-kala 36 12 52 56 400 Zone 2 Outo 36 4 53 01 570 Bahmanan 36 13 52 59 610 (Altitudes Pasha-kala 36 12 53 02 612 between Shir-kala 36 19 52 52 700 500 and 1000 m.asl.) Esas 36 09 53 04 900 Zone 3 Folowrd 36 04 53 08 1160 Arataban 36 03 52 56 1200 (Altitudes Zangeyan 36 04 52 56 1300 between Karmozd 36 03 52 53 1320 1000 and 1500 Anarom 36 02 53 10 1460 m.asl.) Zone 4 Tilem 36 02 52 57 1550 (Altitude Paland 36 10 52 57 1550 higher than Alasht 36 04 52 50 1670 1500 m.asl.) Bayeh-kala 36 02 53 07 1800 Lind 36 05 52 53 1890 Berberis sp.
Recommended publications
  • Osher Lifelong Learning Institute
    USDA-ARS National Plant Germplasm System Conservation of Fruit & Nut Genetic Resources Joseph Postman Plant Pathologist & Curator National Clonal Germplasm Repository Corvallis, Oregon May 2010 Mission: Collect – Preserve Evaluate – Enhance - Distribute World Diversity of Plant Genetic Resources for Improving the Quality and Production of Economic Crops Important to U.S. and World Agriculture Apple Accessions at Geneva Malus angustifolia ( 59 Accessions) Malus sikkimensis ( 14 Accessions) Malus baccata ( 67 Accessions) Malus sp. ( 41 Accessions) Malus bhutanica ( 117 Accessions) Malus spectabilis ( 9 Accessions) Malus brevipes ( 2 Accessions) Malus sylvestris ( 70 Accessions) Malus coronaria ( 98 Accessions) Malus toringo ( 122 Accessions) Malus domestica ( 1,389 Accessions) Malus transitoria ( 63 Accessions) Malus doumeri ( 2 Accessions) Malus trilobata ( 2 Accessions) Malus florentina ( 4 Accessions) Malus tschonoskii ( 3 Accessions) Malus floribunda ( 12 Accessions) Malus x adstringens ( 2 Accessions) Malus fusca ( 147 Accessions) Malus x arnoldiana ( 2 Accessions) Malus halliana ( 15 Accessions) Malus x asiatica ( 20 Accessions) Malus honanensis ( 4 Accessions) Malus x astracanica ( 1 Accessions) Malus hupehensis ( 185 Accessions) Malus x atrosanguinea ( 2 Accessions) Malus hybrid ( 337 Accessions) Malus x dawsoniana ( 2 Accessions) Malus ioensis ( 72 Accessions) Malus x hartwigii ( 5 Accessions) Malus kansuensis ( 45 Accessions) Malus x magdeburgensis ( 2 Accessions) Malus komarovii ( 1 Accessions) Malus x micromalus ( 25 Accessions)
    [Show full text]
  • CHLOROPLAST Matk GENE PHYLOGENY of SOME IMPORTANT SPECIES of PLANTS
    AKDENİZ ÜNİVERSİTESİ ZİRAAT FAKÜLTESİ DERGİSİ, 2005, 18(2), 157-162 CHLOROPLAST matK GENE PHYLOGENY OF SOME IMPORTANT SPECIES OF PLANTS Ayşe Gül İNCE1 Mehmet KARACA2 A. Naci ONUS1 Mehmet BİLGEN2 1Akdeniz University Faculty of Agriculture Department of Horticulture, 07059 Antalya, Turkey 2Akdeniz University Faculty of Agriculture Department of Field Crops, 07059 Antalya, Turkey Correspondence addressed E-mail: [email protected] Abstract In this study using the chloroplast matK DNA sequence, a chloroplast-encoded locus that has been shown to be much more variable than many other genes, from one hundred and forty two plant species belong to the families of 26 plants we conducted a study to contribute to the understanding of major evolutionary relationships among the studied plant orders, families genus and species (clades) and discussed the utilization of matK for molecular phylogeny. Determined genetic relationship between the species or genera is very valuable for genetic improvement studies. The chloroplast matK gene sequences ranging from 730 to 1545 nucleotides were downloaded from the GenBank database. These DNA sequences were aligned using Clustal W program. We employed the maximum parsimony method for phylogenetic reconstruction using PAUP* program. Trees resulting from the parsimony analyses were similar to those generated earlier using single or multiple gene analyses, but our analyses resulted in strict consensus tree providing much better resolution of relationships among major clades. We found that gymnosperms (Pinus thunbergii, Pinus attenuata and Ginko biloba) were different from the monocotyledons and dicotyledons. We showed that Cynodon dactylon, Panicum capilare, Zea mays and Saccharum officiarum (all are in the C4 metabolism) were improved from a common ancestors while the other cereals Triticum Avena, Hordeum, Oryza and Phalaris were evolved from another or similar ancestors.
