Transcriptional Profiling of a Mouse Model of Infectious Colitis: the Role of Host Factors

Total Page:16

File Type:pdf, Size:1020Kb

Transcriptional Profiling of a Mouse Model of Infectious Colitis: the Role of Host Factors Development, Characterization and Transcriptional Profiling of a Mouse Model of Fatal Infectious Diarrhea and Colitis. by Diana Borenshtein M.Sc. Nutritional Sciences, 1999 B.Sc. Nutritional Sciences, 1995 The Hebrew University of Jerusalem, Israel SUBMITTED TO THE DEPARTMENT OF BIOLOGICAL ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN MOLECULAR AND SYSTEMS TOXICOLOGY at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2007 © 2007 Massachusetts Institute of Technology. All rights reserved Signature of Author Biological Engineering Division December 1, 2006 Certified by David B. Schauer Professor of Biological Engineering Thesis Supervisor Accepted by Ram Sasisekharan Professor of Biological Engineering Chairman, Committee for Graduate Students 2 This doctoral thesis has been examined by a committee of the department of Biological Engineering as follows: Certified by Professor James G. Fox, MIT Chairman Certified by Professor James L. Sherley, MIT Certified by Professor Eric J. Rubin, Harvard School of Public Health 3 4 Development, Characterization and Transcriptional Profiling of a Mouse Model of Fatal Infectious Diarrhea and Colitis by Diana Borenshtein Submitted to the Biological Engineering Division on December 1, 2006 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Molecular and Systems Toxicology Abstract Citrobacter rodentium is a naturally occurring murine bacterial pathogen which is used to model human diarrheagenic E. coli (EPEC and EHEC) infections in mice. C. rodentium causes colonic hyperplasia and a variable degree of colitis and mortality in the majority of inbred and outbred lines of mice. Differences in C. rodentium-induced disease are determined by the genetic background of the host. Here, C. rodentium infection in resistant outbred Swiss Webster (SW) mice was compared with infection in the cognate inbred FVB strain for the first time. In contrast to subclinical infection in SW mice, adult FVB mice developed overt disease with significant weight loss, severe colitis, and over 75% mortality. Fluid therapy intervention completely prevented mortality in FVB mice, and expression of pro-inflammatory and immunomodulatory genes in the colon was similar in both lines of mice, suggesting that mortality in C. rodentium- infected FVB mice is due to hypovolemia resulting from severe dehydration. To identify host factors responsible for the development of mortality, gene expression in the distal colon of FVB and SW mice was investigated using a whole mouse genome Affymetrix array. Transcripts represented by 1,547 probe sets (3.4%) were differentially expressed between FVB and SW mice prior to infection and at 4 and 9 days post-inoculation. Data analysis suggested that intestinal ion disturbances rather than immune-related processes are responsible for susceptibility in C. rodentium-infected FVB mice. Marked impairment in intestinal ion homeostasis predicted by microarray analysis was confirmed by quantitative RT-PCR and serum electrolyte measurements that showed hypochloremia and hyponatremia in susceptible FVB mice. C. rodentium infection was next characterized in additional inbred strains of Swiss origin. SWR and SJL mice developed minimal morbidity and no mortality in response to the pathogen, demonstrating resistance to disease. Furthermore, C3H mice developed severe diarrhea and gene expression changes comparable to those in infected FVB mice, suggesting common pathogenic mechanisms in susceptible strains. In conclusion, C. rodentium infection in FVB mice is a useful model for fatal infectious diarrhea. These studies contribute to our understanding of C. rodentium pathogenesis and identify possible candidates for susceptibility to fatal enteric bacterial infection. Thesis supervisor: David B. Schauer Title: Professor of Biological Engineering 5 6 Acknowledgements I dedicate my Ph.D to my lovely husband, whose