The Environment Agency's Approach to Groundwater Protection
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fecal Sludge Management (FSM) Services in Nigeria} Public Disclosure Authorized
Report No: AUS0000053 . Nigeria Sustainable WSS Services in Nigeria { Fecal Sludge Management (FSM) Services in Nigeria} Public Disclosure Authorized . {December 2017} . WAT . Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized . Document of the World Bank . © 2017 The World Bank 1818 H Street NW, Washington DC 20433 Telephone: 202-473-1000; Internet: www.worldbank.org Some rights reserved This work is a product of the staff of The World Bank. The findings, interpretations, and conclusions expressed in this work do not necessarily reflect the views of the Executive Directors of The World Bank or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of The World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. Rights and Permissions The material in this work is subject to copyright. Because The World Bank encourages dissemination of its knowledge, this work may be reproduced, in whole or in part, for noncommercial purposes as long as full attribution to this work is given. Attribution—Please cite the work as follows: “World Bank. {YEAR OF PUBLICATION}. {TITLE}. © World Bank.” All queries on rights and licenses, including subsidiary rights, should be addressed to World Bank Publications, The World Bank Group, 1818 H Street NW, Washington, DC 20433, USA; fax: 202-522-2625; e-mail: [email protected]. Technical Assistance to Fecal Sludge Management Services in Port Harcourt, Nigeria Selection #1222708 ASSESSMENT REPORT AND PROJECT DEVELOPMENT IN SELECTED PILOT AREAS 1 August 2017 ii Project Development in Selected Pilot Areas EXECUTIVE SUMMARY The imperative for improving the collection, treatment, and disposal of human excreta is gaining increasing attention in international development efforts. -
'Drought-Free' Maharashtra? Politicising Water Conservation for Rain-Dependent Agriculture
www.water-alternatives.org Volume 14 | Issue 2 Shah, S.H.; Harris, L.M.; Johnson, M.S. and Wittman, H. 2021. A 'drought-free' Maharashtra? Politicising water conservation for rain-dependent agriculture. Water Alternatives 14(2): 573-596 A 'Drought-Free' Maharashtra? Politicising Water Conservation for Rain-Dependent Agriculture Sameer H. Shah Institute for Resources, Environment & Sustainability (IRES), The University of British Columbia, Vancouver, Canada; [email protected] Leila M. Harris Institute for Resources, Environment & Sustainability (IRES) and the Institute for Gender, Race, Sexuality and Social Justice (GRSJ), The University of British Columbia, Vancouver, Canada; [email protected] Mark S. Johnson Institute for Resources, Environment & Sustainability (IRES) and the Department of Earth, Ocean & Atmospheric Sciences, The University of British Columbia, Vancouver, Canada; [email protected] Hannah Wittman Institute for Resources, Environment & Sustainability (IRES) and the Centre for Sustainable Food Systems, The University of British Columbia, Vancouver, Canada; [email protected] ABSTRACT: Soil moisture conservation ('green water') and runoff capture ('blue water') can reduce agricultural risks to rainfall variation. However, little is known about how such conjoined initiatives articulate with social inequity when up-scaled into formal government programmes. In 2014, the Government of Maharashtra institutionalised an integrative green-blue water conservation campaign to make 5000 new villages drought-free each year (2015- 2019). This paper analyses the extent to which the campaign, Jalyukt Shivar Abhiyan, enhanced the capture, equity, and sustainability of water for agricultural risk reduction. We find government interests to demonstrate villages as 'drought-free' affected the character and implementation of this integrative campaign. -
Optimization of Groundwater Remediation Strategies in Aquifers Affected by Slow Desorption Processes