    [Show full text]
  • Malus Diversity in Wild and Agricultural Ecosystems
    Malus Diversity in Wild and Agricultural Ecosystems Item Type text; Electronic Dissertation Authors Routson, Kanin Josif Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 06/10/2021 10:49:17 Link to Item http://hdl.handle.net/10150/223381 MALUS DIVERSITY IN WILD AND AGRICULTURAL ECOSYSTEMS By Kanin J. Routson _________________________________________________________________________________________________ A Dissertation SuBmitteD to the Faculty of the GRADUATE INTERDISCIPLINARY PROGRAM IN ARID LANDS RESOURCE SCIENCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2012 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have reaD the dissertation prepared By Kanin J. Routson, entitled “Malus Diversity in Wild and Agricultural Ecosystems” anD recommenD that it Be accepteD as fulfilling the Dissertation requirement for the Degree of Doctor of Philosophy. _______________________________________________Date: April 20, 2012 Gary Paul NaBhan _______________________________________________Date: April 20, 2012 Gayle M. Volk _______________________________________________Date: April 20, 2012 Steven Smith _______________________________________________Date: April 20, 2012 Paul F. RobBins _______________________________________________Date: April 20, 2012 Stuart E. Marsh Final approval and acceptance of this dissertation is contingent upon the candidate’s suBmission of the final copies of the Dissertation to the GraDuate College. I hereBy certify that I have reaD this Dissertation prepareD unDer my Direction anD recommenD that it Be accepteD as fulfilling the Dissertation requirement.
    [Show full text]
  • Diversity Captured in the USDA-ARS National Plant Germplasm System Apple Core Collection
    J. AMER.SOC.HORT.SCI. 138(5):375–381. 2013. Diversity Captured in the USDA-ARS National Plant Germplasm System Apple Core Collection Briana L. Gross University of Minnesota Duluth, 207 Swenson Science Building, 1035 Kirby Drive, Duluth, MN 55812 Gayle M. Volk2, Christopher M. Richards, Patrick A. Reeves, and Adam D. Henk USDA-ARS National Center for Genetic Resources Preservation, 1111 S. Mason Street, Fort Collins, CO 80521 Philip L. Forsline1, Amy Szewc-McFadden, Gennaro Fazio, and C. Thomas Chao USDA-ARS Plant Genetic Resources Unit, Geneva, NY 14456 ADDITIONAL INDEX WORDS. Malus, simple sequence repeat, clonal crop ABSTRACT. The USDA-ARS National Plant Germplasm System Malus collection is maintained by the Plant Genetic Resources Unit (PGRU) in Geneva, NY. In the 1990s, a core subset of 258 trees was hand-selected to be representative of the grafted Malus collection. We used a combination of genotypic and phenotypic data to compare the diversity of the 198 diploid trees in the original core subset with that of 2114 diploid trees in the grafted field collection for which data were available. The 198 trees capture 192 of the 232 total microsatellite alleles and have 78 of the 95 phenotypic characters. An addition of 67 specific individuals increases the coverage to 100% of the allelic and phenotypic character states. Several de novo core sets that capture all the allelic and phenotypic character states in 100 individuals are also provided. Use of these proposed sets of individuals will help ensure that a broad range of Malus diversity is included in evaluations that use the core subset of grafted trees in the PGRU collection.