support and inspiration were so vital for me. I cannot explain how much his love, patience, and support mean to me. I am grateful for his understanding of my needs and accepting my chosen path. I hope he felt (at least most of the time) that he and our family are still my first priority. We have wonderful kids and, being a busy Ph.D student mother, I’ve enjoyed every moment I spent with my family. I am in deep debt to my parents, who raised me and made all the possible (and impossible) for my education. I also want to recognize my sister, a great friend and which hopefully will follow my steps. I was very fortunate to have a wonderful advisor, Prof. David Schauer. David has guided me in my research and was an excellent mentor the past 5 years of my life at MIT. David’s knowledge and experience were always there for me. Thanks for suffering my annoyance, supporting my crazy ideas and providing the freedom to conduct experiments the way I did. I also thank him for understanding the needs of a mother-student and supporting me during my complicated pregnancy. This meant a lot to me and I am grateful for that. I express my gratitude to my thesis committee members Prof. James Fox, Prof. James Sherley, and Prof. Eric Rubin for giving me their time and input. Their suggestions throughout my dissertation time were valuable and helped to increase the depth of understanding in my research field. I had an opportunity to collaborate with many distinguished scientists. I thank Prof. Leona Samson, Dr. Lisiane Meira, and Dr. Rebecca Fry for their time and fruitful discussions. Selected parts of our collaborative work are presented here and hopefully will be published soon. I’ve become such good friends with Lisi and Becky, and their help and support was valuable to me. I also enjoyed working with Dr. Elena Gostjeva. We found interesting observations and our long chats in the corridors were always interesting to me. Also, I thank Dr. Michael B. Sporn, Dartmouth Medical School for providing anti-inflammatory compounds for our dietary intervention project. In addition, I had an exciting experience collaborating with Dr. Stephen Collins from McMaster University Medical Center, Canada, though not presented in this thesis. I have to recognize help from the microarray facilities of the Whitehead Institute including Tom Volker, the manager, and especially Jen Love, who processed all my microarray samples. Also, I appreciate time and effort of Dr. Sampsa Hautaniemi from BE, MIT, Prof. Vincent Carey from Harvard Medical School, and Prof. Ernest Fraenkel from BE, MIT, who consulted in analysis of the microarray data. One of the very important things in graduate student life is your lab. My time in MIT has flown past with such a pleasure thanks to many past and present members of the Schauer Lab including Jane Sohn, Ming Chen, Katie Schlieper, Hilda “Scooter” Holcombe, Liz Groff (Colgan), Claude Nagamine, Nancy Guillen, Alex Sheh, Rongcong Wu, Allison Vitsky, Kristen Jellison, Steven Luperchio, and Petra Bertilsson. Thanks to their professional expertise and the fun time we all had together. I thank UROP students, Yuri Matsumoto, Maya Hasan, Joanne Lai, Kriti Jain, and Patricia Zheng. I learned a lot from you and my experience working with you. Kim Knox, in addition of being a highly professional technician and lab manager, we spent time being pregnant 7 together and I wish you and all your family happiness and great health. Special thanks to Solveig Ravnum and Megan McBee – my dear chatting friends, you made my life in the lab really enjoyable. I would like to recognize the staff of DCM, especially our veterinary pathologists Dr. Prashant Nambiar, Dr. Barry Rickman and Dr. Arlin Rogers, who collaborated with me on the work presented here. I highly appreciate the professionalism and hard work of the histology lab, managed by Kathy Cormier and staffed with Kate Rydstrom, Chakib Boussahmain, Ernie Smith, Jeff Bajko, Erinn Stefanich, and Bobi Young. I also recognize the hard work and tremendous help by animal facility crew including Gladys Valeriano (Martinez), Kevin