T.Jor Objectives Measure Temperature and Pres

Total Page:16

File Type:pdf, Size:1020Kb

T.Jor Objectives Measure Temperature and Pres LUNIK br MECHTA (U.S.S.R.) SPACE ACTIVITIES SUMMARY Pro .ct: Lunik I or Mechta (Dream) t.jor Objectives Measure temperature and pres - S sure inside vehicle; study gas components of in- terplanetary matter and corpuscular radiation of Project Direction: U. S. S. R. sin; magnetic fields of Earth and II oon; meteoric particles; heavy nuclei in primary cosmic /radiation. Launched: January 2, 1959 Major R.sults: Placed fl orbit around the Sun. From: Northeast of Ural Lakes Llf.tlm.: (Indefinite) Flight P,ogrn Launch V.hlck: Believed to be a Stages: (1) Modified ICBM, Thrust 220 tons (liquid) + 80 tons (solid); (2) Modified IRBM; (3) Special. Lift.Off Weight: Not Available Dim•nsions: Believed to be 110 feet high. Program: Place instrumented satellite in orbit around Sun. Program Results: Orbit achieved. Perigee (Miles): 91 million from Sun Inclination: 1 degree to Ecliptic 42I3 days . Apogee (Miles): 120 million from Sun Period: Velocity: Average 63,100 mph with respect to Sun. Payload And Instrumentation Dimensions: Not Available Payload WeIghts.Toal weight in flight reported to be 3, 245 pounds; Instrument capsule 800 pounds. Payload Configuration: Hermetically sealed sphere of aluminum magnesium alloy. Instrumentation: To measure temperature andpresure inside vehicle study gas components of in- .terplauet?.ry matter and &rpusôular radiatlon of sim; rn,aetic fields of Earththid i4on, metsx. ic particles; heavy nuclei in primary cosmic radiation, sodium cloud generator. LTi 1 ransmitt.rs: Three: 19. 997 MC and 190995 MC signals of 1. 6 second duration; 19. 993 MC and 183.6 MC. Power Supply: Not Available. '1 0 -I -I Additional Data: fl S Sources: UNOFFICIAL from U.S. and Soviet Pres and Radio. Date: Preparedeptember, 1960 Pr.par.d by Offic. of Public information, U.S. National Asronautics and Spec. Administration, Washington 25, D.C. CDA# ArTIVIIWC JIMUARY VANGUARD. II (iqsq A1h Major Obj.ctiv.s Place satellite. in orbit for Pro I.ct: Vanguard II C (1959 Alpha) study of cloud cOver. Pro oct DIr.ction: NASA . C. C Major R..ult.: Satellite placedin orbit but Launch.d: February 17, 1959 . ;ate1lite precession or wobble prevented inter- From: Atlantic Missile Range pretation of cloud cover data. Lifetim.: . 10 years or more Flight Pro grn Launch V.hlcI.: Vanguard (Satellite Launching Vehicle 4). Stages: (1) Liquid. (2) Liquid. (3) Solid. DimensIons: 72 ft. high, 45 in. diameter. Lift.Off W.Ight: 22, 600 lbs. Program: Place satellite in Earth orbit Program R.sults: Placed satellite in elliptical Earth orbif. Inclination: 32.86 degrees to Equator P.rig.. (Mu..): 314.7'(Sept. 1960) Period: 125.3. minutes Apog.. CMII..): 2, ok6(Sept. 1960) VelocIty: 18, 299 mph at perigee • 13, 109 mph at apogee Payload And Instrumentation Payload W.Ights: 21. 5 lbs. DIm.nslons: .20 in. diameter Sphere with shell of highly polished silicon-monoxide-coated magnesium. Payload Configuration: Instrumentation: Chiefly two infrared photocells and accessory equipment. z Transmitt.rs: 108.00 MC at 10 mw (tracking) lasted 27 days. 108.03 MC at 1 watt triggered from ground lasted 18 days. Pow.r Supply: Mercury batteries. Additional Data: Sources: NASA Dat.: Prepared September, 1960 I Pr.par.d by Offic. of. Public Information, U.S. National A.ronautics and Spac. Administration, Washington 25, D.C. SPACE ACTIVITIES SUMMARY DIOVERER I (1959 Betal & Project: Discoverer I Major Obj.ctiv.s Demonstrate orbital (1959 Beta) capability of Discoverer-Thor com- 0'I . bination and capability of its ground Project Direction: ARPA support equipment. ii r') Launched: Feb. 28, 1959, 1:49 PM (PsT) Major Results: Satellite placed in near- polar orbit. Difficulty in stabili- From: Vandenberg AFB, Calif. zation caused tumbling which hampered continuous tracking. LIfetIme:10 days (approx.)