A Tumorigenic Index for Quantitative Analysis of Liver Cancer Initiation and Progression

Total Page:16

File Type:pdf, Size:1020Kb

A Tumorigenic Index for Quantitative Analysis of Liver Cancer Initiation and Progression A tumorigenic index for quantitative analysis of liver cancer initiation and progression Gaowei Wanga, Xiaolin Luoa, Yan Lianga, Kota Kanekoa, Hairi Lib, Xiang-Dong Fub, and Gen-Sheng Fenga,1 aDepartment of Pathology, Division of Biological Sciences, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093; and bDepartment of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093 Edited by Roger J. Davis, University of Massachusetts Medical School, Worcester, MA, and approved November 13, 2019 (received for review June 29, 2019) Primary liver cancer develops from multifactorial etiologies, result- prognosis of liver cancer patients with diverse etiologies and also in ing in extensive genomic heterogeneity. To probe the common diagnosis of precancer patients with steatosis, fibrosis, or cirrhosis. mechanism of hepatocarcinogenesis, we interrogated temporal Upon further development and optimization, this TI platform may gene expression profiles in a group of mouse models with hepatic become a quantitative means for early detection of liver tumor steatosis, fibrosis, inflammation, and, consequently, tumorigenesis. initiation or risk assessment of chronic disease patients, based on Instead of anticipated progressive changes, we observed a sudden comprehensive analysis of the whole transcriptome rather than a molecular switch at a critical precancer stage, by developing analyt- few biomarker molecules. We believe that the principle and ra- ical platform that focuses on transcription factor (TF) clusters. tionale of this TI derivation method can be extended from HCC to Coarse-grained network modeling demonstrated that an abrupt other types of cancer, to develop a quantitative analytical tool for transcriptomic transition occurred once changes were accumulated cancer prediction and prognosis in a given organ or tissue. to reach a threshold. Based on the experimental and bioinformatic data analyses as well as mathematical modeling, we derived a tu- Results morigenic index (TI) to quantify tumorigenic signal strengths. The TI Temporal Gene Expression Patterns in Liver Tumorigenesis. Pten is a is powerful in predicting the disease status of patients with meta- tumor suppressor that counteracts the PI3K/Akt signaling path- bolic disorders and also the tumor stages and prognosis of liver way, and Pten deficiency has often been detected in liver can- cancer patients with diverse backgrounds. This work establishes a cer patients (5, 6). Targeted deletion of Pten in hepatocytes quantitative tool for triage of liver cancer patients and also for can- induced NAFLD and, subsequently, NASH, followed by tumor cer risk assessment of chronic liver disease patients. development in mice (7, 8). The NASH-driven pathogenic pro- MEDICAL SCIENCES cess in Pten-deficient liver was accelerated and aggravated by liver cancer | tumorigenic index | quantitative analysis | additional deletion of Shp2/Ptpn11 (9), a newly identified liver transcription factor clusters tumor suppressor (10, 11). These mutant mouse lines with de- fined genetic background and characterized tumor phenotype he incidences and mortality of liver cancer, mainly hepato- constitute an ideal group of animal models to dissect stepwise Tcellular carcinoma (HCC), are increasing rapidly worldwide mechanisms underlying NASH-HCC development. Toward this (1). Diverse risk factors for primary liver cancer have been goal, we isolated liver samples at multiple time points from mice identified, including infection of hepatitis B virus and hepatitis C with hepatocyte-specific deletion of Pten (PKO), Shp2 (SKO), virus, alcohol abuse, nonalcoholic fatty liver disease (NAFLD) or nonalcoholic steatohepatitis (NASH), and intake