Milne, Herber Villanueva, Jarlin Lemus and Melissa Topolszki, Leslie Hopper, Kris Hewes, Kibibi Rwayitare and Jennifer Statile. Other people in DCM that assisted me along the way were Dr. Yan Feng, Dr. Zhonming Ge, Ellen Buckley, Sue Chow, Jim Yang, Glenda Inciong, Dr. Sam Boutin, and Dr. Laura Lemke. Our department benefits from the help of wonderful people. I thank Marcia Weir, Olga Parkin, Amy Francis, Pat Brown, Christian Rheault, Kay Walsh, JoAnn Sorrento, Mariann Murray, Roni Dudley-Cowans, Kerry Forristall, Kim Bond Schaefer, Debra Luchanin, and Dalia Gabour for their help, assistance and great time in MIT. None of this would be possible without the guidance and excellent management by the director of ex-Division and now a Department of Biological Engineering, Doug Lauffenburger. I was privileged to become a Biogen Idec, Inc. fellow in 2004-2005 academic year. Special thanks to Dr. James Green, Dr. David Hutto, my mentor, Sarah Vincent, and Prof. Pete Dedon, the coordinator of the program. There were many people who helped me in my pre-MIT life. I acknowledge my master thesis advisor Prof. Zecharia Madar and Dr. Aliza Stark from the Faculty of Agriculture, The University of Hebrew University, Israel. Their guidance initiated my scientific career. I thank Prof. Leo Herzenberg and Dr. David Voehringer for allowing me to volunteer at Stanford. This experience was very beneficial to me. I also would like to recognize Prof. Michal Schwartz from Weizmann Institute for a great supervision during my work in her biotech company. She served as a model of female scientist I would like to be. I want to acknowledge many numerous MIT friends that walked with me through both good and bad times of graduate school. The list is quite long. But in addition to some of the names mentioned above, I would like to acknowledge specially Rouzbeh Taghizadeh, Sundina Nataliya, and Alina Berdichevsky. They have been wonderful friends and I will always keep the memories about our time together in MIT. I also have many friends in Israel and USA that supported me during this time as well.
Recommended publications
  • Role of Meprin Metalloproteases in Metastasis and Tumor Microenvironment
    Cancer and Metastasis Reviews (2019) 38:347–356 https://doi.org/10.1007/s10555-019-09805-5 Role of meprin metalloproteases in metastasis and tumor microenvironment Florian Peters1 & Christoph Becker-Pauly1 Published online: 3 September 2019 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract A crucial step for tumor cell extravasation and metastasis is the migration through the extracellular matrix, which requires proteolytic activity. Hence, proteases, particularly matrix metalloproteases (MMPs), have been discussed as therapeutic targets and their inhibition should diminish tumor growth and metastasis. The metalloproteases meprin α and meprin β are highly abundant on intestinal enterocytes and their expression was associated with different stages of colorectal cancer. Due to their ability to cleave extracellular matrix (ECM) components, they were suggested as pro-tumorigenic enzymes. Additionally, both meprins were shown to have pro-inflammatory activity by cleaving cytokines and their receptors, which correlates with chronic intestinal inflammation and associated conditions. On the other hand, meprin β was identified as an essential enzyme for the detachment and renewal of the intestinal mucus, important to prevent bacterial overgrowth and infection. Considering this, it is hard to estimate whether high activity of meprins is generally detrimental or if these enzymes have also protective functions in certain cancer types. For instance, for colorectal cancer, patients with high meprin β expression in tumor tissue exhibit a better survival prognosis, which is completely different to prostate cancer. This demonstrates that the very same enzyme may have contrary effects on tumor initiation and growth, depending on its tissue and subcellular localization. Hence, precise knowledge about proteolytic enzymes is required to design the most efficient therapeutic options for cancer treatment.