* Flight Program Launch Vehicle: Thor-Agena. Stages: (i) Modified Thor IRBM. (2) Agena. Lift.OHW.ight:Over 100,000 lbs. Dimensions: 78.2 ft. high, 5 . ft. base diameter Program: Place satellite in near-polar orbit. Program Results: Satellite placed in elliptical near-polar orbit. No recovery planned. Perigee (Miles): 176 Inclination: .3 degrees off North-auth axis Apogee (Miles): 519 Period: 95.57 minutes S Velocity: Payload And Instrumentation Dimensions:18.8 ft. high, 5 ft. dianeter Payload Weights: 1,300 total lbs. 1nclu.n second stage casing& all components and 11.0 lbs. of instruments. Payload Configuration: Cylindrical Guidance system including both a pneumatic, Jet control system H Instrumentation: and a hydraulic control system; VHF low power beacon trans- mitter; radar beacon transmitter with t±ansponder, No separate capsule. Transmitters:Includes telemetry and tracking beacon as above. Power Supply: Not available. I—I Additional Data: *Reentered atmosphere and decayed in early March 1959. I S Sources: DOD Date: Prepared September, 1960 Pr.par.d by Offic. of Public Information, U.S. National A.ronautics and Spac. Administration, Washington 25, D.C. SPACE ACTIVITIES SUMMARY YIONEER IV Project: Pioneer IV Major Objectives: Place instrumented probe in an C S Earth-Moon trajectory; measure radiation in space; test photo-electric sensor in vicinity of NASA Project Direction: Moon; sample Moon's radiation; test long-range tracking. Launched: March 3, 1959 Major Results: Achieved Earth-Moon trajectory and yielded important radiation data in space From: Atlantic Missile Range Injection below planned velocity prevented near- lunar experiments. In orbit. around Sun. Lifetime: Eternal orbit around Sun. Flight Pro gran Launch Vehicle: Juno II. Stages: (1) Modified Army Jupiter IRBM. (2) 11 scaled-down Sergeant rockets in cluster. (3) Three scaled-down Sergeants in cluster. (4) One scaled-down Sergeant. Lift-Off Weight: 121, 000 lbs. DImensions: 76 ft. high; 8-3/4 ft. diameter Program: Place instrumented vehicle man Earth-Moon trajectory. If possible, pass. within 20, 000 miles of Moon to test photoelectric sensor. Program Results: Placed in Earth-Moon trajectory and achieved orbit around Sun. Came within 37,300 miles of Moon at 5:24 p.m., EST. March 4, 1959. Perigee (Miles): 91.7 million from Sun. Inclination: .127 degrees to Ecliptic . Apogee (Miles): 107 .9million from Sun. Period: . 4Q6. 9 days Velocity: injection velocity of 24, 790 mph was 188 mph below planned velocity. Average speed in Sun orbit: 65,1L 4 mph with respect to Sun. Payload And Instrumentation Dimensions: 20 in. long; 9 in. diameter Payload W.ights: 13.40 lbs. Payload Configuration: Conical with shell of gold-washed fiberglass which also serves as conductor and antenna. Instrumentation: For measurement of radiation in space and photoelectric sensor (not used) for tests in vicinity of Moon. Transmitters: 960. 05 MC @180 .mwwlth .3 subcarriers. Lifetime: 90 hours. tj Power Supply: Mercury batteries. Additional Data: Tracked for 82 hours to a distance of 407, 000 miles. Sources: NASA Date: Prepared September, 1960 Prepared by Office of Public Information, U.S. National Aeronautics and Space Administration, Washington 25, D.C. SPACE ACTIVITIES SUMMARY VANGUARD Project: Vanguard Major Objectives: a) Place instrumented satellite in orbit to map Earth's magnetic \J1 field. b) Place inflatable sphere in orbit to r NASA Project Direction: measure density of extreme upper cji atmosphere. Launched: April 13, 1959 Major Results: No orbit due to malfunction in second stage. Payload and second stage fell From: Atlantic Missile Range into Atlantic several hundred mile from launch point. Lifetime: Not Applicable Flight Program Launch Vehicle: Vanguard (Satellite Launching Vehicle 5) Stages: (1) Liquid. (2) Liquid. (3) SolId. Lift.Off Weight: 22, 