A Single Dose of Neoadjuvant PD-1 Blockade Predicts Clinical Outcomes in Resectable Melanoma

Total Page:16

File Type:pdf, Size:1020Kb

A Single Dose of Neoadjuvant PD-1 Blockade Predicts Clinical Outcomes in Resectable Melanoma FOCUS | LETTERS FOCUShttps://doi.org/10.1038/s41591-019-0357-y | LETTERS https://doi.org/10.1038/s41591-019-0357-y A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma Alexander C. Huang 1,2,3,4,16*, Robert J. Orlowski1,11,16, Xiaowei Xu4,5, Rosemarie Mick3,4,6, Sangeeth M. George7,12, Patrick K. Yan 2,7, Sasikanth Manne2,7, Adam A. Kraya1,4, Bradley Wubbenhorst1,4, Liza Dorfman1,4, Kurt D’Andrea1,4, Brandon M. Wenz1,4, Shujing Liu4,5, Lakshmi Chilukuri2,7, Andrew Kozlov4,8, Mary Carberry1,4, Lydia Giles1,4, Melanie W. Kier1, Felix Quagliarello2,13, Suzanne McGettigan1,4, Kristin Kreider1,4, Lakshmanan Annamalai9, Qing Zhao9, Robin Mogg9,14, Wei Xu1,4, Wendy M. Blumenschein9, Jennifer H. Yearley9, Gerald P. Linette1,2,3,4, Ravi K. Amaravadi1,4, Lynn M. Schuchter1,4, Ramin S. Herati1,2, Bertram Bengsch2,15, Katherine L. Nathanson1,3,4, Michael D. Farwell4,8,17, Giorgos C. Karakousis4,10,17, E. John Wherry 2,3,4,7,17* and Tara C. Mitchell 1,4,17* Immunologic responses to anti-PD-1 therapy in mela- Clinical responses to anti-PD-1 therapies can occur rapidly1,2. A noma patients occur rapidly with pharmacodynamic T cell pharmacodynamic response including reinvigoration of exhausted- responses detectable in blood by 3 weeks. It is unclear, how- phenotype CD8 T cells (TEX) can be detected in blood of cancer ever, whether these early blood-based observations trans- patients after a single dose3,4. However, the precise type(s) of T cells late to the tumor microenvironment. We conducted a study in the tumor that respond to anti-PD-1 remains poorly understood. of neoadjuvant/adjuvant anti-PD-1 therapy in stage III/IV Moreover, whereas early immunological responses to checkpoint melanoma. We hypothesized that immune reinvigoration blockade are observed at 3 weeks in blood, the kinetics of immune in the tumor would be detectable at 3 weeks and that this reinvigoration in the tumor and the relationship to pathological response would correlate with disease-free survival. We response and clinical outcomes are unclear. identified a rapid and potent anti-tumor response, with 8 of We conducted a neoadjuvant/adjuvant anti-PD-1 clinical trial 27 patients experiencing a complete or major pathological in stage III/IV resectable melanoma. This approach provided early response after a single dose of anti-PD-1, all of whom remain on-treatment tumor tissue at resection and insights into the mecha- disease free. These rapid pathologic and clinical responses nisms of PD-1 blockade. Our study demonstrated the clinical fea- were associated with accumulation of exhausted CD8 T cells sibility of neoadjuvant/adjuvant anti-PD-1 therapy in melanoma, in the tumor at 3 weeks, with reinvigoration in the blood and identified a rapid pathological and immunologic response observed as early as 1 week. Transcriptional analysis dem- in tumors. Complete pathological responses could be identified onstrated a pretreatment immune signature (neoadjuvant by 3 weeks and correlated with disease-free survival (DFS). Data response signature) that was associated with clinical ben- from early on-treatment resected tumor indicate that TEX, but not efit. In contrast, patients with disease recurrence displayed bystander cells, are a major responding cell type. Studies in an addi- mechanisms of resistance including immune suppression, tional cohort identified reinvigoration of TEX as early as day 7 after mutational escape, and/or tumor evolution. Neoadjuvant the first dose of anti-PD-1. Finally, in patients who developed dis- anti-PD-1 treatment is effective in high-risk resectable stage ease recurrence, potential mechanisms of resistance were identified. III/IV melanoma. Pathological response and immunological analyses after a single neoadjuvant dose can be used to pre- Results dict clinical outcome and to dissect underlying mechanisms A pharmacodynamic immune response can be detected in blood in checkpoint blockade. 3 weeks after initiation of PD-1 blockade3,4. To understand the 1Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. 2Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. 3Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA. 4Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. 5Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. 6Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. 7Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. 8Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. 9Merck Research Laboratories, Kenilworth, NJ, USA. 10Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. 11Present address: Merck & Co., Inc., Kenilworth, NJ, USA. 12Present address: Bristol-Myers Squibb, Lawrenceville, NJ, USA. 13Present address: Stem Cell Technologies, Vancouver, British Columbia, Canada. 14Present address: Bill & Melinda Gates Medical Research Institute, Cambridge, MA, USA. 15Present address: Department of Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Freiburg, Germany. 16These authors contributed equally: A. C. Huang, R. J. Orlowski. 17These authors jointly supervised this work: M. D. Farwell, G. C. Karakousis, E. J. Wherry, T. C. Mitchell. *e-mail: [email protected]; [email protected]; [email protected] NatURE MEDICINE | www.nature.com/naturemedicine LETTERS | FOCUS LETTERShttps://doi.org/10.1038/s41591-019-0357-y | FOCUS NATURE MEDICINE a b ViableMixed Necrotic 3 weeks Resectable melanoma α-PD-1 α-PD-1 stage III B/C for 1 dose for 1 year or stage IV Biopsy Resection 1 cm 1 cm 1 cm c d DFS 1.00 30% pCR 0.75 5/27 30 µm 0.50 3/27 Probability 0.25 No. at risk 27 21 15 11 10 31 Pathologic response 0.00 Non-resp 0612 18 24 30 36 42 Complete 30 µm Major Time from surgery (months) e f Pre Week 3 Viable tumor Viable tumor Non-viable tumor P = 0.0002 DFS 1.00 100 Viable tumor ≤ 10%, n = 8 0.75 ) 75 y pCR (Pt 07) 30 µm 30 µm 0.50 50 Viable tumor > 10%, n = 19 Viable tumor Viable tumor Probabilit 0.25 Viable tumor (% 25 Stage-adjusted HR = 0.09, 95% CI 0.0-0.73, P = 0.02 (n = 2) 0.00 (n = 4) 0612 18 24 30 36 42 0 Time from surgery (months) 30 m 30 m Pre Week 3 Recurrence (Pt 20) µ µ Pre Week 3 TIL g h DFS Non-brisk/absent TIL Brisk TIL P = 0.004 1.00 Brisk n = 12 k Bris TIL 0.75 y pCR (Pt 11) 30 µm 30 µm 0.50 Non-brisk/absent n = 15 Non-brisk/absent TIL Non-brisk/absent TIL Probabilit 0.25 Univariate HR = 0.15, 95% CI 0.02-0.66, P = 0.009 0.00 0612 18 24 30 36 42 Non-brisk/absent Time from surgery (months) 30 m 30 m Pre Week 3 Recurrence (Pt 21) µ µ Fig. 1 | Pathologic response and TILs are predictive of clinical outcome after a single dose of anti-PD-1. a, Schema of the neoadjuvant and then adjuvant pembrolizumab clinical trial. b, Representative images of viable, mixed, and necrotic tumors resected at the 3-week post-treatment time point. c, Representative H&E images of pCR and non-response (non-resp) (left) and fraction of patients with complete pathologic response and major pathologic response (right). d, Kaplan–Meier estimate of DFS. e, Representative H&E images (left) and changes in the percentage of viable tumor in pre-treatment and post-treatment tumors (right, n = 20); P value calculated using two-sided Wilcoxon matched-pairs test. f, Kaplan–Maier estimate of DFS stratified according to pathologic response. Cox proportional hazards regression modeling was used to calculate hazard ratio. g, Changes in TIL infiltration in pre- treatment and post-treatment tumors (n = 20); P value calculated using McNemar’s test. h, Kaplan–Maier estimate of DFS stratified according to TIL response. Cox proportional hazards regression modeling was used to calculate hazard ratio. 95% CI, 95% confidence interval; HR, hazard ratio; Pt, patient. early effects of anti-PD-1 in tumors, we conducted an investigator- between surgery and initiation of adjuvant pembrolizumab was initiated clinical trial of neoadjuvant anti-PD-1 (pembrolizumab) 23 days (range 13–39). There were no unexpected adverse events in stage IIIB/C or IV melanoma. All patients underwent baseline (Supplementary Table 2); the rate of grade 3 or higher adverse pretreatment biopsy and received a single dose of pembrolizumab events not attributed to pembrolizumab or to surgery alone was (200 mg), followed by complete resection 3 weeks later and adju- not higher than 30%, the