    [Show full text]
  • Transcriptional Mechanisms of Resistance to Anti-PD-1 Therapy
    Author Manuscript Published OnlineFirst on February 13, 2017; DOI: 10.1158/1078-0432.CCR-17-0270 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Transcriptional mechanisms of resistance to anti-PD-1 therapy Maria L. Ascierto1, Alvin Makohon-Moore2, 11, Evan J. Lipson1, Janis M. Taube3,4, Tracee L. McMiller5, Alan E. Berger6, Jinshui Fan6, Genevieve J. Kaunitz3, Tricia R. Cottrell4, Zachary A. Kohutek7, Alexander Favorov8,10, Vladimir Makarov7,11, Nadeem Riaz7,11, Timothy A. Chan7,11, Leslie Cope8, Ralph H. Hruban4,9, Drew M. Pardoll1, Barry S. Taylor11,12,13, David B. Solit13, Christine A Iacobuzio-Donahue2,11, and Suzanne L. Topalian5 From the 1Departments of Oncology, 3Dermatology, 4Pathology, 5Surgery, 6The Lowe Family Genomics Core, 8Oncology Bioinformatics Core, and the 9 Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287; the 10Laboratory of System Biology and Computational Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, Moscow, Russia; and 2Pathology, 7Radiation Oncology, 11Human Oncology and Pathogenesis Program, 12Department of Epidemiology and Biostatistics, and the 13Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York NY 10065. MLA, AM-M, EJL, and JMT contributed equally to this work Running title: Transcriptional mechanisms of resistance to anti-PD-1 Key Words: melanoma, cancer genetics, immunotherapy, anti-PD-1 Financial Support: This study was supported by the Melanoma Research Alliance (to SLT and CI-D), the Bloomberg~Kimmel Institute for Cancer Immunotherapy (to JMT, DMP, and SLT), the Barney Family Foundation (to SLT), Moving for Melanoma of Delaware (to SLT), the 1 Downloaded from clincancerres.aacrjournals.org on October 2, 2021.
    [Show full text]
  • Type of the Paper (Article
    Cancers 2020, 12, S1 of S11 Supplementary Materials: Inflammatory Proteins HMGA2 and PRTN3 as Drivers of Vulvar Squamous Cell Carcinoma Pro- gression Agnieszka Fatalska, Natalia Rusetska, Elwira Bakuła-Zalewska, Artur Kowalik, Sebastian Zięba, Agnieszka Wroblewska, Kamil Zalewski, Krzysztof Goryca, Dominik Domański and Magdalena Kowalewska Text S1: Supplementary Methods iTRAQ (Isobaric Tags for Relative and Absolute Quantitation) Cell Lysis The samples were snap-frozen in liquid nitrogen immediately after collection and stored at −70°C before pulverization (with the Microdismembrator II, B Braun Biotech In- ternational, Melsungen, Germany). Forty-two (14 control, 16 d-fVSCC and 12 progVSCC) samples were subjected to deep proteomic analysis. Total cell lysates were obtained from approximately 100 mg of pulverized patient tissue samples. The frozen pulverized tissue samples were resuspended in 300 µl of cold Lysis Buffer (1% sodium deoxycholate (NaDOC) in 25 mM HEPES (4-(2-hydroxyethyl)-1-pipera- zineethanesulfonic acid), boiled for 5 min at 100 °C, and cooled to room temperature (RT) on ice. Next, nucleic acids were degraded with 30 µL of benzonase nuclease (2.5 U/µL in 25 mM HEPES) at 4 °C for 30 min. Samples were then centrifuged twice at 12,000 × g for 10 min at 4 °C and the supernatants were stored at −80 °C. Protein concentrations were determined using the Pierce (Appleton, WI, USA) Bicinchoninic Acid (BCA) Assay Kit according to the manufacturer’s instructions, for the 96-well plate format, in duplicate, at two different sample dilutions (ThermoFisher Scientific, Waltham, MA, USA). Sample Protein Extract Digestion and iTRAQ Labeling Protein extract digestion and iTRAQ tag labeling was conducted using the 8-plex iTRAQ assay and iTRAQ Reagent and Buffer Kits (AB SCIEX, Framingham, MA, USA).