    [Show full text]
  • Index Seminum 2018-2019
    UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II ORTO BOTANICO INDEX SEMINUM 2018-2019 In copertina / Cover “La Terrazza Carolina del Real Orto Botanico” Dedicata alla Regina Maria Carolina Bonaparte da Gioacchino Murat, Re di Napoli dal 1808 al 1815 (Photo S. Gaudino, 2018) 2 UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II ORTO BOTANICO INDEX SEMINUM 2018 - 2019 SPORAE ET SEMINA QUAE HORTUS BOTANICUS NEAPOLITANUS PRO MUTUA COMMUTATIONE OFFERT 3 UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II ORTO BOTANICO ebgconsortiumindexseminum2018-2019 IPEN member ➢ CarpoSpermaTeca / Index-Seminum E- mail: [email protected] - Tel. +39/81/2533922 Via Foria, 223 - 80139 NAPOLI - ITALY http://www.ortobotanico.unina.it/OBN4/6_index/index.htm 4 Sommario / Contents Prefazione / Foreword 7 Dati geografici e climatici / Geographical and climatic data 9 Note / Notices 11 Mappa dell’Orto Botanico di Napoli / Botanical Garden map 13 Legenda dei codici e delle abbreviazioni / Key to signs and abbreviations 14 Index Seminum / Seed list: Felci / Ferns 15 Gimnosperme / Gymnosperms 18 Angiosperme / Angiosperms 21 Desiderata e condizioni di spedizione / Agreement and desiderata 55 Bibliografia e Ringraziamenti / Bibliography and Acknowledgements 57 5 INDEX SEMINUM UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II ORTO BOTANICO Prof. PAOLO CAPUTO Horti Praefectus Dr. MANUELA DE MATTEIS TORTORA Seminum curator STEFANO GAUDINO Seminum collector 6 Prefazione / Foreword L'ORTO BOTANICO dell'Università ha lo scopo di introdurre, curare e conservare specie vegetali da diffondere e proteggere,
    [Show full text]
  • Perspectives on Nature Conservation – Patterns, Pressures and Prospects
    PERSPECTIVES ON NATURE CONSERVATION – PATTERNS, PRESSURES AND PROSPECTS Edited by John Tiefenbacher Perspectives on Nature Conservation – Patterns, Pressures and Prospects Edited by John Tiefenbacher Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2012 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. Any republication, referencing or personal use of the work must explicitly identify the original source. As for readers, this license allows users to download, copy and build upon published chapters even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. Notice Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book. Publishing Process Manager Romana Vukelic Technical Editor Teodora Smiljanic Cover Designer InTech Design Team First published February, 2012 Printed in Croatia A free online edition of this book is available at www.intechopen.com Additional hard copies can be obtained from [email protected] Perspectives on Nature Conservation – Patterns, Pressures and Prospects, Edited by John Tiefenbacher p.
    [Show full text]
  • The Vulnerability of US Apple (Malus) Genetic Resources
    Genet Resour Crop Evol (2015) 62:765–794 DOI 10.1007/s10722-014-0194-2 RESEARCH ARTICLE The vulnerability of US apple (Malus) genetic resources Gayle M. Volk • C. Thomas Chao • Jay Norelli • Susan K. Brown • Gennaro Fazio • Cameron Peace • Jim McFerson • Gan-Yuan Zhong • Peter Bretting Received: 20 June 2014 / Accepted: 27 October 2014 / Published online: 13 November 2014 Ó Springer Science+Business Media Dordrecht (outside the USA) 2014 Abstract Apple (Malus 9 domestica Borkh.) is one wide range of biotic and abiotic stress resistances as of the top three US fruit crops in production and value. well as desirable productivity and fruit quality attri- Apple production has high costs for land, labor and butes. However, access to wild materials is limited and inputs, and orchards are a long-term commitment. wild Malus throughout the world is at risk of loss due Production is dominated by only a few apple scion and to human encroachment and changing climatic pat- rootstock cultivars, which increases its susceptibility terns. The USDA-ARS National Plant Germplasm to dynamic external threats. Apple crop wild relatives, System (NPGS) Malus collection, maintained by the including progenitor species Malus sieversii (Ledeb.) Plant Genetic Resources Unit in Geneva, NY, US is M. Roem., Malus orientalis Uglitzk., Malus sylvestris among the largest collections of cultivated apple and (L.) Mill., and Malus prunifolia (Willd.) Borkh., as Malus species in the world. The collection currently well as many other readily hybridized species, have a has 5004 unique accessions in the field and 1603 seed accessions representing M. 9 domestica,33Malus species, and 15 hybrid species.