of aflatoxin B1. Significance Consistent with the complex and multifactorial etiologies, multiomics analyses of human liver tumor samples have identified The mechanisms of hepatocarcinogenesis are poorly understood. vast genomic heterogeneity, molecular and cellular defects, In this study, we interrogated the temporal gene expression metabolic reprogramming, and subtypes of tumors as well as profiles in mouse livers during progression of chronic fatty liver altered tumor microenvironment in the liver (2–4). diseases to carcinogenesis. By establishing an analytical system However, it remains to be determined if any common molecular that focuses on transcription factor (TF) clusters, we identified a signatures in the transcriptomes exist for liver cancer, despite their sudden switch from healthy liver to tumor tissues in the tran- considerable genomic heterogeneity. Furthermore, little is known scriptomes at precancer stage, prior to detection of any tumor about the kinetics and fashions, either gradual accumulation or nodule. We further developed a platform to calculate tumorigenic dramatic transition, in generation of cell-intrinsic and cell-extrinsic index (TI) based on the transcriptome, especially the TF clusters, to signals that are intertwined to drive malignant transformation of measure tumorigenic signal strengths. This quantitative analytical hepatocytes and tumor initiation. To dissect the stepwise onco- tool of TI is powerful in assessing cancer risk of chronic liver dis- genic signals and mechanisms at the precancer stages, we chose ease patients and in predicting tumor stages and prognosis of to work on mouse models that recapitulate key pathogenic fea- liver cancer patients. tures in human liver cancer. By pathological examination, RNA- sequencing (RNA-seq), and bioinformatic data analysis, we iden- Author contributions: G.-S.F. designed research; G.W., X.L., and G.-S.F. performed re- search; G.W., X.L., K.K., H.L., X.-D.F., and G.-S.F. contributed new reagents/analytic tools; tified a sudden switch in transcription factor (TF) clusters at a G.W., X.L., Y.L., and G.-S.F. analyzed data; and G.W. and G.-S.F. wrote the paper. precancer stage of hepatocarcinogenesis. Based on a multilayer The authors declare no competing interest. analysis of the TF clusters and mathematic modeling, we de- This article is a PNAS Direct Submission. veloped a tumorigenic index (TI) calculation system for quantita- tive measurement of liver tumorigenesis. Although this platform Published under the PNAS license. was established based on the transcriptomic data derived from Data deposition: The RNA-seq data have been deposited in the National Center for Bio- technology Information Gene Expression Omnibus (NCBI GEO) database under ID code genetically modified mouse tumor models, we have found appli- GEO: GSE123427. Codes have been deposited in GitHub (https://github.com/wanyewang1/ cable effectiveness of the derived TI values in determination of Index_model). disease status in other mouse models of chronic or malignant liver 1To whom correspondence may be addressed. Email: [email protected]. diseases with diverse backgrounds. Furthermore, using the TI This article contains supporting information online at https://www.pnas.org/lookup/suppl/ method developed from animal models to interrogate the hu- doi:10.1073/pnas.1911193116/-/DCSupplemental. man patients’ data, we demonstrated the power of the TI tool in www.pnas.org/cgi/doi/10.1073/pnas.1911193116 PNAS Latest Articles | 1of8 Downloaded by guest on September 28, 2021 Pten and Shp2 (DKO), and wild-type (WT) control (Fig. 1A). point, we identified genes that were significantly changed in Based on the developmental or pathological features, these liver mutant livers at different stages (Dataset S1). The resulting samples were divided into 4 groups: 1) youth, 2) adult, 3) pre- heatmap depicts the progressive changes in liver