Vegetation Change in the Northwestern Putorana Plateau (North Siberia, Russia) During the Late Holocene Inferred from Pollen Spectra

Total Page:16

File Type:pdf, Size:1020Kb

Vegetation Change in the Northwestern Putorana Plateau (North Siberia, Russia) During the Late Holocene Inferred from Pollen Spectra Vegetation change in the northwestern Putorana Plateau (North Siberia, Russia) during the Late Holocene inferred from pollen spectra Diplomarbeit zur Erlangung des akademischen Grades Diplom Geoökologe Universität Potsdam Institut für Erd- und Umweltwissenschaften Vorgelegt von: Martin Lamottke Bad Belzig, Januar 2015 1 Gutachterin Prof. Dr. Ulrike Herzschuh (Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung) 2 Gutachter Prof. Dr. Bernhard Diekmann (Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung) Selbstständigkeitserklärung Hiermit versichere ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus frem- den Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich ge- macht. Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt und ist auch noch nicht veröffentlicht worden. Bad Belzig, 29.01.2015 …………………….. Martin Lamottke Table of Contents Table of Contents Table of Contents .................................................................................................... I List of Figures ........................................................................................................ III List of Tables......................................................................................................... VI Abstract ................................................................................................................ VII Zusammenfassung ............................................................................................. VIII 1. Introduction .................................................................................................. 1 1.1 Scientific Background .................................................................................... 1 1.2 Aims and Objectives ...................................................................................... 2 2. Observation Area ......................................................................................... 3 2.1 Geographical settings .................................................................................... 3 2.2 Climate .......................................................................................................... 4 2.3 Geological and geomorphological realities ..................................................... 6 2.4 Soil ................................................................................................................ 8 2.5 Permafrost ..................................................................................................... 9 2.6 Vegetation.................................................................................................... 12 3. Methods ...................................................................................................... 20 3.1 Field Work.................................................................................................... 20 3.2 Pollen analysis ............................................................................................. 20 3.2.1 Pollen sample treatment ............................................................................ 20 3.2.2 Pollen data treatment................................................................................. 21 3.2.3 Isotope geochemistry ................................................................................ 22 4. Results ........................................................................................................ 24 4.1 Field and core data ...................................................................................... 24 4.1.1 Characteristics of Pollen Spectra ............................................................. 24 4.1.2 Cluster analysis ......................................................................................... 28 4.1.3 Ordination analysis of pollen RDA ........................................................... 29 4.1.4 Ordination analysis of non-pollen RDA .................................................... 31 4.1.5 Concentration and influx ........................................................................... 32 4.2 Age depth model .......................................................................................... 33 5. Discussion .................................................................................................. 36 5.1.1 Reconstruction of vegetation change ...................................................... 36 5.1.2 Vegetation change inferred from pollen data........................................... 40 5.1.3 Vegetation response to environmental and climate change ................... 43 5.1.4 Limitation of pollen data and possible improvements ............................ 50 I Table of Contents 6. Conclusion ................................................................................................. 51 References ............................................................................................................ VI Appendix ...........................................................................................................XXIV Danksagung ......................................................................................................XXIX II List of Figures List of Figures Figure 1: Overview of investigated area and position in northern Russia; in red: labelled position of sampled lake 11-CH-06E. (Figure processed with ArcGIS 10.1, included ArcGis WebMap as base map.)............................................................. 