prespecified safety end point (observed vant therapy (Fig. 1a). Twenty-nine patients were enrolled and rate was 0%, P = 0.0002, z test). There were no unexpected delays treated (Supplementary Table 1). Patients proceeded to surgical in surgery or adjuvant pembrolizumab, or unexpected surgical resection at 3 weeks (median 21 days, range 17–42). Median interval complications. NatURE MEDICINE | www.nature.com/naturemedicine FOCUS | LETTERS NATURE MEDICINE https://doi.org/10.1038/s41591-019-0357-yFOCUS | LETTERS We assessed the pathologic response after 1 dose of pembroli- CD8, CD4, and FoxP3+ regulatory T cells (Tregs) was detected in zumab in the resection specimens of 27 patients available at time the blood after anti-PD-1 (Extended Data Fig. 2a), as described3. of data cut-off. Resected tumor had features of completely viable, In the tumor, CD8 T cell proliferation increased (Extended Data mixed viable and necrotic, or completely necrotic tumor on gross Fig.
Recommended publications
  • In Utero Exposure to Second-Hand Smoke Aggravates Adult Responses to Inhaled Irritants Rui Xiao Louisiana State University and Agricultural and Mechanical College
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2014 In Utero Exposure To Second-Hand Smoke Aggravates Adult Responses To Inhaled Irritants Rui Xiao Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Medicine and Health Sciences Commons Recommended Citation Xiao, Rui, "In Utero Exposure To Second-Hand Smoke Aggravates Adult Responses To Inhaled Irritants" (2014). LSU Doctoral Dissertations. 3345. https://digitalcommons.lsu.edu/gradschool_dissertations/3345 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. IN UTERO EXPOSURE TO SECOND-HAND SMOKE AGGRAVATES ADULT RESPONSES TO INHALED IRRITANTS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Comparative Biomedical Sciences by Rui Xiao B. S., Shanghai Jiao Tong University, 2008 May 2014 ACKNOWLEDGEMENTS The entire faculty and office staff in the CBS Department of the LSU SVM have been extremely helpful to my educational experience at LSU. Inside our laboratory, like a warm family, there have been a number of people who contributed greatly to the work described within this manuscript and each one deserves acknowledgement and recognition for their effort-- -Zakia Perveen, Lindsey Clemones, Lisa Earl, Dr. Alexandra Noel and Dr.
    [Show full text]
  • Evolution of the Vertebrate Resistin Gene Family
    RESEARCH ARTICLE Evolution of the Vertebrate Resistin Gene Family Qingda Hu1, Huanran Tan2, David M. Irwin1,2,3* 1 Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada, 2 Department of Pharmacology, Health Sciences Center, Peking University, Beijing, China, 3 Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada * [email protected] Abstract Resistin (encoded by Retn) was previously identified in rodents as a hormone associated with diabetes; however human resistin is instead linked to inflammation. Resistin is a mem- ber of a small gene family that includes the resistin-like peptides (encoded by Retnl genes) in mammals. Genomic searches of available genome sequences of diverse vertebrates and OPEN ACCESS phylogenetic analyses were conducted to determine the size and origin of the resistin-like gene family. Genes encoding peptides similar to resistin were found in Mammalia, Sauria, Citation: Hu Q, Tan H, Irwin DM (2015) Evolution of the Vertebrate Resistin Gene Family. PLoS ONE Amphibia, and Actinistia (coelacanth, a lobe-finned fish), but not in Aves or fish from Acti- 10(6): e0130188. doi:10.1371/journal.pone.0130188 nopterygii, Chondrichthyes, or Agnatha. Retnl originated by duplication and transposition Academic Editor: Marc Robinson-Rechavi, from Retn on the early mammalian lineage after divergence of the platypus, but before the University of Lausanne, SWITZERLAND placental and marsupial mammal divergence. The resistin-like gene family illustrates an in- Received: March 10, 2015 stance where the locus of origin of duplicated genes can be identified, with Retn continuing to reside at this location. Mammalian species typically have a single copy Retn gene, but Accepted: May 18, 2015 are much more variable in their numbers of Retnl genes, ranging from 0 to 9.