transcriptomes cancer, and 4) cancer (Fig. 1A). Representative histological or of the 3 mutant mouse lines (Fig. 1B), which correlated well with pathological properties of the specimens were shown (SI Ap- the kinetics and severity of tumor progression in SKO, PKO, and pendix, Fig. S1) and were also described in detail previously (9). DKO livers (SI Appendix, Fig. S1). Highlighted in Fig. 1B are RNA-seq was performed for all liver samples, and the data some significantly changed genes related to the MAPK pathway, quality analysis showed high levels of correlation for biological fatty acid, glucose or bile acid metabolism, extracellular matrix, replicates in each group (SI Appendix, Fig. S2A), with reduced epigenetic machinery, and inflammatory response. expression of Shp2 and/or Pten in corresponding mutants as By comparing the transcriptomes between PKO and WT livers expected (SI Appendix, Fig. S2 B and C). By comparing expres- at multiple time points, we identified significantly changed bi- sion levels in each mutant with WT control at the same time ological processes in the mutant liver using gene set enrichment A B 1 Pkm Jun Time (month) 0.5 0 Mapk3 1 2 3 4 5 7 912 16 −0.5 Mmp2 WT −1 Abhd5 PKO Tnf SKO 1M 2M 3M 4M 5M 7M_T 12M_T 16M_T 16M_T 1M 2M 7M 12M 1M 2M 7M_T 12M_T T T T DKO Kmt2c Kat6a Slc27a2 Youth Adult Pre-cancer Cancer Cyp7b1 PKO SKO DKO CDE F 1 1 1 Extracellular JAG2_NOTCH1 1 TRIGLYCERIDE_BIOSYNTHESIS BMP4_ACVR2B BMP7_ACVR2B Hdac5 EXTRACELLULAR_MATRIX_ORGANIZATION Structure CSF2_CSF2RA 0.5 EFNB3_EPHB2 INTEGRIN1_PATHWAY PDGFB_PDGFRB 0.5 0.5 0.5 ECM_RECEPTOR_INTERACTION Fatty acid FGF9_FGFR3 EFNA5_EPHA8 Mta3 ECM_AFFILIATED 0 TGFB3_TGFBR2 metabolism CSF1_CSF1R AVB3_INTEGRIN_PATHWAY IGF2_IGF2R Top2a JAG1_NOTCH4 −0.5 0 0 0 COLLAGEN_FORMATION Inflammatory MDK_PTPRB TNFSF12_TNFRSF12 CORE_MATRISOME NTF5_NTRK2 Dnmt1 response ECM_GLYCOPROTEINS −1 IL5_CSF2RB IFNG_IFNGR1
Recommended publications
  • Activated Peripheral-Blood-Derived Mononuclear Cells
    Transcription factor expression in lipopolysaccharide- activated peripheral-blood-derived mononuclear cells Jared C. Roach*†, Kelly D. Smith*‡, Katie L. Strobe*, Stephanie M. Nissen*, Christian D. Haudenschild§, Daixing Zhou§, Thomas J. Vasicek¶, G. A. Heldʈ, Gustavo A. Stolovitzkyʈ, Leroy E. Hood*†, and Alan Aderem* *Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103; ‡Department of Pathology, University of Washington, Seattle, WA 98195; §Illumina, 25861 Industrial Boulevard, Hayward, CA 94545; ¶Medtronic, 710 Medtronic Parkway, Minneapolis, MN 55432; and ʈIBM Computational Biology Center, P.O. Box 218, Yorktown Heights, NY 10598 Contributed by Leroy E. Hood, August 21, 2007 (sent for review January 7, 2007) Transcription factors play a key role in integrating and modulating system. In this model system, we activated peripheral-blood-derived biological information. In this study, we comprehensively measured mononuclear cells, which can be loosely termed ‘‘macrophages,’’ the changing abundances of mRNAs over a time course of activation with lipopolysaccharide (LPS). We focused on the precise mea- of human peripheral-blood-derived mononuclear cells (‘‘macro- surement of mRNA concentrations. There is currently no high- phages’’) with lipopolysaccharide. Global and dynamic analysis of throughput technology that can precisely and sensitively measure all transcription factors in response to a physiological stimulus has yet to mRNAs in a system, although such technologies are likely to be be achieved in a human system, and our efforts significantly available in the near future. To demonstrate the potential utility of advanced this goal. We used multiple global high-throughput tech- such technologies, and to motivate their development and encour- nologies for measuring mRNA levels, including massively parallel age their use, we produced data from a combination of two distinct signature sequencing and GeneChip microarrays.