600 lbs. Dimensions: 72 ft. high, 45 in. diameter Program: Place satellite and inflatable sphere in Earth orbit. Program Results: No orbit due to malfunction in second stage. Perigee (Miles): Not Applicable Inclination: Not Applicable Apogee (Miles): Not Applicable Period: Not Applicable . Velocity: Not Applicable Payload And Instrumentation Dimensions: Satellite "A": 1,3 in. sphere topped Payload Weights: 23.3 lbs. total. by 17-1/2 x 2-1/2 in. cyl. "W': 30 in. in- flatable sphere. Payload Configuration: As above. Satellite "A" of fiberglass and phenolic resins; "B" of laminated aluminum foil and plastic sheet. Instrumentation: Satellite "A" contained precise manetometer to measure earth's magnetic field. "B" contained no instrumentation; was to be tracked optically. Transmitters: For "A", 108 MC at 10 mw for tracking and 108. 03 MC at 80 mw for telemetry at ground command. 0 Power Supply: Silver zinc batteries. Additional Data: . Sources: NASA Date: Prepared September 1960 Prepared by Office of Public Information, U.S. National Aeronautics and Space Administration, Washington 25, D.C. SPACE ACTIVITIES SUMMARY DISCOVERER II (1959 GRmmn.) Project: Discoverer II Major Objectives: to (1959 Gamiiia) gather data on propulsion, communi- fl cations, orbital performance, stabi- Project Direction: ARPA lization, recovery techniques, and measurement of cosmic radiation. Launched: April 13, 1959, 1:18 PM (PST) MajorR.sults:AChiêVed near-circular polar orbit and controlled stabili- From: Vandenberg AFB, Calif. zation. Timer malfunction caused premature capsule ejection and pre- Lifetlme:13 days (Approx.) vented recovery attempt.* Flight Program Launch Vehicle: Thor-Agena. Stages: (1) ModifIed Thor IRBN. (2) Agena LiftOff Weight: io8, 4OO lbs. (Approx.) Dlm.nslons: 78.6 ft. high, 5 ft. base diameter Program: place satellite in near-polar orbit and recover capsule. Program R.sults:Satellite placed In near-polar orbit.
Recommended publications
  • Information Summaries
    TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical
    [Show full text]
  • Army Ballistic Missile Programs at Cape Canaveral 1953 – 1988
    ARMY BALLISTIC MISSILE PROGRAMS AT CAPE CANAVERAL 1953 – 1988 by Mark C. Cleary 45th SPACE WING History Office TABLE OF CONTENTS Preface…………………………………………………… iii INTRODUCTION……………………………………… 1 REDSTONE……………………………………………… 15 JUPITER…………………………………………………. 44 PERSHING………………………………………………. 68 CONCLUSION………………………………………….. 90 ii Preface The United States Army has sponsored far fewer launches on the Eastern Range than either the Air Force or the Navy. Only about a tenth of the range’s missile and space flights can be attributed to Army programs, versus more than a third sponsored by each of the other services. Nevertheless, numbers seldom tell the whole story, and we would be guilty of a grave disservice if we overlooked the Army’s impressive achievements in the development of rocket- powered vehicles, missile guidance systems, and reentry vehicle technologies from the late 1940s onward. Several years of experimental flights were conducted at the White Sands Proving Ground before the Army sponsored the first two ballistic missile launches from Cape Canaveral, Florida, in July 1950. In June 1950, the Army moved some of its most important guided missile projects from Fort Bliss, Texas, to Redstone Arsenal near Huntsville, Alabama. Work began in earnest on the REDSTONE ballistic missile program shortly thereafter. In many ways, the early Army missile programs set the tone for the development of other ballistic missiles and range instrumentation by other military branches in the 1950s. PERSHING missile launches continued at the Cape in the 1960s, and they were followed by PERSHING 1A and PERSHING II launches in the 1970s and 1980s. This study begins with a summary of the major events leading up to the REDSTONE missile program at Cape Canaveral.