Optimization of Groundwater Remediation Strategies in Aquifers Affected by Slow Desorption Processes By Thomas C. Harmon, William W-G. Yeh Dung Kong, Jose A. Saez and Yung-Hsin Sun Department of Civil and Environmental Engineering University of California, Los Angeles Los Angeles, CA 90095-1593 TECHNICAL COMPLETION REPORT Project Number UCAL-WRC-W-81S September, 1996 University of California Water Resources Center ,...:<) c; (), 'i '_.',,,\"~' i 'V!-~S The research leading to this report was supported jointly by the National Water Research Institute and by the University of California, Water Resources Center, as part of Water Resources Center Project UCAL-WRC-W-81S. , W') L- - ( IIV) Of (~" .r .~. , ~ ~"-) Optimization of Groundwater Remediation Strategies in Aquifers Affected by Slow Desorption Processes TABLE OF CONTENTS LIST OF FIGURES iii ABSTRACT iv 1. PROBLEM AND RESEARCH OBJECTIVES 1 2. METHODOLOGy 2 2.1 Flow and Transport Model Formulation 3 2.2 Numerical Method 3 2.3 Simulated Domain 4 2.4 Moment Analysis 7 2.5 Remediation Management Model 8 2.5.1 Background 8 2.5.2 Management Algorithm 9 3. PRINCIPLE FINDINGS AND SIGNIFICANCE 12 3.1 Simulated Spatial Distributions 12 3.2 Simulated Mass Recovery 13 3.3 Moment Analysis 14 3.4 Two Phase Pumping Scheme 14 3.6 Optimal Management of Two Phase Pumping 15 4. CONCLUSIONS AND RECOMMENDATIONS 16 5. SUMMARY 18 6. Ph.D. DISSERTATIONS 19 7. SOURCES CONSULTED 19 11 LIST OF FIGURES Figure Caption Page Figure 1 Computational domains, parameter zonation and 23 extraction well location for heterogeneous and homogeneous cases. Figure 2 Heterogeneous domain simulated mobile zone 24 concentrations lines under (a) 20 year source term under natural-gradient flow conditions for 20 years mobile zone concentrations, and (b) 20 years forced gradient flow conditions. -
Federal Groundwater Protection Programs
University of Colorado Law School Colorado Law Scholarly Commons Uncovering the Hidden Resource: Groundwater Law, Hydrology, and Policy in the 1990s 1992 (Summer Conference, June 15-17) 6-17-1992 Setting the Standards: Federal Groundwater Protection Programs Katharine (Joni) Teter Follow this and additional works at: https://scholar.law.colorado.edu/groundwater-law-hydrology-policy Part of the Environmental Health and Protection Commons, Environmental Law Commons, Natural Resources Law Commons, Natural Resources Management and Policy Commons, State and Local Government Law Commons, Water Law Commons, and the Water Resource Management Commons Citation Information Teter, Katharine (Joni), "Setting the Standards: Federal Groundwater Protection Programs" (1992). Uncovering the Hidden Resource: Groundwater Law, Hydrology, and Policy in the 1990s (Summer Conference, June 15-17). https://scholar.law.colorado.edu/groundwater-law-hydrology-policy/39 Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School. Katharine (Joni) Teter, Setting the Standards: Federal Groundwater Protection Programs, in UNCOVERING THE HIDDEN RESOURCE: GROUNDWATER LAW, HYDROLOGY, AND POLICY IN THE 1990S (Natural Res. Law Ctr., Univ. of Colo. Sch. of Law 1992). Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School. SETTING THE STANDARDS: FEDERAL GROUNDWATER PROTECTION PROGRAMS Katharine (Joni) Teter Gorsuch, Kirgis, Campbell, Walker and Grover Attorneys at Law 1401 Seventeenth Street, Suite 1100 Denver, Colorado UNCOVERING THE HIDDEN RESOURCE: GROUNDWATER LAW, HYDROLOGY AND POLICY IN THE 1990s University of Colorado at Boulder Natural Resources Law Center June 15-17, 1992 SETTING THE STANDARDS: FEDERAL GROUNDWATER PROTECTION PROGRAMS I. -
Business Analysis of Fecal Sludge Management: Emptying and Transportation Services in Africa and Asia Draft Final Report
Business Analysis of Fecal Sludge Management: Emptying and Transportation Services in Africa and Asia Draft Final Report Sangeeta Chowdhry and Doulaye Kone Sponsored by The Bill & Melinda Gates Foundation September 2012 ACKNOWLEDGMENTS This report was written by Sangeeta Chowdhry (independent consultant) under the guidance and supervision of Dr. Doulaye Kone (Bill & Melinda Gates Foundation). Several sector experts provided generous support of their time as advisors to this study. Their participation in several workshops that were held in in Africa and Asia, and review and feedback of the country proposals and reports is greatly appreciated. Rajesh Advani from the World Bank needs a special mention here. Mr. Advani provided valuable