3 Figure 2: Topography of the West Siberian basin (WSB) and the Siberian craton (SC) based on ETOPO1 (Amante and Eakins, 2009) modified from Cherepanova et al., 2013. ............................................................................................................. 4 Figure 3: Data from Dudinka (left) and Khatanga (right) weather stations, graphics from www.globalbioclimatics.org (2014) ...................................................................... 5 Figure 4: Simplified tectonic map of the Siberian Craton and the surrounding region (Pavlenkova et al., 2002) ..................................................................................... 7 Figure 5: Soil types in the study area (Soil Atlas of the northern Circumpolar Region, 2008). .................................................................................................................. 8 Figure 6: The distribution of the various permafrost zones in the northern circumpolar region. Red square indicates location of study area (Soil Atlas of the northern Circumpolar Region, 2008). ................................................................................ 9 Figure 7: The sequence of development of alas thermokarst relief in central Yakutia, according to Soloview (French, 1996), modified. ................................................11 Figure 8: Latitudinal zonality and floristic provinces of the Russian Arctic (Shahgedanova and Kuznetsov, 2002). .......................................................................................12 Figure 9: Vegetation of Central Siberia. Compiled by Tishkov (2002), using data from Sochava (1979). .................................................................................................14 Figure 10: Number of species of vascular plants on a standard area of 100 km2 (Malyshev, 1992). .................................................................................................................15 Figure 11: Distribution of larch species in Siberia and adjacent territories: (1) Larix sukaczewiiDyl., (2) L. sibirica Ledeb., (3) L. x czekanowskii Szaf., (4) L. gmelinii (Rupr.) Rupr., (5) L. gmeliniix L. cajanderi, (6) L. cajanderi Mayr. Southern boundary of continuous permafrost zone (indicated as thick black line) approximately follows southern limit of L. cajanderi distribution and southern and western boundaries of L. gmelinii (Modified from Abaimov et al., 1997). ............16 Figure 12: Distribution of Alnaster mandshuricus (a), A. glutipes (b), A. fruticosus (c), A. kamtschaticus (d), A. maximowiczii (e), according to Cherepanov et al. (2013)..18 Figure 13: Pollen Diagram of the 60 short core samples ..................................................27 Figure 14: Results of the principal component analysis (PCA) for pollen. Samples are coloured according to the periods and pollen assembled zones (PAZ) they represent. ...........................................................................................................30 III List of Figures Figure 15: Results of the principal component analysis (PCA) for non-pollen. Samples are coloured according to the periods and pollen assembled zones (PAZ) they represent. ...........................................................................................................32 Figure 16: Pollen concentration (grains/cm2) and pollen influx (grains/a) diagram for the entire pollen composition, Larix, Betula and Alnus (grains/a) and sample source of axis 1 and 2 (results from the PCA). ...............................................................33 Figure 17: Radiometric chronology of the Chatanga lake sediment core 11-CH-06 showing the 210Pb dates and the age-depth extrapolation for the short core 11-CH-06E based on Pb/Cs..................................................................................................34 Figure 18: 14C
Recommended publications
  • LCSH Section K
    K., Rupert (Fictitious character) Motion of K stars in line of sight Ka-đai language USE Rupert (Fictitious character : Laporte) Radial velocity of K stars USE Kadai languages K-4 PRR 1361 (Steam locomotive) — Orbits Ka’do Herdé language USE 1361 K4 (Steam locomotive) UF Galactic orbits of K stars USE Herdé language K-9 (Fictitious character) (Not Subd Geog) K stars—Galactic orbits Ka’do Pévé language UF K-Nine (Fictitious character) BT Orbits USE Pévé language K9 (Fictitious character) — Radial velocity Ka Dwo (Asian people) K 37 (Military aircraft) USE K stars—Motion in line of sight USE Kadu (Asian people) USE Junkers K 37 (Military aircraft) — Spectra Ka-Ga-Nga script (May Subd Geog) K 98 k (Rifle) K Street (Sacramento, Calif.) UF Script, Ka-Ga-Nga USE Mauser K98k rifle This heading is not valid for use as a geographic BT Inscriptions, Malayan K.A.L. Flight 007 Incident, 1983 subdivision. Ka-houk (Wash.) USE Korean Air Lines Incident, 1983 BT Streets—California USE Ozette Lake (Wash.) K.A. Lind Honorary Award K-T boundary Ka Iwi National Scenic Shoreline (Hawaii) USE Moderna museets vänners skulpturpris USE Cretaceous-Paleogene boundary UF Ka Iwi Scenic Shoreline Park (Hawaii) K.A. Linds hederspris K-T Extinction Ka Iwi Shoreline (Hawaii) USE Moderna museets vänners skulpturpris USE Cretaceous-Paleogene Extinction BT National parks and reserves—Hawaii K-ABC (Intelligence test) K-T Mass Extinction Ka Iwi Scenic Shoreline Park (Hawaii) USE Kaufman Assessment Battery for Children USE Cretaceous-Paleogene Extinction USE Ka Iwi National Scenic Shoreline (Hawaii) K-B Bridge (Palau) K-TEA (Achievement test) Ka Iwi Shoreline (Hawaii) USE Koro-Babeldaod Bridge (Palau) USE Kaufman Test of Educational Achievement USE Ka Iwi National Scenic Shoreline (Hawaii) K-BIT (Intelligence test) K-theory Ka-ju-ken-bo USE Kaufman Brief Intelligence Test [QA612.33] USE Kajukenbo K.