    [Show full text]
  • J-Je-I9v0lu'zt"E0N F
    APRIL .17, 1973 THE EVOLUTION OF ELECTRONIC TRACKING, OPTICAL, TELEMETRY, AND COMMAND SYSTEMS AT THE KENNEDY SPACE CENTER EOUTI- O j 22892 j-jE-i9V0LU'zT"E0N F..... __.,,L.-1007-I7).TiE ' -"L-TBLBIMETRYIT.. SPACE unclas ELECT1ROVIC AT BE K LE!DS HC $6.2525 CSCL 22D G3/11-- 3861 A1DCE1BTEU COMMA1D (ASA)1 SYSTES63 p Edited by: W. R. McMurran From contributions by: W. R. Dietz M. D. Edwards N. F. Hinds L. F. Keene REPRODUCEDBY NATIONAL TECHNICAL INFORMATION SERVICEI U.S.DEPARTMENT OF CONMERCE SPRINGFIELD,VA. 22161 TABLE OF CONTENTS PAGE . ELECTRONIC TRACKING SYSTEMS SCR-584 Radar-Mod II 1 AZUSA 1 DOVAP 1 BEAT-BEAT (DOVAP) 2 MILS 2 MICROLOCK 3 ELSSE 3 UDOP 3 BEAT-BEAT (Telemetry) 4 EXTRADOP 4 AN/FPS-16 Radar 4 MINITRACK - 5 MISTRAM 6 GLOTRACK 6 ODOP 6 Radar Altimeter 6 USB 7 2. OPTICAL TRACKING SYSTEMS CZR 8 Cinetheodolite 8 Ballistic Cameras 9 ROTI 9 IGOR 10 3. EVOLUTION OF SPACE VEHICLE TELEMETRY 11 4 EVOLUTION OF SPACE VEHICLE COMMAND SYSTEMS 13 5. APPENDICES 6. REFERENCES - f INTRODUCTION The following is a history of the major electronic tracking, optical, telemetry, and command systems used at ETR in support of Apollo-Saturn and its forerunner vehicles launched under the jurisdiction of the Kennedy Space Center and its forerunner organizations. ,-'( 1. ELECTRONIC TRACKING SYSTEMS 1953 SCR-584 Radar-Mod II: The first Redstone was tracked by the SCR-584 which was already in use at the ETR. This radar is a modified and rehabilitated World War II system designed to provide azimuth, ele.vation and slant range.
    [Show full text]
  • Math Exploration Guide USSRC
    SPACE CAMP TRAINING CENTER POWER OF ZERO SHUTTLE PARK 1. While on a mission in space, astronauts grew cabbage and lettuce in the Destiny Laboratory aboard the 1. The External Tank provided fuel for ______ test firings of International Space Station. The plants were fed the 1. How Much Trash the Shuttle’s Main Propulsion System with a total test time following nutrients each week: cabbage got 33/ cups of ______seconds (equivalent to about ______ flights). The 1 4 Do You Make In External Tank fuels the Orbiter’s Main Engines during the Exploration of plant food and carrots got 2 / cups of plant food. Math 6 About how much plant food were both plants given in A Day? first ______ minutes of flight. [5.OA.1, 5.OA.2] a week? Explain your reasoning. [5.NF.1, 5.NF.2] Grade 2. Seven billion humans populate the earth and create 2. Calculate the total width of a Space Shuttle’s four 32,900,000,000 pounds of trash in one day. 1 main landing gear tires if one tire is 44 /62 inches wide. Write this number in expanded notation. [5.NBT.3] [5.NF.1, 5.NF.2] 5 2. Write an expression to represent the number of test your journey starts here flights equivalent to the test firings that the External Tank fueled. [5.0A.1, 5.OA.2] 3. One person creates around 1715.5 pounds of trash in one year. Round this number to the nearest whole number. [5.NBT.1, 5.NBT.4] ROCKET PARK 4.