    [Show full text]
  • Rpp2, an Essential Protein Subunit of Nuclear Rnase P, Is Required for Processing of Precursor Trnas and 35S Precursor Rrna in Saccharomyces Cerevisiae
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 6716–6721, June 1998 Biochemistry Rpp2, an essential protein subunit of nuclear RNase P, is required for processing of precursor tRNAs and 35S precursor rRNA in Saccharomyces cerevisiae VIKTOR STOLC*, ALEXANDER KATZ†, AND SIDNEY ALTMAN†‡ †Department of Biology, Yale University, New Haven, CT 06520; and *Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510 Contributed by Sidney Altman, March 31, 1998 ABSTRACT RPP2, an essential gene that encodes a 15.8- has been suggested that RNase P is an ancestor of RNase kDa protein subunit of nuclear RNase P, has been identified MRP, because RNase MRP has been found only in eukaryotes in the genome of Saccharomyces cerevisiae. Rpp2 was detected (20). Yeast RNase MRP functions in processing of precursor by sequence similarity with a human protein, Rpp20, which rRNAs at the A3 site in the internal transcribed sequence of copurifies with human RNase P. Epitope-tagged Rpp2 can be the 35S precursor rRNA (21) and also cleaves RNA primers found in association with both RNase P and RNase mitochon- for mitochondrial DNA replication (22, 23). Although RNase drial RNA processing in immunoprecipitates from crude MRP does not cleave ptRNAs in vitro, its role in rRNA extracts of cells. Depletion of Rpp2 protein in vivo causes processing is affected by proteins that associate with RNase P accumulation of precursor tRNAs with unprocessed introns in vivo (11–14). RNase P functions in the biosynthesis of and 5* and 3* termini, and leads to defects in the processing tRNAs (8) and appears to have a role in rRNA processing in of the 35S precursor rRNA.
    [Show full text]
  • In Human Metabolism
    Supporting Information (SI Appendix) Framework and resource for more than 11,000 gene-transcript- protein-reaction associations (GeTPRA) in human metabolism SI Appendix Materials and Methods Standardization of Metabolite IDs with MNXM IDs Defined in the MNXref Namespace. Information on metabolic contents of the Recon 2Q was standardized using MNXM IDs defined in the MNXref namespace available at MetaNetX (1-3). This standardization was to facilitate the model refinement process described below. Each metabolite ID in the Recon 2Q was converted to MNXM ID accordingly. For metabolite IDs that were not converted to MNXM IDs, they were manually converted to MNXM IDs by comparing their compound structures and synonyms. In the final resulting SBML files, 97 metabolites were assigned with arbitrary IDs (i.e., “MNXMK_” followed by four digits) because they were not covered by the MNXref namespace (i.e., metabolite IDs not converted to MNXM IDs). Refinement or Removal of Biochemically Inconsistent Reactions. Recon 2 was built upon metabolic genes and reactions collected from EHMN (4, 5), the first genome-scale human liver metabolic model HepatoNet1 (6), an acylcarnitine and fatty-acid oxidation model Ac-FAO (7), and a small intestinal enterocyte model hs_eIEC611 (8). Flux variability analysis (9) of the Recon 2Q identified blocked reactions coming from these four sources of metabolic reaction data. The EHMN caused the greatest number of blocked reactions in the Recon 2Q (1,070 reactions corresponding to 69.3% of all the identified blocked reactions). To refine the EHMN reactions, following reactions were initially disregarded: 1) reactions having metabolite IDs not convertible to MNXM IDs; and 2) reactions without genes.