    [Show full text]
  • Anabar Plateau, Siberia, Russia
    Arctic, Antarctic, and Alpine Research, Vol. 45, No. 4, 2013, pp. 526–537 Tree-Line Structure and Dynamics at the Northern Limit of the Larch Forest: Anabar Plateau, Siberia, Russia Viacheslav I. Kharuk*‡ Abstract Kenneth J. Ranson† The goal of the study was to provide an analysis of climate impact before, during, and after the Little Ice Age (LIA) on the larch (Larix gmelinii) tree line at the northern extreme Sergey T. Im* of Siberian forests. Recent decadal climate change impacts on the tree line, regeneration Pavel A. Oskorbin* abundance, and age structure were analyzed. Maria L. Dvinskaya* and The location of the study area was within the forest-tundra ecotone (elevation range 170–450 m) in the Anabar Plateau, northern Siberia. Field studies were conducted along Dmitriy V. Ovchinnikov* elevational transects. Tree natality/mortality and radial increment were determined based *V. N. Sukachev Institute of Forest, on dendrochronology analyses. Tree morphology, number of living and subfossil trees, Krasnoyarsk 660036, Russia regeneration abundance, and age structure were studied. Locations of pre-LIA, LIA, and †Goddard Space Flight Center, NASA, post-LIA tree lines and refugia boundaries were established. Long-term climate variables Code 618, Greenbelt, Maryland 20771, U.S.A. and drought index were included in the analysis. ‡Corresponding author: It was found that tree mortality from the 16th century through the beginning of the [email protected] 19th century caused a downward tree line recession. Sparse larch stands experienced deforestation, transforming into tundra with isolated relict trees. The maximum tree mortal- ity and radial growth decrease were observed to have occurred at the beginning of 18th century.
    [Show full text]
  • 7 Segmentation De La Zone Côtière À L'échelle Globale Et
    7 Segmentation de la zone côtière à l’échelle globale et application aux apports continents - océans 7.1 Introduction..............................................................................................................................325 7.2 Origine des données .................................................................................................................329 7.3 Critères de segmentation.........................................................................................................329 7.4 Métriques utilisées ...................................................................................................................339 7.5 Principaux résultats.................................................................................................................342 7.5.1 Identification des ‘segments de raccord’...............................................................................342 7.5.2 Morphologie côtière..............................................................................................................342 7.5.3 Répartition de la population..................................................................................................347 7.5.4 Répartition de l’écoulement spécifique.................................................................................354 7.5.5 Répartition des flux d’azote total ..........................................................................................362 7.6 Importance des mers régionales .............................................................................................365
    [Show full text]
  • Petroleum Geology & Hydrocarbon Potential of the Yenisei-Khatanga
    A non-proprietary report by Blackbourn Geoconsulting Petroleum Geology & Hydrocarbon Potential of the Yenisei-Khatanga Trough This report covers the petroleum geology of an area of Northern Siberia north of the Central Siberian Plateau, from the Gyda Peninsula in the west to the coast of the Laptev Sea in the east, and including the Yenisei gulf/estuary, the Taimyr Peninsula and Yenisei-Khatanga Trough. The data are mostly derived from published Russian-language sources (supported by several “western” sources, which are relevant mainly to the large-scale tectonic development of the area). This study is therefore comparable in its nature and scope to other reports in Blackbourn Geoconsulting’s series on the petroleum geology of the regions of the former Soviet Union. Tectonic Development of the Region There have been numerous papers published on the tectonic development of different parts of the study area over the past decade. These have been integrated to provide an overview of the tectonic development of the area as a whole, and that of individual basins. Some Precambrian prospectivity is claimed for parts of the region, although known hydrocarbons appear to be derived exclusively from the Mesozoic and younger deposits. All maps provided in the report are georeferenced and are available in ArcGIS format. The report covers the following geographic areas: Gyda Peninsula This forms the western end of the area of study, and is also covered in Blackbourn’s regional study on “The Petroleum Geology of Western Siberia”. More detailed stratigraphic and palaeogeographic data are now available, including significant new data on hydrocarbon- source characteristics.