    [Show full text]
  • Multiphase Analysis by Linkage, Quantitative Transmission
    Chen et al. BMC Proceedings 2014, 8(Suppl 1):S108 http://www.biomedcentral.com/1753-6561/8/S1/S108 PROCEEDINGS Open Access Multiphase analysis by linkage, quantitative transmission disequilibrium, and measured genotype: systolic blood pressure in complex Mexican American pedigrees Zhijian Chen1, Kuan-Rui Tan2, Shelley B Bull1,2* From Genetic Analysis Workshop 18 Stevenson, WA, USA. 13-17 October 2012 Abstract We apply a multiphase strategy for pedigree-based genetic analysis of systolic blood pressure data collected in a longitudinal study of large Mexican American pedigrees. In the first phase, we conduct variance-components linkage analysis to identify regions that may harbor quantitative trait loci. In the second phase, we carry out pedigree-based association analysis in a selected region with common and low-frequency variants from genome- wide association studies and whole genome sequencing data. Using sequencing data, we compare approaches to pedigree analysis in a 10 megabase candidate region on chromosome 3 harboring a gene previously identified by a consortium for blood pressure genome-wide association studies. We observe that, as expected, the measured genotype analysis tends to provide larger signals than the quantitative transmission disequilibrium test. We also observe that while linkage signals are contributed by common variants, strong associations are found mainly at rare variants. Multiphase analysis can improve computational efficiency and reduce the multiple testing burden. Background for pedigree-based imputation from sequence data on In pedigree-based studies, discovery of genomic regions selected pedigree members, pedigree-based analysis of harboring genetic determinants of quantitative traits such whole genome sequencing data is feasible. as systolic blood pressure (SBP) has conventionally been We demonstrate that multiphase analysis in pedigrees conducted using linkage analysis based on identity-by- can be an efficient strategy for identifying genetic variants descent allele sharing.
    [Show full text]
  • Exposure of Mice to Secondhand Smoke Elicits Both Transient and Long-Lasting Transcriptional Changes in Cancer-Related Functional Networks
    IJC International Journal of Cancer Exposure of mice to secondhand smoke elicits both transient and long-lasting transcriptional changes in cancer-related functional networks Stella Tommasi, Albert Zheng and Ahmad Besaratinia Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, Los Angeles, CA Secondhand smoke (SHS) has long been linked to lung cancer and other diseases in nonsmokers. Yet, the underlying mecha- nisms of SHS carcinogenicity in nonsmokers remain to be elucidated. We investigated the immediate and long-lasting effects of SHS exposure on gene expression in mice in vivo. We exposed mice whole body to SHS for 5 h/day, 5 days/week for 4 months in exposure chambers of a microprocessor-controlled smoking machine. Subsequently, we performed microarray gene expression profiling, genome-wide, to construct the pulmonary transcriptome of SHS-exposed mice, immediately after discon- tinuation of exposure (T0) and following 1-month (T1) and 7-month (T2) recoveries in clean air. Sub-chronic exposure of mice to SHS elicited a robust transcriptomic response, including both reversible and irreversible changes in gene expression. There were 674 differentially expressed transcripts immediately after treatment (T0), of which the majority were involved in xenobi- otic metabolism, signaling, and innate immune response. Reduced, yet, substantial numbers of differentially expressed tran- scripts were detectable in mice after cessation of SHS-exposure (254 transcripts at T1 and 30 transcripts at T2). Top biofunctional networks disrupted in SHS-exposed mice, even after termination of exposure, were implicated in cancer, respira- tory disease, and inflammatory disease. Our data show that exposure of mice to SHS induces both transient and long-lasting changes in gene expression, which impact cancer-related functional networks.