    [Show full text]
  • A Molecular Switch from STAT2-IRF9 to ISGF3 Underlies Interferon-Induced Gene Transcription
    ARTICLE https://doi.org/10.1038/s41467-019-10970-y OPEN A molecular switch from STAT2-IRF9 to ISGF3 underlies interferon-induced gene transcription Ekaterini Platanitis 1, Duygu Demiroz1,5, Anja Schneller1,5, Katrin Fischer1, Christophe Capelle1, Markus Hartl 1, Thomas Gossenreiter 1, Mathias Müller2, Maria Novatchkova3,4 & Thomas Decker 1 Cells maintain the balance between homeostasis and inflammation by adapting and inte- grating the activity of intracellular signaling cascades, including the JAK-STAT pathway. Our 1234567890():,; understanding of how a tailored switch from homeostasis to a strong receptor-dependent response is coordinated remains limited. Here, we use an integrated transcriptomic and proteomic approach to analyze transcription-factor binding, gene expression and in vivo proximity-dependent labelling of proteins in living cells under homeostatic and interferon (IFN)-induced conditions. We show that interferons (IFN) switch murine macrophages from resting-state to induced gene expression by alternating subunits of transcription factor ISGF3. Whereas preformed STAT2-IRF9 complexes control basal expression of IFN-induced genes (ISG), both type I IFN and IFN-γ cause promoter binding of a complete ISGF3 complex containing STAT1, STAT2 and IRF9. In contrast to the dogmatic view of ISGF3 formation in the cytoplasm, our results suggest a model wherein the assembly of the ISGF3 complex occurs on DNA. 1 Max Perutz Labs (MPL), University of Vienna, Vienna 1030, Austria. 2 Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria. 3 Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna 1030, Austria. 4 Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna 1030, Austria.
    [Show full text]
  • CDC2 Mediates Progestin Initiated Endometrial Stromal Cell Proliferation: a PR Signaling to Gene Expression Independently of Its Binding to Chromatin
    CDC2 Mediates Progestin Initiated Endometrial Stromal Cell Proliferation: A PR Signaling to Gene Expression Independently of Its Binding to Chromatin Griselda Vallejo1, Alejandro D. La Greca1., Inti C. Tarifa-Reischle1., Ana C. Mestre-Citrinovitz1, Cecilia Ballare´ 2, Miguel Beato2,3, Patricia Saragu¨ eta1* 1 Instituto de Biologı´a y Medicina Experimental, IByME-Conicet, Buenos Aires, Argentina, 2 Centre de Regulacio´ Geno`mica, (CRG), Barcelona, Spain, 3 University Pompeu Fabra (UPF), Barcelona, Spain Abstract Although non-genomic steroid receptor pathways have been studied over the past decade, little is known about the direct gene expression changes that take place as a consequence of their activation. Progesterone controls proliferation of rat endometrial stromal cells during the peri-implantation phase of pregnancy. We showed that picomolar concentration of progestin R5020 mimics this control in UIII endometrial stromal cells via ERK1-2 and AKT activation mediated by interaction of Progesterone Receptor (PR) with Estrogen Receptor beta (ERb) and without transcriptional activity of endogenous PR and ER. Here we identify early downstream targets of cytoplasmic PR signaling and their possible role in endometrial stromal cell proliferation. Microarray analysis of global gene expression changes in UIII cells treated for 45 min with progestin identified 97 up- and 341 down-regulated genes. The most over-represented molecular functions were transcription factors and regulatory factors associated with cell proliferation and cell cycle, a large fraction of which were repressors down-regulated by hormone. Further analysis verified that progestins regulate Ccnd1, JunD, Usf1, Gfi1, Cyr61, and Cdkn1b through PR- mediated activation of ligand-free ER, ERK1-2 or AKT, in the absence of genomic PR binding.