    [Show full text]
  • Laptev Sea: LME #57
    XI Arctic 491 XI-34 Laptev Sea: LME #57 S. Heileman and I. Belkin The Laptev Sea LME is topographically defined by the New Siberian Islands (Novosibirskie Ostrova) in the East and the Northern Land (Severnaya Zemlya) islands in the West. The LME is a continental marginal sea, most of which is shallow with a deeper northern section and a surface area of about 500,000 km2, of which 5.6% is protected (Sea Around Us 2007). According to the Atlas of the Oceans (USSR Navy, 1980), the Laptev Sea (defined in the north by the shelf break) has a surface area of 475,000 km2, water volume of 57,000 km3, and total water catchment area of 3,643,000 km2. Severe climatic conditions with major seasonal and annual changes, perennial ice cover over extensive areas, water exchange with the deep Arctic Ocean and freshwater input from Siberian rivers. The total river runoff exceeds 700 km3/year, including Lena (532), Khatanga (105), Olenek (38), Yana (31), Anabar, and Kotuy Rivers. I. Productivity The Laptev Sea LME is a Class I, high productivity ecosystem (>300 gCm-2yr-1). The availability of light and nutrients is restricted by seasonal ice cover during part of the year, limiting production to a brief period after the ice melts in the summer months. Locally, primary production may exceed 800 mgCm-2d-1.in the southern part of this LME, with high values (>300 mgCm-2d-1) also observed in the north where the Laptev Sea waters meet the Atlantic waters (Vetrov and Romankevich 2004).
    [Show full text]
  • Integration of Species and Ecosystem Monitoring for Selecting Priority
    A peer-reviewed open-access journal Nature ConservationIntegration 22: 191–218 of (2017)species and ecosystem monitoring for selecting priority areas... 191 doi: 10.3897/natureconservation.22.10711 RESEARCH ARTICLE http://natureconservation.pensoft.net Launched to accelerate biodiversity conservation Integration of species and ecosystem monitoring for selecting priority areas for biodiversity conservation: Case studies from the Palearctic of Russia Alexey A. Romanov1, Elena G. Koroleva1, Tatyana V. Dikareva1 1 Dept. of Biogeography, Faculty of Geography, Moscow State Lomonosov University, Moscow, Russia Corresponding author: Alexey A. Romanov ([email protected]) Academic editor: K. Henle | Received 3 October 2017 | Accepted 22 August 2017 | Published 1 November 2017 http://zoobank.org/93B9B3A4-78A0-49CD-AD81-EC0F55A95F53 Citation: Romanov AA, Koroleva EG, Dikareva TV (2017) Integration of species and ecosystem monitoring for selecting priority areas for biodiversity conservation: Case studies from the Palearctic of Russia. Nature Conservation 22: 191–218. https://doi.org/10.3897/natureconservation.22.10711 Abstract At the start of the third millennium, new opportunities have arisen in biogeographical research, namely in the generalisation, visualisation and cross-spectrum analysis of biological and geographical informa- tion and in the compilation of biogeographical maps and innovative models for regions that differ in the availability of distribution data. These tasks include long-term monitoring of plants and animals which are
    [Show full text]
  • XI the ARCTIC XI-29 Arctic Ocean LME XI-30 Beaufort Sea LME XI-31 Chukchi Sea LME XI-32 East Siberian Sea LME XI-33 Kara Sea
    XI THE ARCTIC XI-29 Arctic Ocean LME XI-30 Beaufort Sea LME XI-31 Chukchi Sea LME XI-32 East Siberian Sea LME XI-33 Kara Sea LME XI-34 Laptev Sea LME 454 XI The Arctic XI Arctic 455 XI-29 Arctic Ocean LME M.C. Aquarone and S. Adams The Arctic Ocean LME is centred on the North Pole and is bordered by the landmasses of Eurasia, North America and Greenland, or more precisely, by the LMEs adjacent to these landmasses (except for the Canadian Arctic Archipelago, see Figure XI-29.1). It covers over 6 million km2, of which 2% is protected, and contains 0.2% of the world’s sea mounts (Sea Around Us 2007). Three prominent ridges (Alpha Mendeleev Ridge, Lomonossov Ridge and Gakkel Ridge) divide the Arctic basin into four sub-basins. The LME lies within the domain of the North Atlantic Oscillation. It has a perennial ice cover that extends seasonally between 60° N and 75° N latitude. Ice cover reduces energy exchange with the atmosphere, which results in reduced precipitation and cold temperatures. The LME is subject to rapid climate change with the ice cover shrinking in thickness and extent. The National Aeronautics and Space Administration (NASA) reported on 13 September 2006 that, in 2005-2006, the winter ice maximum was about 6% smaller than the average amount over the past 26 years (NASA 2006). The sea ice extent in September 2007 was about 20-25% below the long-term mean. Additional reports pertaining to the Arctic Ocean LME are found in UNEP (2004,2005).