    [Show full text]
  • Robles JTO Supplemental Digital Content 1
    Supplementary Materials An Integrated Prognostic Classifier for Stage I Lung Adenocarcinoma based on mRNA, microRNA and DNA Methylation Biomarkers Ana I. Robles1, Eri Arai2, Ewy A. Mathé1, Hirokazu Okayama1, Aaron Schetter1, Derek Brown1, David Petersen3, Elise D. Bowman1, Rintaro Noro1, Judith A. Welsh1, Daniel C. Edelman3, Holly S. Stevenson3, Yonghong Wang3, Naoto Tsuchiya4, Takashi Kohno4, Vidar Skaug5, Steen Mollerup5, Aage Haugen5, Paul S. Meltzer3, Jun Yokota6, Yae Kanai2 and Curtis C. Harris1 Affiliations: 1Laboratory of Human Carcinogenesis, NCI-CCR, National Institutes of Health, Bethesda, MD 20892, USA. 2Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104-0045, Japan. 3Genetics Branch, NCI-CCR, National Institutes of Health, Bethesda, MD 20892, USA. 4Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan. 5Department of Chemical and Biological Working Environment, National Institute of Occupational Health, NO-0033 Oslo, Norway. 6Genomics and Epigenomics of Cancer Prediction Program, Institute of Predictive and Personalized Medicine of Cancer (IMPPC), 08916 Badalona (Barcelona), Spain. List of Supplementary Materials Supplementary Materials and Methods Fig. S1. Hierarchical clustering of based on CpG sites differentially-methylated in Stage I ADC compared to non-tumor adjacent tissues. Fig. S2. Confirmatory pyrosequencing analysis of DNA methylation at the HOXA9 locus in Stage I ADC from a subset of the NCI microarray cohort. 1 Fig. S3. Methylation Beta-values for HOXA9 probe cg26521404 in Stage I ADC samples from Japan. Fig. S4. Kaplan-Meier analysis of HOXA9 promoter methylation in a published cohort of Stage I lung ADC (J Clin Oncol 2013;31(32):4140-7). Fig. S5. Kaplan-Meier analysis of a combined prognostic biomarker in Stage I lung ADC.
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]
  • FLAME: a Web Tool for Functional and Literature Enrichment Analysis of Multiple Gene Lists
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.02.446692; this version posted June 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. FLAME: a web tool for functional and literature enrichment analysis of multiple gene lists Foteini Thanati1,†, Evangelos Karatzas1,†, Fotis A. Baltoumas1, Dimitrios J. Stravopodis2, Aristides G. Eliopoulos3,4,5, Georgios A. Pavlopoulos1,4,* 1 Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", Athens, Greece 2 Department of Biology, National and Kapodistrian University of Athens, Athens, Greece 3 Department of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece 4 Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece 5 Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece †Equally contributing authors *To whom correspondence should be addressed. Tel: +30-210-9656310; Fax: +30-210-9653934; Email: [email protected] Present Address: Georgios A. Pavlopoulos, Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", 34 Fleming Street, Vari, 16672, Greece ABSTRACT Functional enrichment is a widely used method for interpreting experimental results by identifying classes of proteins/genes associated with certain biological functions, pathways, diseases or phenotypes. Despite the variety of existing tools, most of them can process a single list per time, thus making a more combinatorial analysis more complicated and prone to errors. In this article, we present FLAME, a web tool for combining multiple lists prior to enrichment analysis.