    [Show full text]
  • Cape Canaveral Air Force Station Historic And/Or Common Cape Canaveral 2
    NPS -omi 10-90? NATIONAL HISTORIC LANDMARK FEDERAL AGENCY NOMINATION (7-S1) REVISED SEPTEMBER 1, 1983 United States Department of the Interior National Park Service %. for NPS use only ^^""''X'"^ -"^ ' ''-*"*•--'"•- /-^"' i ~~v**v,L\ ;y 'I.:/' received " - -': " National Register of Historic Places l^'^^j---:" . v . ': ,. Inventory Nomination Form S date entered , See instructions in How to Complete National Register Forms i r "' "-' ^ V i_ a< Type all entries complete applicable sections_______ 1. Name Cape Canaveral Air Force Station historic and/or common Cape Canaveral 2. Location street & number Ca? e Canaveral Air Force Station not for publication city, town vicinity of congressional district cit/ of CaPe Canaveral , Florida Bre-vard state code county code 3. Classification Cat.egory Ownership Stat:us Present Use district _ x_ public occupied agriculture Y museum building(s) private unoccupied commercial park structure both work in progress educational private re<iidence site Public Acquisition Aceessible entertainmpnt religious object in process ^L_ yes: restricted x government scientifir being considered yes: unrestricted industrial transportsition no x military other: 4. Owner of Property name U.S. Government street & number HQ ESMC/ETR Patrick Air Force Base Cocoa Beach city, town vicinity of state Florida 5. Location of Legal Description courthouse, registry of deeds, etc. Brevard County Courthouse street & number Titusville Florida city, town state 6. Representation in Existing Surveys title NONE has this property been determined eligible? yes no date federal state county local depository for survey records city, town state 7. Description Condition Check one Check one ^ excellent ^ deteriorated ^ unaltered original site X good . X . ruins ^ altered moved date JL_fair unexposed Detailed description of nominated pads is siven below.
    [Show full text]
  • National Register of Historic Places Inventory—Nomination Form 1
    NFS Fomi 10-90* (7-S1) NATIONAL HISTORIC LANDMARK FEDERAL AGENCY NOMINATION REVISED SEPTEMBER 1, 1983 United States Department of the Interior National Park Service Jfor received National Register of Historic Places i:--^ •••;-' •.':;-; Inventory—Nomination Form entered See instructions in How to Complete National Register Forms Type all entries—complete applicable sections_______ 1. Name Cape Canaveral Air Force Station historic and/or common Cape Canaveral 2. Location street & number Cape Canaveral Air Force Station not for publication city, town vicinity of congressional district city of CaPe Canaveral , Florida Bre-vard state code county code 3. Classification Category Ownership Status Present Use _ 2L district _ x_ public x occupied agriculture y museum building(s) private unoccupied commercial park structure both work in progress educational private residence site Public Acquisition Accessible entertainment religious object in process X— yes: restricted x government scientific being considered yes: unrestricted industrial transportation no x military other: 4. Owner of Property name U.S. Government street & number HQ ESMC/ETR Patrick Air Force Base Cocoa Beach city, town . vicinity of state Florida 5. Location of Legal Description courthouse, registry of deeds, etc. Brevard County Courthouse street & number Titusville Florida state 6. Representation in Existing Surveys title NONE has this property been determined eligible? yes no date federal state county local depository for survey records city, town state 7. Description Condition Check one Check one V ^ excellent ^ deteriorated x unaltered original site X good X ruins X altered moved date JL_fair unexposed Detailed description of nominated pads is siven below. Describe the present and original (if known) physical appearance .
    [Show full text]
  • Satellite Scoreboard . . . US and USSR
    Satellite Scoreboard . US and USSR BOX SCORE FOR UNITED STATES SPACE PROGRAMS OUR and a half years ago Sputnik I first blazed through Achieved Failed to Still in Orbit FIF the sky, heralding the Space Age. Since that October Program Attempts Orbit Achieve Orbit 3/8/62 day in 1957 space has become a busy place: We have Mercury 5 3 2 0 successfully launched sixty-six machines of incredible Discoverer 38 26 12 6 complexity—one carrying a man—into earth orbit and an- ( • Oscar) other three satellites into solar orbit; the Soviets have sent Midas 4 3 1 3 thirteen vehicles whirling around the earth—two with men Samos 3 1 2 1 aboard, others with dogs—and two other satellites into orbit Vanguard 11 3 8 3 around the sun. They have also planted the flag of the Explorer 19 11 8 7 Soviet Union on the moon. Pioneer 9 2 7 2 (both solar (solar orbit) . In contrast, the first four and a half years of the Air Age orbit) were not so filled with activity: By May 1907—at the time Beacon 2 0 2 0 of his graduation from West Point—Henry H. Arnold, who Ranger 3 3 0 1 was to become the wartime commander of history's greatest (1 in solar (solar orbit) air force, still did not know what the Wright brothers had orbit) done at Kitty Hawk, N. C., during his plebe year. We may Composite 1 0 1 0 be sure that the commander of tomorrow's Space Force— OSO 1 1 0 1 who could well be graduating this spring from the Air Score 1 1 0 0 Echo 2 1 1 1 Force Academy—has followed the news of Sputnik I, Courier 2 1 1 1 Gagarin, Titov, Glenn, and all the rest with interest and Transit 7 5 2 4 3 understanding.