    [Show full text]
  • Boreal Treeline in North-Central Siberia
    1 1 Vegetation, climate and lake changes over the last 7,000 years at the 2 boreal treeline in north-central Siberia 3 Quaternary Science Reviews 4 PAST-Gateways Special issue: Non-glaciated Arctic environments 5 Juliane Klemm* 1, 2, Ulrike Herzschuh1, 2 and Luidmila A. Pestryakova3 6 1 Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Periglacial Research 7 Unit, Telegraphenberg A 43, 14473 Potsdam, Germany 8 2 Institute for Earth and Environmental Science, University of Potsdam, Karl- Liebknecht-Straße 24- 9 25, 14476 Potsdam-Golm, Germany 10 3 Department for Geography and Biology, North-eastern Federal University of Yakutsk, Belinskogo 11 58, 67700 Yakutsk, Russia 12 * Corresponding Author: [email protected] 13 Abstract 14 Palaeoecological investigations in the larch forest-tundra ecotone in northern Siberia have the potential 15 to reveal Holocene environmental variations, which likely have consequences for global climate 16 change because of the strong high-latitude feedback mechanisms. A sediment core, collected from a 17 small lake (radius~100 m), was used to reconstruct the development of the lake and its catchment as 18 well as vegetation and summer temperatures over the last 7,100 calibrated years. A multi-proxy 19 approach was taken including pollen and sedimentological analyses. Our data indicate a gradual 20 replacement of open larch forests by tundra with scattered single trees as found today in the vicinity of 21 the lake. An overall trend of cooling summer temperature from a ~2 °C warmer-than-present mid- 22 Holocene summer temperatures until the establishment of modern conditions around 3,000 years ago 23 is reconstructed based on a regional pollen-climate transfer function.
    [Show full text]
  • EGU2009-4147-1, 2009 EGU General Assembly 2009 © Author(S) 2009
    Geophysical Research Abstracts, Vol. 11, EGU2009-4147-1, 2009 EGU General Assembly 2009 © Author(s) 2009 Biostratigraphic and Geochronological Evidences of Floods in the Holocene: the South-East of the Taimyr Peninsula, Russia V. Ukraintseva (1) and I. Pospelov (2) (1) State Natural Reserve "Taimyrsky", Russia, ([email protected]), (2) State Natural Reserve "Taimyrsky", Russia, ([email protected]) Having conducted the research in the basins of the rivers Kotuy and Medvezhiya (71°09’ North, 102°43’ East) we identified for the first time the phenomenon of palaeofloods in the south-eastern part of the Taimyr Peninsula. The studied district can be equally referred to both the utmost East of the Putoran Plateau, and the utmost West of the Anabar Plateau: their geological structures meet in this very place. The vegetation of the investigated district belongs to the northern taiga type. The lower forest belt (to 200 m below the sea level) is formed by Gmelin larch Larix gmelinii (Rupr.) Rupr. Beginning with the sub-boreal period of the Holocene, namely since 3900 ± 60 years BP, high waters and floods occurred in this region constantly. The evidences thereof are as follows: (1) absence of plants‘ pollen and spore in the whole 10-meter formation of sediments in the 2nd terrace above the flood-plain of the Medvezhiya River; (2) absence of plants‘ pollen and spore in the surface samples taken in a larch forest with upland soil near the investigated geological cross-section; (3) lithology and biostratigraphy of the investigated geological cross-section; (4) contemporary hydrological situation in the Kotuy-Medvezhiya river system.