    [Show full text]
  • Ten Commandments for a Good Scientist
    Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds Ana María Sotoca Covaleda Wageningen 2010 Thesis committee Thesis supervisors Prof. dr. ir. Ivonne M.C.M. Rietjens Professor of Toxicology Wageningen University Prof. dr. Albertinka J. Murk Personal chair at the sub-department of Toxicology Wageningen University Thesis co-supervisor Dr. ir. Jacques J.M. Vervoort Associate professor at the Laboratory of Biochemistry Wageningen University Other members Prof. dr. Michael R. Muller, Wageningen University Prof. dr. ir. Huub F.J. Savelkoul, Wageningen University Prof. dr. Everardus J. van Zoelen, Radboud University Nijmegen Dr. ir. Toine F.H. Bovee, RIKILT, Wageningen This research was conducted under the auspices of the Graduate School VLAG Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds Ana María Sotoca Covaleda Thesis submitted in fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Tuesday 14 September 2010 at 4 p.m. in the Aula Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds. Ana María Sotoca Covaleda Thesis Wageningen University, Wageningen, The Netherlands, 2010, With references, and with summary in Dutch. ISBN: 978-90-8585-707-5 “Caminante no hay camino, se hace camino al andar. Al andar se hace camino, y al volver la vista atrás se ve la senda que nunca se ha de volver a pisar” - Antonio Machado – A mi madre.
    [Show full text]
  • Genome-Scale Identification of Transcription Factors That Mediate An
    ARTICLE DOI: 10.1038/s41467-018-04406-2 OPEN Genome-scale identification of transcription factors that mediate an inflammatory network during breast cellular transformation Zhe Ji 1,2,4, Lizhi He1, Asaf Rotem1,2,5, Andreas Janzer1,6, Christine S. Cheng2,7, Aviv Regev2,3 & Kevin Struhl 1 Transient activation of Src oncoprotein in non-transformed, breast epithelial cells can initiate an epigenetic switch to the stably transformed state via a positive feedback loop that involves 1234567890():,; the inflammatory transcription factors STAT3 and NF-κB. Here, we develop an experimental and computational pipeline that includes 1) a Bayesian network model (AccessTF) that accurately predicts protein-bound DNA sequence motifs based on chromatin accessibility, and 2) a scoring system (TFScore) that rank-orders transcription factors as candidates for being important for a biological process. Genetic experiments validate TFScore and suggest that more than 40 transcription factors contribute to the oncogenic state in this model. Interestingly, individual depletion of several of these factors results in similar transcriptional profiles, indicating that a complex and interconnected transcriptional network promotes a stable oncogenic state. The combined experimental and computational pipeline represents a general approach to comprehensively identify transcriptional regulators important for a biological process. 1 Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA. 2 Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. 3 Department of Biology, Howard Hughes Medical Institute and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 20140, USA. 4Present address: Department of Pharmacology and Biomedical Engineering, Northwestern University, Evanston 60611 IL, USA.