training in financial analysis to the country teams at workshops in Asia and Africa. The sector experts who served as advisors to this project are: Rajesh Advani (World Bank), Akica Bahri (African Development Bank), Matovu Jafari (Private Emptiers’ Association, Uganda), Roshan Shrestha (UNDP) and Dr Thammarat Koottatep (Asian Institute of Technology). Report disclaimer: This report is based on research funded by the Bill & Melinda Gates Foundation. The findings and conclusions contained within are those of the authors and do not necessarily reflect positions or policies of the Bill & Melinda Gates Foundation. Copyright notice: © 2012 Bill & Melinda Gates Foundation. All Rights Reserved. Bill & Melinda Gates Foundation is a registered trademark in the United States and other countries. 2 TABLE OF CONTENTS ACKNOWLEDGMENTS -
1. Urine Diversion
1. Urine diversion – hygienic risks and microbial guidelines for reuse © Caroline Schönning Department of Parasitology, Mycology and Environmental Microbiology Swedish Institute for Infectious Disease Control (SMI) SE-171 82 Solna Sweden [email protected] This chapter is based on the doctoral thesis published by the author in February 2001: Höglund, C. (2001). Evaluation of microbial health risks associated with the reuse of source separated human urine. PhD thesis, Department of Biotechnology, Royal Institute of Technology, Stockholm, Sweden. ISBN 91-7283-039-5. The full thesis (87 pages, without published papers) can be downloaded from: http://www.lib.kth.se/Sammanfattningar/hoglund010223.pdf Dr Håkan Jönsson, Swedish University for Agricultural Sciences is acknowledged for compiling Section 3, and Dr Jan-Olof Drangert, Linköping University is acknowledged for compiling Section 9. TABLE OF CONTENTS TABLE OF CONTENTS 1 1. INTRODUCTION 2 1.1 History 2 1.2 Nutrient content and volume of domestic wastewater 3 2. URINE DIVERSION 3 2.1 Urine diversion in Sweden 4 2.2 Source-separation of urine in other parts of the world 6 2.3 Ecological Sanitation 6 3. URINE AS A FERTILISER IN AGRICULTURE 7 3.1 Characteristics of diverted human urine 7 3.2 Collection and storage of the urine – developing countries 7 3.3 Urine as a fertiliser 8 3.4 Crops to fertilise 9 3.5 Dosage 9 3.6 Fertilising experiments 10 3.7 Acceptance 11 4. PATHOGENIC MICROORGANISMS IN URINE 11 5. FAECAL CONTAMINATION 13 5.1 Analysis of indicator bacteria to determine faecal contamination 14 5.2 Analysis of faecal sterols to determine faecal contamination 15 5.3 Discussion 16 6. -
Doctor of Philosophy
KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY KUMASI, GHANA Optimizing Vermitechnology for the Treatment of Blackwater: A Case of the Biofil Toilet Technology By OWUSU, Peter Antwi (BSc. Civil Eng., MSc. Water supply and Environmental Sanitation) A Thesis Submitted to the Department of Civil Engineering, College of Engineering in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy October, 2017 DECLARATION I hereby declare that this submission is my own work towards the PhD and that, to the best of my knowledge, it contains no material previously published by another person nor material which has been accepted for the award of any other degree of any university, except where due acknowledgement has been made in the text. OWUSU Peter Antwi ………………….. ……………. (PG 8372212) Signature Date Certified by: Dr. Richard Buamah …………………. .................... (Supervisor) Signature Date Dr. Helen M. K. Essandoh (Mrs) …………………. .................... (Supervisor) Signature Date Prof. Esi Awuah (Mrs) …………………. .................... (Supervisor) Signature Date Prof. Samuel Odai …………………. .................... (Head of Department) Signature Date i ABSTRACT Human excreta management in urban settings is becoming a serious public health burden. This thesis used a vermi-based treatment system; “Biofil Toilet Technology (BTT)” for the treatment of faecal matter. The BTT has an average household size of 0.65 cum; a granite porous filter composite for solid-liquid separation; coconut fibre as a bulking material and worms “Eudrilus eugeniae” -
Cost-Benefit Analysis of Fecal Sludge Treatment Interventions in Ghana