    [Show full text]
  • (NF1) As a Breast Cancer Driver
    INVESTIGATION Comparative Oncogenomics Implicates the Neurofibromin 1 Gene (NF1) as a Breast Cancer Driver Marsha D. Wallace,*,† Adam D. Pfefferle,‡,§,1 Lishuang Shen,*,1 Adrian J. McNairn,* Ethan G. Cerami,** Barbara L. Fallon,* Vera D. Rinaldi,* Teresa L. Southard,*,†† Charles M. Perou,‡,§,‡‡ and John C. Schimenti*,†,§§,2 *Department of Biomedical Sciences, †Department of Molecular Biology and Genetics, ††Section of Anatomic Pathology, and §§Center for Vertebrate Genomics, Cornell University, Ithaca, New York 14853, ‡Department of Pathology and Laboratory Medicine, §Lineberger Comprehensive Cancer Center, and ‡‡Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27514, and **Memorial Sloan-Kettering Cancer Center, New York, New York 10065 ABSTRACT Identifying genomic alterations driving breast cancer is complicated by tumor diversity and genetic heterogeneity. Relevant mouse models are powerful for untangling this problem because such heterogeneity can be controlled. Inbred Chaos3 mice exhibit high levels of genomic instability leading to mammary tumors that have tumor gene expression profiles closely resembling mature human mammary luminal cell signatures. We genomically characterized mammary adenocarcinomas from these mice to identify cancer-causing genomic events that overlap common alterations in human breast cancer. Chaos3 tumors underwent recurrent copy number alterations (CNAs), particularly deletion of the RAS inhibitor Neurofibromin 1 (Nf1) in nearly all cases. These overlap with human CNAs including NF1, which is deleted or mutated in 27.7% of all breast carcinomas. Chaos3 mammary tumor cells exhibit RAS hyperactivation and increased sensitivity to RAS pathway inhibitors. These results indicate that spontaneous NF1 loss can drive breast cancer. This should be informative for treatment of the significant fraction of patients whose tumors bear NF1 mutations.
    [Show full text]
  • Bioinformatics Approaches to Cancer Gene Discovery
    02_Narayanan 9/1/06 3:16 PM Page 13 2 Bioinformatics Approaches to Cancer Gene Discovery Ramaswamy Narayanan Summary The Cancer Gene Anatomy Project (CGAP) database of the National Cancer Institute has thousands of known and novel expressed sequence tags (ESTs). These ESTs, derived from diverse normal and tumor cDNA libraries, offer an attractive starting point for cancer gene dis- covery. Data-mining the CGAP database led to the identification of ESTs that were predicted to be specific to select solid tumors. Two genes from these efforts were taken to proof of concept for diagnostic and therapeutics indications of cancer. Microarray technology was used in con- junction with bioinformatics to understand the mechanism of one of the targets discovered. These efforts provide an example of gene discovery by using bioinformatics approaches. The strengths and weaknesses of this approach are discussed in this review. Key Words: Antisense; digital differential display; Down syndrome; genomics; solid tumors. 1. Introduction The recent completion of the human genome sequencing efforts offers a new dimension in gene discovery approaches (1–4). From these vast numbers of new genes, new diagnostic and therapeutic targets for diseases such as cancer are predicted to emerge (5). Only a subset of genes is expressed in a given cell, and the level of expression governs function. High-throughput gene expression technology is becoming a possibility for analyzing expression of a large num- ber of sequences in diseased and normal tissues with the use of microarrays and gene chips (6–9). A parallel way to initiate a search for genes relevant to cancer diagnostics and therapy is to data-mine the sequence database (10–14).
    [Show full text]
  • Resistin-Like Molecules in Infection, Inflammation, and Metabolic Disorders
    Cytokine xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Cytokine journal homepage: www.elsevier.com/locate/cytokine Review article Here, there and everywhere: Resistin-like molecules in infection, inflammation, and metabolic disorders ⁎ Gabrielle M. Pine1, Hashini M. Batugedara1, Meera G. Nair Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States ARTICLE INFO ABSTRACT Keywords: The Resistin-Like Molecules (RELM) α, β, and γ and their namesake, resistin, share structural and sequence Resistin-like molecule homology but exhibit significant diversity in expression and function within their mammalian host. RELM Macrophage proteins are expressed in a wide range of diseases, such as: microbial infections (eg. bacterial and helminth), Helminth infection inflammatory diseases (eg. asthma, fibrosis) and metabolic disorders (eg. diabetes). While the expression pattern T helper type 2 and molecular regulation of RELM proteins are well characterized, much controversy remains over their pro- Toll-like Receptor 4 posed functions, with evidence of host-protective and pathogenic roles. Moreover, the receptors for RELM proteins are unclear, although three receptors for resistin, decorin, adenylyl cyclase-associated protein 1 (CAP1), and Toll-like Receptor 4 (TLR4) have recently been proposed. In this review, we will first summarize the mo- lecular regulation of the RELM gene family, including transcription regulation and tissue expression in humans and mouse disease models. Second, we will outline the function and receptor-mediated signaling associated with RELM proteins. Finally, we will discuss recent studies suggesting that, despite early misconceptions that these proteins are pathogenic, RELM proteins have a more nuanced and potentially beneficial role for the host in certain disease settings.