    [Show full text]
  • Mir-376C Promotes Carcinogenesis and Serves As a Plasma Marker for Gastric Carcinoma
    RESEARCH ARTICLE miR-376c promotes carcinogenesis and serves as a plasma marker for gastric carcinoma Pei-Shih Hung1, Chin-Yau Chen2, Wei-Ting Chen2, Chen-Yu Kuo3, Wen-Liang Fang4,5, Kuo-Hung Huang4,5, Peng-Chih Chiu5, Su-Shun Lo2,6* 1 Department of Education and Medical Research, National Yang-Ming University Hospital, Yilan, Taiwan, 2 Department of Surgery, National Yang-Ming University Hospital, Yilan, Taiwan, 3 Department of Medicine, National Yang-Ming University Hospital, Yilan, Taiwan, 4 Division of General Surgery, Veterans General Hospital±Taipei, Taipei, Taiwan, 5 Department of Dentistry, National Yang-Ming University Hospital, Yilan, Taiwan, 6 School of Medicine, National Yang-Ming University, Taipei, Taiwan a1111111111 [email protected] a1111111111 * a1111111111 a1111111111 a1111111111 Abstract Gastric carcinoma is highly prevalent throughout the world. Understanding the pathogenesis of this disease will benefit diagnosis and resolution. Studies show that miRNAs are involved in the tumorigenesis of gastric carcinoma. An initial screening followed by subsequent vali- OPEN ACCESS dation identified that miR-376c is up-regulated in gastric carcinoma tissue and the plasma Citation: Hung P-S, Chen C-Y, Chen W-T, Kuo C-Y, of patients with the disease. In addition, the urinary level of miR-376c is also significantly Fang W-L, Huang K-H, et al. (2017) miR-376c increased in gastric carcinoma patients. The plasma miR-376c level was validated as a bio- promotes carcinogenesis and serves as a plasma marker for gastric carcinoma. PLoS ONE 12(5): marker for gastric carcinoma, including early stage tumors. The induction of miR-376c was e0177346.
    [Show full text]
  • HCC and Cancer Mutated Genes Summarized in the Literature Gene Symbol Gene Name References*
    HCC and cancer mutated genes summarized in the literature Gene symbol Gene name References* A2M Alpha-2-macroglobulin (4) ABL1 c-abl oncogene 1, receptor tyrosine kinase (4,5,22) ACBD7 Acyl-Coenzyme A binding domain containing 7 (23) ACTL6A Actin-like 6A (4,5) ACTL6B Actin-like 6B (4) ACVR1B Activin A receptor, type IB (21,22) ACVR2A Activin A receptor, type IIA (4,21) ADAM10 ADAM metallopeptidase domain 10 (5) ADAMTS9 ADAM metallopeptidase with thrombospondin type 1 motif, 9 (4) ADCY2 Adenylate cyclase 2 (brain) (26) AJUBA Ajuba LIM protein (21) AKAP9 A kinase (PRKA) anchor protein (yotiao) 9 (4) Akt AKT serine/threonine kinase (28) AKT1 v-akt murine thymoma viral oncogene homolog 1 (5,21,22) AKT2 v-akt murine thymoma viral oncogene homolog 2 (4) ALB Albumin (4) ALK Anaplastic lymphoma receptor tyrosine kinase (22) AMPH Amphiphysin (24) ANK3 Ankyrin 3, node of Ranvier (ankyrin G) (4) ANKRD12 Ankyrin repeat domain 12 (4) ANO1 Anoctamin 1, calcium activated chloride channel (4) APC Adenomatous polyposis coli (4,5,21,22,25,28) APOB Apolipoprotein B [including Ag(x) antigen] (4) AR Androgen receptor (5,21-23) ARAP1 ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 1 (4) ARHGAP35 Rho GTPase activating protein 35 (21) ARID1A AT rich interactive domain 1A (SWI-like) (4,5,21,22,24,25,27,28) ARID1B AT rich interactive domain 1B (SWI1-like) (4,5,22) ARID2 AT rich interactive domain 2 (ARID, RFX-like) (4,5,22,24,25,27,28) ARID4A AT rich interactive domain 4A (RBP1-like) (28) ARID5B AT rich interactive domain 5B (MRF1-like) (21) ASPM Asp (abnormal
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Functional Haplotypes of ARID4A Affect Promoter Activity and Semen