    [Show full text]
  • In Northern Eurasia Ревизия Рода Orthothecium (Plagiotheciaceae, Bryophyta) В Северной Евразии Michael S
    Arctoa (2020) 29: 10–48 doi: 10.15298/arctoa.29.02 A REVISION OF THE GENUS ORTHOTHECIUM (PLAGIOTHECIACEAE, BRYOPHYTA) IN NORTHERN EURASIA РЕВИЗИЯ РОДА ORTHOTHECIUM (PLAGIOTHECIACEAE, BRYOPHYTA) В СЕВЕРНОЙ ЕВРАЗИИ MICHAEL S. IGNATOV1,2, JAN KUČERA3, LARS HEDENÄS4, OXANA I. KUZNETSOVA1 & ELENA A. IGNATOVA2 МИХАИЛ С. ИГНАТОВ1,2, ЯН КУЧЕРА3, ЛАРС ХЕДЕНАС4, ОКСАНА И. КУЗНЕЦОВА1, ЕЛЕНА А. ИГНАТОВА2 Abstract A revision of the genus Orthothecium involving a molecular phylogenetic approach was performed based on material from northern Eurasia with a particular focus on the territory of Russia. It showed that diversity of the genus in Asian Russia, and particularly in the permafrost regions of Siberia was strongly under-recorded if labelled with names of European species. While all five currently accepted European species occur in Asian Russia (although O. rufescens probably only reaches European-Asian borders), four additional species need to be described as new to science: O. brunnescens, O. retroflexum, O. remotifolium and O. sibiricum. The ranges of O. lapponicum, O. chryseon, O. intricatum and O. rufescens are discussed and revised. Orthothecium strictum and O. intricatum harbour a surprisingly high genetic diversification, however, the phylogenetic signal from analysed chloroplast and nuclear loci shows a reticulate pattern, which does not allow for drawing unequivocal taxonomic conclusions; moreover, the morphological characters are not fully consistent with the intraspecific molecular line- ages and show mostly a clinal type of variation, hence we have refrained from description of additional species or intraspecific taxa. Incomplete lineage sorting has been documented in several cases be- tween O. sibiricum and O. lapponicum and between O. intricatum and O.
    [Show full text]
  • Brief Communication Mapping Long-Term Spatial Trends of The
    Special Communication John B. Zoe – A giant step forward: Notes from the Aboriginal Talking Circle Brief communication Mapping long-term spatial trends of the Taimyr wild reindeer population Andrey N. Petrov1, Anna V. Pestereva1, Leonid A. Kolpashchikov2, & Vladimir V. Mikhailov3 1 Arctic Social and Environmental Systems Research Lab, University of Northern Iowa, USA. 2 Extreme North Agriculture Research Institute, Russia. 3 St. Petersburg Institute of Informatics and Automatization, Russian Academy of Sciences, Russia. Corresponding author: [email protected] Abstract: This report presents preliminary results of mapping and analyzing wild reindeer spatial dynamics in Taimyr, Russia. We collected, spatially referenced, and systematized comprehensive aerial and land survey information spanning from 1969 to 2003, which is the most complete long-term data available about a wild reindeer herd in Eurasia. The report introduces some of the mapping products and presents a summary of our observations on spatiotemporal changes in reindeer distribution and migration. Using these data and new digital products in the GIS (Geographic Information Systems) environment, we were able to observe the long-term shift of the Taimyr Reindeer Herd’s summer, winter, and calving areas to the east and south with a simultaneous expansion of the habitat. We identified and confirmed locations of large reindeer concentrations (herds) seasonally formed throughout the study period. Using the most recent summer survey data (2009) we also were able to confirm the existence of two major migration flows in the fall: eastern (most reindeer) and western. Key words: long-term observations, mapping, migration, Russia, spatial dynamics, Taimyr, wild reindeer. Rangifer, 32 (1): 57–63 Introduction of historical observations is limited.
    [Show full text]
  • Redistribution of Vegetation Zones and Populations of Larix Sibirica Ledb
    From vegetation zones to climatypes: effects of climate warming on Siberian ecosystems Tchebakova N., Rehfeldt G., and Parfenova E. INTRODUCTION Evidence for global warming over the past 200 years is overwhelming (Hulme et al. 1999), based on both direct weather observation and indirect physical and biological indicators such as retreating glaciers and snow/ice cover, increasing sea level, and longer growing seasons (IPCC 2001). Recent GCM projections of the Hadley Centre (Gordon et al. 2000) for Siberia show an o o increase in temperature of 4 C to 6 C and an increase in precipitation of as much as 25% by o o 2100. These changes, moreover, could occur at a rate of 0.1 C to 0.4 C per decade (Watson et al., 1996).The rapid rate of change coupled with the large absolute amount of change is expected to have profound effects on plants of the boreal forests at all hierarchial levels: from forest zones (Monserud et al., 1993), to ecosystems (Guisan et al. 1996), to species (Iverson and Prasad 1998, Box et al. 1999), to populations within species (Rehfeldt et al. 1999b, 2002). Our goals are to estimate effects of a warming climate on Siberian vegetation, first, at the highest level of organization, and, second, the lowest. The first considers the effects of global warming as zonal vegetation shifts across the plains and plateaus of central Siberia, and the second considers intraspecific effects within the mountains of southern Siberia. For the second objective, we invoke Turesson’s concept of climatypes, the climatic ecotypes that comprise species, and illustrate intraspecific effects for Pinus sylvestris and Larix sibirica.
    [Show full text]