    [Show full text]
  • Multi-Tissue Probabilistic Fine-Mapping of Transcriptome-Wide Association Study Identifies Cis-Regulated Genes for Miserableness
    bioRxiv preprint doi: https://doi.org/10.1101/682633; this version posted June 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Multi-tissue probabilistic fine-mapping of transcriptome-wide association study identifies cis-regulated genes for miserableness Calwing Liao1,2 BSc, Veikko Vuokila2, Alexandre D Laporte2 BSc, Dan Spiegelman2 MSc, Patrick A. Dion2,3 PhD, Guy A. Rouleau1,2,3 * MD, PhD 1Department oF Human Genetics, McGill University, Montréal, Quebec, Canada 2Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada 3Department oF Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada Short summary: The First transcriptome-wide association study oF miserableness identiFies many genes including c7orf50 implicated in the trait. Word count: 1,522 excluding abstract and reFerences Tables: 3 Keywords: Miserableness, transcriptome-wide association study, TWAS *Correspondence: Dr. Guy A. Rouleau Montreal Neurological Institute and Hospital Department oF Neurology and Neurosurgery 3801 University Street, Montreal, QC Canada H3A 2B4. Tel: +1 514 398 2690 Fax: +1 514 398 8248 E-mail: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/682633; this version posted June 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Abstract (141 words) Miserableness is a behavioural trait that is characterized by strong negative Feelings in an individual.
    [Show full text]
  • Identification and Mechanistic Investigation of Recurrent Functional Genomic and Transcriptional Alterations in Advanced Prostat
    Identification and Mechanistic Investigation of Recurrent Functional Genomic and Transcriptional Alterations in Advanced Prostate Cancer Thomas A. White A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2013 Reading Committee: Peter S. Nelson, Chair Janet L. Stanford Raymond J. Monnat Jay A. Shendure Program Authorized to Offer Degree: Molecular and Cellular Biology ©Copyright 2013 Thomas A. White University of Washington Abstract Identification and Mechanistic Investigation of Recurrent Functional Genomic and Transcriptional Alterations in Advanced Prostate Cancer Thomas A. White Chair of the Supervisory Committee: Peter S. Nelson, MD Novel functionally altered transcripts may be recurrent in prostate cancer (PCa) and may underlie lethal and advanced disease and the neuroendocrine small cell carcinoma (SCC) phenotype. We conducted an RNASeq survey of the LuCaP series of 24 PCa xenograft tumors from 19 men, and validated observations on metastatic tumors and PCa cell lines. Key findings include discovery and validation of 40 novel fusion transcripts including one recurrent chimera, many SCC-specific and castration resistance (CR) -specific novel splice isoforms, new observations on SCC-specific and TMPRSS2-ERG specific differential expression, the allele-specific expression of certain recurrent non- synonymous somatic single nucleotide variants (nsSNVs) previously discovered via exome sequencing of the same tumors, rgw ubiquitous A-to-I RNA editing of base excision repair (BER) gene NEIL1 as well as CDK13, a kinase involved in RNA splicing, and the SCC expression of a previously unannotated long noncoding RNA (lncRNA) at Chr6p22.2. Mechanistic investigation of the novel lncRNA indicates expression is regulated by derepression by master neuroendocrine regulator RE1-silencing transcription factor (REST), and may regulate some genes of axonogenesis and angiogenesis.
    [Show full text]