    [Show full text]
  • Metalloproteases Meprin Α and Meprin Β Are C- and N-Procollagen Proteinases Important for Collagen Assembly and Tensile Strength
    Metalloproteases meprin α and meprin β are C- and N-procollagen proteinases important for collagen assembly and tensile strength Claudia Brodera, Philipp Arnoldb, Sandrine Vadon-Le Goffc, Moritz A. Konerdingd, Kerstin Bahrd, Stefan Müllere, Christopher M. Overallf, Judith S. Bondg, Tomas Koudelkah, Andreas Tholeyh, David J. S. Hulmesc, Catherine Moalic, and Christoph Becker-Paulya,1 aUnit for Degradomics of the Protease Web, Institute of Biochemistry, University of Kiel, 24118 Kiel, Germany; bInstitute of Zoology, Johannes Gutenberg University, 55128 Mainz, Germany; cTissue Biology and Therapeutic Engineering Unit, Centre National de la Recherche Scientifique/University of Lyon, Unité Mixte de Recherche 5305, Unité Mixte de Service 3444 Biosciences Gerland-Lyon Sud, 69367 Lyon Cedex 7, France; dInstitute of Functional and Clinical Anatomy, University Medical Center, Johannes Gutenberg University, 55128 Mainz, Germany; eDepartment of Gastroenterology, University of Bern, CH-3010 Bern, Switzerland; fCentre for Blood Research, University of British Columbia, Vancouver, BC, Canada V6T 1Z3; gDepartment of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033; and hInstitute of Experimental Medicine, University of Kiel, 24118 Kiel, Germany Edited by Robert Huber, Max Planck Institute of Biochemistry, Planegg-Martinsried, Germany, and approved July 9, 2013 (received for review March 22, 2013) Type I fibrillar collagen is the most abundant protein in the human formation (22). A tight balance between synthesis and break- body, crucial for the formation and strength of bones, skin, and down of ECM is required for the function of all tissues, and tendon. Proteolytic enzymes are essential for initiation of the dysregulation leads to pathophysiological events, such as arthri- assembly of collagen fibrils by cleaving off the propeptides.
    [Show full text]
  • Exome Sequencing Reveals Cubilin Mutation As a Single-Gene Cause of Proteinuria
    BRIEF COMMUNICATION www.jasn.org Exome Sequencing Reveals Cubilin Mutation as a Single-Gene Cause of Proteinuria Bugsu Ovunc,*† Edgar A. Otto,* Virginia Vega-Warner,* Pawaree Saisawat,* Shazia Ashraf,* Gokul Ramaswami,* Hanan M. Fathy,‡ Dominik Schoeb,* Gil Chernin,* Robert H. Lyons,§ ʈ Engin Yilmaz,† and Friedhelm Hildebrandt* ¶ ʈ Departments of *Pediatrics and Human Genetics, §Department of Biological Chemistry and DNA Sequencing Core, and ¶Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan; †Department of Medical Biology, Hacettepe University, Ankara, Turkey; and ‡The Pediatric Nephrology Unit, Alexandria University, Alexandria, Egypt ABSTRACT In two siblings of consanguineous parents with intermittent nephrotic-range pro- tion is still unknown.7 This forbids the use of teinuria, we identified a homozygous deleterious frameshift mutation in the gene cohort studies for gene identification and ne- CUBN, which encodes cubulin, using exome capture and massively parallel re- cessitates the ability to identify disease-caus- sequencing. The mutation segregated with affected members of this family and ing genes in single families. We therefore was absent from 92 healthy individuals, thereby identifying a recessive mutation in combined whole genome homozygosity CUBN as the single-gene cause of proteinuria in this sibship. Cubulin mutations mapping with consecutive whole human ex- cause a hereditary form of megaloblastic anemia secondary to vitamin B12 defi- ome capture (WHEC) and massively par- ciency, and proteinuria occurs in 50% of cases since cubilin is coreceptor for both allel re-sequencing to overcome this lim- 6 the intestinal vitamin B12-intrinsic factor complex and the tubular reabsorption of itation. In this way we here identify a protein in the proximal tubule.