    Animal Reproduction Science xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Animal Reproduction Science journal homepage: www.elsevier.com/locate/anireprosci Functional haplotypes of ARID4A affect promoter activity and semen quality of bulls Chunhong Yanga,1, Jinpeng Wanga,1, Juan Liua,1, Yan Suna, Yijun Guoa,b, Qiang Jianga, Zhihua Jua, Qican Gaoa,b, Xiuge Wanga, Jinming Huanga, ⁎ Changfa Wanga, a Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250131, PR China b College of Life Science, Shandong Normal University, Jinan, PR China ARTICLE INFO ABSTRACT Keywords: The AT-rich interaction domain 4 A (ARID4A) has an important role in regulating Sertoli cell Bovine function and male fertility. Its molecular mechanisms, however, remain largely unknown. In this ARID4A study, two single nucleotide polymorphisms (SNPs) (g.53 G > T, ss 1966531596, and SNP g.826 G > A, rs 210809648) were identified in the promoter region of ARID4A in 215 Chinese Haplotype Holstein bulls using polymerase chain reaction (PCR)-restriction fragment length polymorphism Semen quality and created restriction site-PCR. Results revealed that bulls with g.53 G > T-GG and g.826 G > A-G G genotype exhibited higher sperm deformity rate than those with g.53 G > T- TT and g.826 G > A-AA genotype (P < 0.01). Furthermore, three haplotypes (H1 (GG), H3 (TG), H4 (TA)) and six haplotype combinations (H1H1, H1H3, H1H4, H3H3, H3H4, H4H4) were obtained. The bulls with H4H4 exhibited lower sperm deformity rate than those with H1H1 and H1H3 (P < 0.05). In addition, results of bioinformatics analysis revealed that ARID4A has two promoters and that two SNPs of ARID4A are located in transcription factor binding sites.
    [Show full text]
  • Functional Genomics Analysis of Vitamin D Effects on CD4+ T Cells In
    Functional genomics analysis of vitamin D effects PNAS PLUS on CD4+ T cells in vivo in experimental autoimmune encephalomyelitis Manuel Zeitelhofera,b, Milena Z. Adzemovica, David Gomez-Cabreroc,d,e, Petra Bergmana, Sonja Hochmeisterf, Marie N’diayea, Atul Paulsona, Sabrina Ruhrmanna, Malin Almgrena, Jesper N. Tegnérc,d,g, Tomas J. Ekströma, André Ortlieb Guerreiro-Cacaisa, and Maja Jagodica,1 aDepartment of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden; bVascular Biology Unit, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden; cUnit of Computational Medicine, Department of Medicine, Solna, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden; dScience for Life Laboratory, 171 21 Solna, Sweden; eMucosal and Salivary Biology Division, King’s College London Dental Institute, London SE1 9RT, United Kingdom; fDepartment of General Neurology, Medical University of Graz, 8036 Graz, Austria; and gBiological and Environmental Sciences and Engineering Division, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, 23955 Thuwal, Kingdom of Saudi Arabia Edited by Tomas G. M. Hokfelt, Karolinska Institutet, Stockholm, Sweden, and approved January 19, 2017 (received for review September 24, 2016) Vitamin D exerts multiple immunomodulatory functions and has autoimmune destruction of myelin, axonal loss, and brain atro- been implicated in the etiology and treatment of several autoim- phy (6). Increased risk of developing MS has been described in mune diseases, including multiple sclerosis (MS). We have previously carriers of rare and common variants of the CYP27B gene (7, 8), reported that in juvenile/adolescent rats, vitamin D supplementation which encodes the enzyme that catalyzes the last step in con- protects from experimental autoimmune encephalomyelitis (EAE), a verting vitamin D to its active form, from 25(OH)D3 to 1,25 model of MS.