COST-BENEFIT ANALYSIS OF FECAL SLUDGE TREATMENT INTERVENTIONS IN GHANA ESI AWUAH Department of Civil Engineering, KNUST, Kumasi Ghana AHMED ISSAHAKU Department of Civil Engineering, KNUST, Kumasi Ghana MARTHA OSEI MARFO Department of Water and Sanitation UCC, Cape Coast Ghana SAMPSON ODURO-KWARTENG Department of Civil Engineering, KNUST, Kumasi Ghana MICHEAL ADDO AZIATSI Department of Civil Engineering, KNUST, Kumasi Ghana NATIONAL DEVELOPMENT PLANNING COMMISSION COPENHAGEN CONSENSUS CENTER © 2020 Copenhagen Consensus Center [email protected] www.copenhagenconsensus.com This work has been produced as a part of the Ghana Priorities project. Some rights reserved This work is available under the Creative Commons Attribution 4.0 International license (CC BY 4.0). Under the Creative Commons Attribution license, you are free to copy, distribute, transmit, and adapt this work, including for commercial purposes, under the following conditions: Attribution Please cite the work as follows: #AUTHOR NAME#, #PAPER TITLE#, Ghana Priorities, Copenhagen Consensus Center, 2020. License: Creative Commons Attribution CC BY 4.0. Third-party-content Copenhagen Consensus Center does not necessarily own each component of the content contained within the work. If you wish to re-use a component of the work, it is your responsibility to determine whether permission is needed for that re-use and to obtain permission from the copyright owner. Examples of components can include, but are not limited to, tables, figures, or images. PRELIMINARY DRAFT AS OF -
Wastewater Treatment Technologies List.Cdr
GK.TAMILGOD.ORG List Of Wastewater Treatment TECHNOLOGIES TECHNOLOGIES G K . T A M I L G O D . O R G G K . TA M I L G O D . O R G A Ta m i l Q A P o r t a l . Wastewater Treatment Technologies Activated sludge model Activated sludge systems Adsorption/Bio-oxidation process Advanced oxidation process Aerated lagoon Aerobic granular reactor Aerobic granular sludge technology Aerobic granulation Aerobic treatment system Anaerobic clarigester Anaerobic digester types Anaerobic digestion Anaerobic filter Anaerobic lagoon Anammox API oil-water separator Belt filter Bioconversion of biomass to mixed alcohol fuels Biofilters Bioreactor Bioretention Biorotor Capacitive deionization Carbon filtering Cesspit Chemical addition wastewater treatment Clarifier Coarse bubble diffusers Composting toilet Constructed wetland Cross-flow filtration Dark fermentation Decentralized wastewater system Diffuser (sewage) Page 01 G K . TA M I L G O D . O R G A Ta m i l Q A P o r t a l . G K . TA M I L G O D . O R G A Ta m i l Q A P o r t a l . Wastewater Treatment Technologies Dissolved air flotation Dissolved gas flotation Desalination Distillation EcocyclET systems Electrocoagulation Electrodeionization Electrodialysis Electrolysis Enhanced biological phosphorus removal Expanded granular sludge bed digestion Extended aeration Facultative lagoon Fenton's reagent Filtration Fine bubble diffusers Flocculation & sedimentation Flotation process Forward osmosis Froth flotation Hydrocyclone Imhoff tank Induced gas flotation Ion exchange Lamella clarifier (inclined plate clarifier)[1] Living machines Maceration (sewage) Media filter Membrane bioreactor Membrane distillation Membrane fouling Microbial fuel cell Microflotation Moving bed biofilm reactor Page 02 G K . -
Groundwater and Soil Remediation Guidelines for Nuclear Power Plants Public Edition
Groundwater and Soil Remediation Guidelines for Nuclear Power Plants Public Edition 2011 TECHNICAL REPORT Electric Power Research Institute 3420 Hillview Avenue, Palo Alto, California 94304-1338 • PO Box 10412, Palo Alto, California 94303-0813 USA 800.313.3774 • 650.855.2121 • [email protected] • www.epri.com Groundwater and Soil Remediation Guidelines for Nuclear Power Plants Public Edition 1023464 Final Report, July 2011 EPRI Project Manager K. Kim EPRI Staff Contributor R. McGrath This document does NOT meet the requirements of 10CFR50 Appendix B, 10CFR Part 21, ANSI N45.2-1977 and/or the intent of ISO-9001 (1994) ELECTRIC POWER RESEARCH INSTITUTE 3420 Hillview Avenue, Palo Alto, California 94304-1338 ▪ PO Box 10412, Palo Alto, California 94303-0813 ▪ USA 800.313.3774 ▪ 650.855.2121 ▪ [email protected] ▪ www.epri.com DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH INSTITUTE, INC. (EPRI). NEITHER EPRI, ANY MEMBER OF EPRI, ANY COSPONSOR, THE ORGANIZATION(S) BELOW, NOR ANY PERSON ACTING ON BEHALF OF ANY OF THEM: (A) MAKES ANY WARRANTY OR REPRESENTATION WHATSOEVER, EXPRESS OR IMPLIED, (I) WITH RESPECT TO THE USE OF ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, OR (II) THAT SUCH USE DOES NOT INFRINGE ON OR INTERFERE WITH PRIVATELY OWNED RIGHTS, INCLUDING ANY PARTY'S INTELLECTUAL PROPERTY, OR (III) THAT THIS DOCUMENT IS SUITABLE TO ANY PARTICULAR USER'S CIRCUMSTANCE; OR (B) ASSUMES RESPONSIBILITY FOR ANY DAMAGES OR OTHER LIABILITY WHATSOEVER (INCLUDING ANY CONSEQUENTIAL DAMAGES, EVEN IF EPRI OR ANY EPRI REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES) RESULTING FROM YOUR SELECTION OR USE OF THIS DOCUMENT OR ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT. -
Groundwater Remediation Discharge Facilities Permit Reissuance Fact
NPDES Fact Sheet Page 1 of 84 Idaho Groundwater Remediation Discharge Facilities IDG911000 FACT SHEET The United States Environmental Protection Agency (EPA) proposes to reissue a National Pollutant Discharge Elimination System (NPDES) General Permit to discharge pollutants pursuant to the provisions of the Clean Water Act, 33 USC §1251 et seq. to: Groundwater Remediation Discharge Facilities Permit Number: IDG911000 (Formerly IDG910000) Public Comment Period Start Date: April 3, 2014 End Date: May 19, 2014 Technical Contact Contact: Jill A. Nogi, MPH Email: [email protected] Phone: (206) 553-1841, or call 1-800-424-4372 and request x-1841 EPA PROPOSES NPDES PERMIT REISSUANCE The U.S. Environmental Protection Agency (EPA) proposes to reissue the NPDES General Permit to discharge pollutants from Groundwater Remediation Facilities to waters of the United States (U.S.) in Idaho. In order to ensure the protection of water quality and human health, the Groundwater Remediation Discharge Facilities General Permit (GWGP) establishes limits on the types and amounts of pollutants that can be discharged as well as other conditions on facilities authorized to discharge under the Permit. This GWGP does not provide coverage for discharges from mining operations which are now covered by an administrative extension of the previous General Permit (NPDES Permit No. IDG910000; expired as of June 30, 2012). However, the EPA intends to issue a mining-specific general permit at a later date. Those mining facilities which have extended coverage under the previous permit must continue to operate in compliance with the limits and conditions of IDG910000 until a new permit is issued. -
Compendium of Sanitation Technologies in Emergencies
Compendium 1st Edition of Sanitation Technologies in Emergencies Compendium 1st Edition of Sanitation Technologies in Emergencies Robert Gensch (GTO), Amy Jennings (BORDA), Samuel Renggli (Eawag), Philippe Reymond (Eawag) We would like to thank the following individuals and their organisations/institutions for their invaluable contributions to this publication: Djilali Abdelghafour, Nienke Andriessen, Leonellha Barreto-Dillon, Andy Bastable, Magdalena Bäuerl, Benjamin Bernan- dino, Damian Blanc, Franck Bouvet, Patrick Bracken, Chris Buckley, Marc-Andre Bünzli, Chris Canaday, Daniel Clauss, Benjamin Dard, Malcolm Dickson, Paul Donahue, Georg Ecker, Miriam Englund, Marta Fernández Cortés, Suzanne Ferron, Claire Furlong, Sergio Gelli, Feline Gerstenberg, Moritz Gold, Celia González Otálora, Peter Harvey, Oliver Hoffmann, Tineke Hooijmans, Andrews Jacobs, Heidi Johnston, Christopher Kellner, Anthony Kilbride, Sasha Kramer, Jenny Lamb, Günther Langergraber, Anne Lloyd, Andreas Ludwig, Christoph Lüthi, Saskia Machel, Grover Mamani, Adeline Mertenat, Mona Mijthab, Alexander Miller, Patrice Moix, Paolo Monaco, Bella Monse, Hans-Joachim Mosler, Burt Murray, Arne Pane sar, Thilo Panzerbieter, Jonathan Parkinson, Dominique Porteaud, Nick Preneta, Torsten Reckerzügl, Bob Reed, Stefan Reuter, Romain Revol, Nina Röttgers, Johannes Rück, Vasco Schelbert, Jan-Christoph Schlenk, Jan-Hendrik Schmidt, Stephanie Schramm, Jan Spit, Haakon Spriewald, Steve Sugden, Annkatrin Tempel, Elisabeth Tilley, Erika Trabucco, Tobias Ulbrich, Lukas Ulrich, Claudio Valsangiacomo,