    [Show full text]
  • Dihydrochalcones in Malus Mill. Germplasm and Hybrid
    DIHYDROCHALCONES IN MALUS MILL. GERMPLASM AND HYBRID POPULATIONS A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Benjamin Leo Gutierrez December 2017 © 2017 Benjamin Leo Gutierrez DIHYDROCHALCONES IN MALUS MILL. GERMPLASM AND HYBRID POPULATIONS Benjamin Leo Gutierrez, Ph.D. Cornell University 2017 Dihydrochalcones are abundant in Malus Mill. species, including the cultivated apple (M. ×domestica Borkh.). Phloridzin, the primary dihydrochalcone in Malus species, has beneficial nutritional qualities, including antioxidant, anti-cancer, and anti-diabetic properties. As such, phloridzin could be a target for improvement of nutritional quality in new apple cultivars. In addition to phloridzin, a few rare Malus species produce trilobatin or sieboldin in place of phloridzin and hybridization can lead to combinations of phloridzin, trilobatin, or sieboldin in interspecific apple progenies. Trilobatin and sieboldin also have unique chemical properties that make them desirable targets for apple breeding, including high antioxidant activity, anti- inflammatory, anti-diabetic properties, and a high sweetness intensity. We studied the variation of phloridzin, sieboldin, and trilobatin content in leaves of 377 accessions from the USDA National Plant Germplasm System (NPGS) Malus collection in Geneva, NY over three seasons and identified valuable genetic resources for breeding and researching dihydrochalcones. From these resources, five apple hybrid populations were developed to determine the genetic basis of dihydrochalcone variation. Phloridzin, sieboldin, and trilobatin appear to follow segregation patterns for three independent genes and significant trait-marker associations were identified using genetic data from genotyping-by-sequencing. Dihydrochalcones are at much lower quantities in mature apple fruit compared with vegetative tissues.
    [Show full text]
  • Canadian Food Inspection Agency
    Canadian Food Inspection Agency Home > Plants > Plants With Novel Traits > Applicants > Directive 94­08 > Biology Documents > Malus domestica The Biology of Malus domestica Borkh. (Apple) Table of contents 1. General Administrative Information 2. Identity 3. Geographical Distribution 4. Biology 5. Related Species of Malus domestica 6. Potential Interaction of Malus domestica with Other Life Forms 7. References Appendix 1: Species and hybrid species currently recognized in the genus Malus, according to the taxonomy database of the U.S. Department of Agriculture Germplasm Resources Information Network GRIN) (USDA­ARS 2012) Biology Document BIO2014­01: A companion document to Directive 94­08 (Dir94­08), Assessment Criteria for Determining Environmental Safety of Plant with Novel Traits Photo credit: H. Ardiel Plant and Biotechnology Risk Assessment Unit Plant Health Science Division, Canadian Food Inspection Agency Ottawa, Ontario Oct 15, 2013 1. General Administrative Information 1.1 Background 1.2 Scope 1.1 Background The Canadian Food Inspection Agency's Plant and Biotechnology Risk Assessment (PBRA) Unit is responsible for assessing the potential risk to the environment from the release of plants with novel traits (PNTs) into the Canadian environment. The PBRA Unit is also responsible for assessing the pest potential of plant imports and plant species new to Canada. Risk assessments conducted by the PBRA Unit require biological information about the plant species being assessed. Therefore, these assessments can be done in conjunction with species­specific biology documents that provide the necessary biological information. When a PNT is assessed, these biology documents serve as companion documents to Dir94­08: Assessment Criteria for Determining Environmental Safety of Plants with Novel Traits.
    [Show full text]
  • The Development and the Growth Features of Sprouts of Malus Orientalis Uglitzk.Species Introduced in Absheron
    Int. J. Sec. Metabolite, Vol. 4, Issue 1 (2017) pp. 61-65 Research Note ISSN: 2148-6905 online Journal homepage: http://www.ijate.net/index.php/ijsm The Development and the Growth Features of Sprouts of Malus Orientalis Uglitzk.Species Introduced in Absheron Ceyran Najafova,1,* Aynur Arabzade,1 Aygun Huseynova2 1Central Botanical Garden of ANAS, Baku, Azerbaijan 2Baku State University, Baku, Azerbaijan Received: 18 November 2016 - Accepted: 19 December 2016 Abstract: Apple is cultivated in most of the temperate regions due to the fruit’s quality, its easiness to propagate, and its natural aptitude to bear. Malus classifications differ primarily in the taxonomic level at which infrageneric groupings of species are recognized. Object of the study was oriental apple (Malus orientalis Uglitzk) from Azerbaijan flora which was introduced to Absheron. The conducted experiments showed that the first sprouts of the seeds of the Malus orientalis sown in autumn were observed in the third decade of March. The first embryo roots which gives start to the main roots begin growth in germinal period before the ontogenesis. Thus, experiments have shown that Malus orientalis specie have normal growth in the ontogenesis initial development - germinal stage and it can be used as a perspective species for greening of Absheron. Key Words: Malus orientalis, Absheron, Taxon, Embryo 1. Introduction The genus Malus Mill. comprises 25–47 species, depending upon the rank given to several taxa and the acceptance of putative hybrids. Robinson et al. (2001) explained that the number of species in genus Malus depends upon the rank given to several taxa, species being subspecies and putative hybrids, and the nomenclature of the taxa is complex [1].