    [Show full text]
  • Appendix 2. Significantly Differentially Regulated Genes in Term Compared with Second Trimester Amniotic Fluid Supernatant
    Appendix 2. Significantly Differentially Regulated Genes in Term Compared With Second Trimester Amniotic Fluid Supernatant Fold Change in term vs second trimester Amniotic Affymetrix Duplicate Fluid Probe ID probes Symbol Entrez Gene Name 1019.9 217059_at D MUC7 mucin 7, secreted 424.5 211735_x_at D SFTPC surfactant protein C 416.2 206835_at STATH statherin 363.4 214387_x_at D SFTPC surfactant protein C 295.5 205982_x_at D SFTPC surfactant protein C 288.7 1553454_at RPTN repetin solute carrier family 34 (sodium 251.3 204124_at SLC34A2 phosphate), member 2 238.9 206786_at HTN3 histatin 3 161.5 220191_at GKN1 gastrokine 1 152.7 223678_s_at D SFTPA2 surfactant protein A2 130.9 207430_s_at D MSMB microseminoprotein, beta- 99.0 214199_at SFTPD surfactant protein D major histocompatibility complex, class II, 96.5 210982_s_at D HLA-DRA DR alpha 96.5 221133_s_at D CLDN18 claudin 18 94.4 238222_at GKN2 gastrokine 2 93.7 1557961_s_at D LOC100127983 uncharacterized LOC100127983 93.1 229584_at LRRK2 leucine-rich repeat kinase 2 HOXD cluster antisense RNA 1 (non- 88.6 242042_s_at D HOXD-AS1 protein coding) 86.0 205569_at LAMP3 lysosomal-associated membrane protein 3 85.4 232698_at BPIFB2 BPI fold containing family B, member 2 84.4 205979_at SCGB2A1 secretoglobin, family 2A, member 1 84.3 230469_at RTKN2 rhotekin 2 82.2 204130_at HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 81.9 222242_s_at KLK5 kallikrein-related peptidase 5 77.0 237281_at AKAP14 A kinase (PRKA) anchor protein 14 76.7 1553602_at MUCL1 mucin-like 1 76.3 216359_at D MUC7 mucin 7,
    [Show full text]
  • Mirc11 Disrupts Inflammatory but Not Cytotoxic Responses of NK Cells
    Published OnlineFirst September 12, 2019; DOI: 10.1158/2326-6066.CIR-18-0934 Research Article Cancer Immunology Research Mirc11 Disrupts Inflammatory but Not Cytotoxic Responses of NK Cells Arash Nanbakhsh1, Anupallavi Srinivasamani1, Sandra Holzhauer2, Matthew J. Riese2,3,4, Yongwei Zheng5, Demin Wang4,5, Robert Burns6, Michael H. Reimer7,8, Sridhar Rao7,8, Angela Lemke9,10, Shirng-Wern Tsaih9,10, Michael J. Flister9,10, Shunhua Lao1,11, Richard Dahl12, Monica S. Thakar1,11, and Subramaniam Malarkannan1,3,4,9,11 Abstract Natural killer (NK) cells generate proinflammatory cyto- g–dependent clearance of Listeria monocytogenes or B16F10 kines that are required to contain infections and tumor melanoma in vivo by NK cells. These functional changes growth. However, the posttranscriptional mechanisms that resulted from Mirc11 silencing ubiquitin modifiers A20, regulate NK cell functions are not fully understood. Here, we Cbl-b, and Itch, allowing TRAF6-dependent activation of define the role of the microRNA cluster known as Mirc11 NF-kB and AP-1. Lack of Mirc11 caused increased translation (which includes miRNA-23a, miRNA-24a, and miRNA-27a) of A20, Cbl-b, and Itch proteins, resulting in deubiquityla- in NK cell–mediated proinflammatory responses. Absence tion of scaffolding K63 and addition of degradative K48 of Mirc11 did not alter the development or the antitumor moieties on TRAF6. Collectively, our results describe a func- cytotoxicity of NK cells. However, loss of Mirc11 reduced tion of Mirc11 that regulates generation of proinflammatory generation of proinflammatory factors in vitro and interferon- cytokines from effector lymphocytes. Introduction TRAF2 and TRAF6 promote K63-linked polyubiquitination that is required for subcellular localization of the substrates (20), Natural killer (NK) cells generate proinflammatory factors and and subsequent activation of NF-kB (21) and AP-1 (22).
    [Show full text]