    [Show full text]
  • 9-Azido Analogs of Three Sialic Acid Forms for Metabolic Remodeling Of
    Supporting Information 9-Azido Analogs of Three Sialic Acid Forms for Metabolic Remodeling of Cell-Surface Sialoglycans Bo Cheng,†,‡ Lu Dong,†,§ Yuntao Zhu,†,‡ Rongbing Huang,†,‡ Yuting Sun,†,‖ Qiancheng You,†,‡ Qitao Song,†,§ James C. Paton, ∇ Adrienne W. Paton,∇ and Xing Chen*,†,‡,§,⊥,# †College of Chemistry and Molecular Engineering, ‡Beijing National Laboratory for Molecular Sciences, §Peking−Tsinghua Center for Life Sciences,‖Academy for Advanced Interdisciplinary Studies, ⊥Synthetic and Functional Biomolecules Center, and #Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China ∇Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide SA 5005, Australia Page S1 Table of Contents: Scheme S1.……………………………………………………….........……………. S3 Figure S1……………………………………………………..………..……………. S3 Figure S2……………………………………………………..………..…………… S4 Figure S3……………………………………………………..………..…………… S4 Figure S4……………………………………………………..………..…………… S5 Figure S5……………………………………………………..………..…………… S6 Figure S6……………………………………………………..………..…………….S7 Figure S7……………………………………………………..………..…………….S8 Figure S8……………………………………………………..………..…………….S9 Experimental Procedures……………………………….…........…………....S10-S27 Table S1………………………………………………..………..…………….S28-S48 Supporting Reference……………………………………………….......………...S49 Page S2 Scheme S1. Synthesis of 9AzNeu5Gc Figure S1: a, b, c, d) Representative scatter plots (FSC vs. SSC) and histograms of flow cytometry analysis
    [Show full text]
  • In Utero Exposure to Second-Hand Smoke Aggravates Adult Responses to Inhaled Irritants Rui Xiao Louisiana State University and Agricultural and Mechanical College
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2014 In Utero Exposure To Second-Hand Smoke Aggravates Adult Responses To Inhaled Irritants Rui Xiao Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Medicine and Health Sciences Commons Recommended Citation Xiao, Rui, "In Utero Exposure To Second-Hand Smoke Aggravates Adult Responses To Inhaled Irritants" (2014). LSU Doctoral Dissertations. 3345. https://digitalcommons.lsu.edu/gradschool_dissertations/3345 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. IN UTERO EXPOSURE TO SECOND-HAND SMOKE AGGRAVATES ADULT RESPONSES TO INHALED IRRITANTS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Comparative Biomedical Sciences by Rui Xiao B. S., Shanghai Jiao Tong University, 2008 May 2014 ACKNOWLEDGEMENTS The entire faculty and office staff in the CBS Department of the LSU SVM have been extremely helpful to my educational experience at LSU. Inside our laboratory, like a warm family, there have been a number of people who contributed greatly to the work described within this manuscript and each one deserves acknowledgement and recognition for their effort-- -Zakia Perveen, Lindsey Clemones, Lisa Earl, Dr. Alexandra Noel and Dr.
    [Show full text]
  • Detailed Investigations of Proximal Tubular Function in Imerslund-Grasbeck Syndrome
    Detailed investigations of proximal tubular function in Imerslund-Grasbeck syndrome. Tina Storm, Christina Zeitz, Olivier Cases, Sabine Amsellem, Pierre Verroust, Mette Madsen, Jean-François Benoist, Sandrine Passemard, Sophie Lebon, Iben Jønsson, et al. To cite this version: Tina Storm, Christina Zeitz, Olivier Cases, Sabine Amsellem, Pierre Verroust, et al.. Detailed in- vestigations of proximal tubular function in Imerslund-Grasbeck syndrome.. BMC Medical Genetics, BioMed Central, 2013, 14 (1), pp.111. 10.1186/1471-2350-14-111. inserm-00904107 HAL Id: inserm-00904107 https://www.hal.inserm.fr/inserm-00904107 Submitted on 13 Nov 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Storm et al. BMC Medical Genetics 2013, 14:111 http://www.biomedcentral.com/1471-2350/14/111 RESEARCHARTICLE Open Access Detailed investigations of proximal tubular function in Imerslund-Gräsbeck syndrome Tina Storm1, Christina Zeitz2,3,4, Olivier Cases2,3,4, Sabine Amsellem2,3,4, Pierre J Verroust1,2,3,4, Mette Madsen1, Jean-François Benoist6, Sandrine Passemard7,8, Sophie Lebon8, Iben Møller Jønsson9, Francesco Emma10, Heidi Koldsø11, Jens Michael Hertz12, Rikke Nielsen1, Erik I Christensen1* and Renata Kozyraki2,3,4,5* Abstract Background: Imerslund-Gräsbeck Syndrome (IGS) is a rare genetic disorder characterised by juvenile megaloblastic anaemia.