    [Show full text]
  • Gabrielian, E. & Zohary, D
    Eleonora Gabrielian & Daniel Zohary Wild relatives of food crops native to Armenia and Nakhichevan Abstract Gabrielian, E. & Zohary, D.: Wild relatives of food crops native to Armenia and Nakhichevan. — Fl. Medit. 14: 5-80. 2004. — ISSN 1120-4052. The paper surveys the variability, ecology, and distribution of the wild relatives of food crops (cereals, legumes, oil and fiber plants, vegetables, condiments, fruits and nut trees) native to Armenia and Nakhichevan. It focuses on the close wild relatives, i.e., members of the primary wild gene pools (GP-1) of the crops. The wild relatives of about 80 crops were surveyed; and the available information on the distribution (in Armenia and Nakhichevan)) of most of these relatives is also illustrated by 93 site distribution maps. Introduction The aim of this paper is to survey the wild relatives of cultivated food plants that occur in Armenia and Nakhichevan (South Trans-Caucasus). We focus on the close wild rela- tives, which are fully (or almost fully) cross compatible and inter-fertile with their related cultigens, and therefore most attractive to the breeders. In other words, this paper is con- cerned mainly with Armenia’s primary wild gene pools (GP-1) of crops. Some of the more distant wild relatives, which according to Harlan and De Wet (1971) definition belong to the secondary and tertiary wild gene pools (GP-2 and GP-3) of their related crops are sometimes mentioned as well; but usually only in brief. Armenia is a relatively small country. However, it is geo-morphologically and ecologi- cally very varied. More over, it is situated on the cross roads between several phytogeo- graphic regions.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,973,216 B2 Espley Et Al
    US007973216 B2 (12) United States Patent (10) Patent No.: US 7,973,216 B2 Espley et al. (45) Date of Patent: Jul. 5, 2011 (54) COMPOSITIONS AND METHODS FOR 6,037,522 A 3/2000 Dong et al. MODULATING PGMENT PRODUCTION IN 6,074,877 A 6/2000 DHalluin et al. 2004.0034.888 A1 2/2004 Liu et al. PLANTS FOREIGN PATENT DOCUMENTS (75) Inventors: Richard Espley, Auckland (NZ); Roger WO WOO1, 59 103 8, 2001 Hellens, Auckland (NZ); Andrew C. WO WO O2/OO894 1, 2002 WO WO O2/O55658 T 2002 Allan, Auckland (NZ) WO WOO3,0843.12 10, 2003 WO WO 2004/096994 11, 2004 (73) Assignee: The New Zealand Institute for Plant WO WO 2005/001050 1, 2005 and food Research Limited, Auckland (NZ) OTHER PUBLICATIONS Bovy et al. (Plant Cell, 14:2509-2526, Published 2002).* (*) Notice: Subject to any disclaimer, the term of this Wells (Biochemistry 29:8509-8517, 1990).* patent is extended or adjusted under 35 Guo et al. (PNAS, 101: 9205-9210, 2004).* U.S.C. 154(b) by 0 days. Keskinet al. (Protein Science, 13:1043-1055, 2004).* Thornton et al. (Nature structural Biology, structural genomics (21) Appl. No.: 12/065,251 supplement, Nov. 2000).* Ngo et al., (The Protein Folding Problem and Tertiary Structure (22) PCT Filed: Aug. 30, 2006 Prediction, K. Merz., and S. Le Grand (eds.) pp. 492-495, 1994).* Doerks et al., (TIG, 14:248-250, 1998).* (86). PCT No.: Smith et al. (Nature Biotechnology, 15:1222-1223, 1997).* Bork et al. (TIG, 12:425-427, 1996).* S371 (c)(1), Vom Endt et al.
    [Show full text]