    [Show full text]
  • Rocketry Index a “Catalog” of All the Hobby Rockets
    and Present The Rocketry Index A “Catalog” of all the hobby rockets... ever! (or at least as many as I could manage!) Compiled and Edited by John A. Lee OSL Revision: 13.01 Contents Introductory Materials............................................................... 43 What Is “The Rocketry Index?”........................................................43 What Gets Included With the Rockets ..............................................45 What Gets Included With the Companies .........................................47 Company Information .................................................................................... 47 Company Statement ....................................................................................... 47 Rocketeers’ Views of the Companies.............................................................. 47 Master Lists ................................................................................................... 47 Family Groups...................................................................................49 Patriarchal Families ...................................................................................... 49 Always Ready Rocketry Families ..................................................................... 50 ARR Basic Blues Family .................................................................................................... 50 Art Applewhite Families ................................................................................... 50 Applewhite Cinco Family .................................................................................................
    [Show full text]
  • Nasa Headquarters Code Q
    c NASA HEADQUARTERS CODE Q SPACE FXIGHT RISK DATA COLLECTION/ANALYSIS PROJECT FINAL REPORT 4 6* cu v, m cp I c 4 u o* C RISK AND RELIABILIW 3 DATABASE NASA Space Flight Risk Data Col lection/Analysis Project FINAL REPORT Prepared For: NASA Headquarters, Code Q 300 E Street, S.W. Washington, DC 20546 Prepared By: Dimensions international, Incorporated 4501 Ford Avenue, Suite 1200 Alexandria, Virginia 22302 and Science Applications International Corporation 8 West 40th Street, 14th Floor New York, New York 10018 TABLE OF CONTENTS ParaTraDh Description Pane 1.o PURPOSE 1 2.0 BACKGROUND 1 2.1 Project Summary 3 2.2 Project Process 4 3.0 DATA PRODUCTS 6 3.1 Launch Vehicle Notebooks 6 3.1.1 Notebook I 7 3.1.2 Notebook II 7 3.1.3 Notebook 111 7 3.1.4 Notebook IV 8 3.1.5 Notebook V 8 3.1.6 Notebook VI 8 3.1.7 Data Encoding Worksheets 9 3.1.8 Data Analysis Summary Reports 11 3.1.8.1 Failure Probability Confidence Measure 11 3.1.9 Typical Graphs 14 3.2 Database Files 17 3.2.1 Data Encoding Database Files 17 3.2.2 Risk and Reliability Database 22 4.0 OVERVIEW OF LAUNCH VEHICLES 22 4.1 Atlas 22 4.2 Brilliant Pebbles 25 4.3 Delta 26 4.4 Gemini 29 4.5 J u p iter/J u no 30 4.6 Pershing It 30 4.7 Polaris 31 4.8 Prospector (Joust) 32 4.9 Red Tigress I & I1 32 4.10 Saturn 33 4.1 1 Space Shuttle 33 4.12 Starbi rd 34 4.1 3 TMD Countermeasure 34 ii TABLE OF CONTENTS Parapraph Description Pane 4.14 Vanguard 34 5 .O SUMMARY 35 5.1 Failure Summary 35 5.1.1 Launch Vehicle Failure Probabilities 36 5.1.2 Generic Failure Totals 37 5.1.3 Failure Sequence 40 5.2 Preliminary
    [Show full text]
  • Series 14: Photographs
    International Geophysical Year Records Group Series 14: Photographs. Contains photographs of various IGY activities. Many photographs under “Historical” subhead appeared in various publications. Note that some numbered photographs are missing. 