    [Show full text]
  • Mitoxplorer, a Visual Data Mining Platform To
    mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dynamics and mutations Annie Yim, Prasanna Koti, Adrien Bonnard, Fabio Marchiano, Milena Dürrbaum, Cecilia Garcia-Perez, José Villaveces, Salma Gamal, Giovanni Cardone, Fabiana Perocchi, et al. To cite this version: Annie Yim, Prasanna Koti, Adrien Bonnard, Fabio Marchiano, Milena Dürrbaum, et al.. mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dy- namics and mutations. Nucleic Acids Research, Oxford University Press, 2020, 10.1093/nar/gkz1128. hal-02394433 HAL Id: hal-02394433 https://hal-amu.archives-ouvertes.fr/hal-02394433 Submitted on 4 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Nucleic Acids Research, 2019 1 doi: 10.1093/nar/gkz1128 Downloaded from https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gkz1128/5651332 by Bibliothèque de l'université la Méditerranée user on 04 December 2019 mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dynamics and mutations Annie Yim1,†, Prasanna Koti1,†, Adrien Bonnard2, Fabio Marchiano3, Milena Durrbaum¨ 1, Cecilia Garcia-Perez4, Jose Villaveces1, Salma Gamal1, Giovanni Cardone1, Fabiana Perocchi4, Zuzana Storchova1,5 and Bianca H.
    [Show full text]
  • Enhanced CRISPR-Based DNA Demethylation by Casilio-ME-Mediated RNA-Guided Coupling of Methylcytosine Oxidation and DNA Repair Pathways
    ARTICLE https://doi.org/10.1038/s41467-019-12339-7 OPEN Enhanced CRISPR-based DNA demethylation by Casilio-ME-mediated RNA-guided coupling of methylcytosine oxidation and DNA repair pathways Aziz Taghbalout1, Menghan Du1, Nathaniel Jillette1, Wojciech Rosikiewicz1, Abhijit Rath2, Christopher D. Heinen2, Sheng Li1 & Albert W. Cheng 1,3,4* Casilio-ME 1234567890():,; Here we develop a methylation editing toolbox, , that enables not only RNA-guided methylcytosine editing by targeting TET1 to genomic sites, but also by co-delivering TET1 and protein factors that couple methylcytosine oxidation to DNA repair activities, and/or promote TET1 to achieve enhanced activation of methylation-silenced genes. Delivery of TET1 activity by Casilio-ME1 robustly alters the CpG methylation landscape of promoter regions and activates methylation-silenced genes. We augment Casilio-ME1 to simultaneously deliver the TET1-catalytic domain and GADD45A (Casilio-ME2) or NEIL2 (Casilio-ME3) to streamline removal of oxidized cytosine intermediates to enhance activation of targeted genes. Using two-in-one effectors or modular effectors, Casilio-ME2 and Casilio-ME3 remarkably boost gene activation and methylcytosine demethylation of targeted loci. We expand the toolbox to enable a stable and expression-inducible system for broader application of the Casilio-ME platforms. This work establishes a platform for editing DNA methylation to enable research investigations interrogating DNA methylomes. 1 The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA. 2 Center for Molecular Oncology, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT 06030, USA. 3 Department of Genetics and Genome Sciences, University of Connecticut Health, 400 Farmington Avenue, Farmington, CT 06030, USA.
    [Show full text]