14.1 Historical Photographs: Historical: Aurora & Airglow: 1957-1958 Photographs: Historical: Cosmic Rays: 1957-1958 Photographs: Historical: Geomagnetism: 1957-1958 Photographs: Historical: Glaciology: 1943-1958 Photographs: Historical: Gravity: 1957-1958 Photographs: Historical: Ionospheric Physics: 1953-1958 Photographs: Historical: Longitude & Latitude: 1957-1958 Photographs: Historical: Meteorology: 1952-1958 Photographs: Historical: Oceanography: 1955-1959 Photographs: Historical: Palau & Marshalls: 1956 Photographs: Historical: Rocketry: 1947-1959 Photographs: Historical: Seismology: 1960 Photographs: Historical: Solar Activity: 1948-1960 Photographs: Historical: World Days: 1954-1959 Photographs: Historical: Organization: 1955 14.2 Photographs by Discipline 14.2.1 Antarctic Photographs: Antarctic: Listing of Numbered Antarctic Photographs Photographs: Antarctic (1): 1955-1961 Photographs: Antarctic (2): 1949-1957 Photographs: Antarctic: General: 1956-1957 Photographs: Antarctic: Operation Deep Freeze I: 1955-1956 Photographs: Antarctic: Operation Deep Freeze II: 1956-1957 Photographs: Antarctic: Operation Deep Freeze 1961: 1960-1961 Photographs: Antarctic: Operation Deep Freeze: General: 1955-1959 Photographs: Antarctic: Cartwright G at Soviet Mirny Station: 1956 Photographs: Antarctic: AN
    [Show full text]
  • Space Orientation Center (Small).Pdf
    0::: W I­ Z w U Z o- r~ z w -0::: o W U ~ (/) GEORGE C. MARSHALL SPACE FLIGHT CENTER HUNTSVILLE, ALABAMA HTTP'I/HEROICRELICS.ORG The Un ited States Con~ress created the National Aeronautics and Space Adminis­ trati on (NASA) in 1958. This was less than a ye:u after man-made satellites orbiting the earth marked the l >c~inni n g of the Space A~e . NASA is responsible for the explorati on of space for peaceful purvoses. NASA headquarters is loc'ated in w ash­ in~ton, D. c.. but research and develop­ ment facilities are in many states anoss the nation. Throu~h its agencies NASA attempts to expand human knowledge of phenomena in earth's atmosphere and in spate. It develops aeronautical and space vehicles for manned and unmanned pro\>cs. NASA also conducts other activi­ ti es required for the investigation of sp:lce. 0::: GEORGE&. W NVITSYIUI, AlAIAJiIA r-­ Z w o z o- The Gcor~c C. Mlifshall Space F1i ~ht Center (MSFC) is the NASA a~cl\c) rcsllOllsihlc for lar~c spal'e hUlllcll vehicles. ~ISFC of­ ficially bc).:;1II Ol>eralions on Jul) I, 1960, in lIunts\jllc, Alabama, wilh a rore of nx-kel experts who h:u:1 prcdously worked on mis­ - siles for Americ:m defense. 11le Cenlcr " ~.IS 0::: named for the American ~encral who won a Nobel pri7.(· for peace. o Marshall Space Flight Center's major t:uk today ;s to provide the ~iant Saturn vehicles that will be used for m:ulIIl-d exploration of w the moon.
    [Show full text]
  • Juno V: the Early History of a Super Booster by Andrew J
    Juno V: The Early History of a Super Booster By Andrew J. LePage September 1998 Introduction funded Rocketdyne for additional work as part of the Air Force Rocket Engine Advancement Program The launching of the first Sputnik satellites in 1957 which eventually lead to the development of the and 1958, which weighed as much as 1.3 metric tons 6,700 kilonewton (1.5 million pound) thrust F-1 (2,900 pounds), clearly demonstrated that the Soviet engine. Union had a lead over the West in rocket technology. Within a couple of years, Soviet design bureaus started flying improved rockets that could launch more than 4.5 metric tons (10,000 pounds) into orbit. The fact that contemporary American rockets could loft only a small fraction of this mass was a major concern not only to engineers and scientist in the West that hoped to conquer the space frontier but to the political leaders that watched American technological preeminence fade with each Soviet space achievement. Despite the early lead in lift capability the Soviet Union enjoyed, by the beginning of the Space Age American rocket engineers already had plans in motion for large boosters that would dwarf current Soviet launch vehicles. During the late 1940s and German rocket specialist Wernher von Braun who 1950s the Rocketdyne Division of North American lead the Saturn development program. Aviation, Inc. had been developing large rocket (MSFC/NASA) engines for use in America's first generation of long By 1957 the DoD (Department of Defense) began to range missiles. Anticipating the need for still larger consider a variety of advanced space missions with engines in the future, Rocketdyne started feasibility military applications including communication and studies on one million pound thrust-class (4,500 weather satellites.
    [Show full text]