Risk Analysis for Phytophthora Ramorum, a Newly Recognised Pathogen Threat to Europe and the Cause of Sudden Oak Death in the USA (Acronym - RAPRA) Claire Sansford, A

Total Page:16

File Type:pdf, Size:1020Kb

Risk Analysis for Phytophthora Ramorum, a Newly Recognised Pathogen Threat to Europe and the Cause of Sudden Oak Death in the USA (Acronym - RAPRA) Claire Sansford, A Risk analysis for Phytophthora ramorum, a newly recognised pathogen threat to Europe and the cause of Sudden Oak Death in the USA (Acronym - RAPRA) Claire Sansford, A. J. Inman, R. Baker, Susan Frankel, J. de Gruyter, Claude Husson, Hella Kehlenbeck, G. Kessel, E. Moralejo, M. Steeghs, et al. To cite this version: Claire Sansford, A. J. Inman, R. Baker, Susan Frankel, J. de Gruyter, et al.. Risk analysis for Phytophthora ramorum, a newly recognised pathogen threat to Europe and the cause of Sudden Oak Death in the USA (Acronym - RAPRA). [Contract] auto-saisine. 2009, 310 p. hal-01245979 HAL Id: hal-01245979 https://hal.archives-ouvertes.fr/hal-01245979 Submitted on 17 Dec 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. EU Sixth Framework Project Contract Number 502672 Risk Analysis of Phytophthora ramorum , a Newly Recognised Pathogen Threat to Europe and the Cause of Sudden Oak Death in the USA (Acronym – RAPRA) PRIORITY 8.1.B.1 POLICY-ORIENTED RESEARCH SPECIFIC TARGETTED RESEARCH PROJECT – RAPRA Deliverable Report D28 Report on the risk of entry, establishment, spread and socio-economic loss and environmental impact and the appropriate level of management for Phytophthora ramorum for the EU Date of Report: 26 th February 2009 (Previous versions: 21 st November 2008; 23 rd January 2009) CONTENTS Page no. LIST OF TABLES 3 LIST OF FIGURES 5 LIST OF PARTICIPANTS AND CONTRIBUTORS 6 SUMMARY: PEST RISK ANALYSIS FOR PHYTOPHTHORA RAMORUM 8 INTRODUCTION 32 PEST RISK ANALYSIS FOR PHYTOPHTHORA RAMORUM 37 Stage 1: Initiation 38 Stage 2: Pest risk assessment 46 Section A. Pest categorisation 46 Section B. Assessment of the probability of introduction 54 (entry and establishment) and spread and of potential economic consequences 1. Probability of introduction 54 Probability of entry 54 Probability of establishment 97 Probability of spread 138 Conclusion on the probability of introduction and spread 141 Conclusion regarding endangered areas 142 2. Assessment of potential economic consequences 143 Pest effects 143 Conclusion of the assessment of economic consequences 167 Degree of uncertainty for the pest risk assessment 170 Conclusion on the pest risk assessment 171 1 CONTENTS continued. Page no. Stage 3: Pest risk management 175 Conclusion of pest risk management 241 Degree of uncertainty for risk management options 244 DISSEMINATION AND EXPLOITATION OF RESULTS 245 POLICY RELATED BENEFITS 245 REFERENCES 246 ACKNOWLEDGEMENTS 269 APPENDICES APPENDIX I: RAPRA Workpackage 8 - Description of Work 270 APPENDIX II: Natural hosts of Phytophthora ramorum 272 APPENDIX III: Species susceptibilities to P. ramorum as determined by 279 experimental tests APPENDIX IV: Countries for which P. ramorum is either on their 309 regulated pest lists or mentioned in their legislation. 2 LIST OF TABLES Page no. Table 1. Characteristics of Phytophthora ramorum lineages. 47 Table 2. (a) Estimated prevalence on each commodity pathway at origin in relation to 62 geographical source. (b) Associated levels of uncertainty Table 3. (a) Estimated likelihood of the concentration of P. ramorum on the pathway at 65 origin being high in relation to each commodity pathway and geographical source accounting for cultivation practices (but excluding phytosanitary measures). (b) Associated levels of uncertainty. Table 4. Weight (100 kg) of grafted/ungrafted rhododendrons and azaleas imported into 69 the EU from six areas where P. ramorum occurs or may occur – 2003 to 2007 – Eurostat data. Table 5. Weight (100 kg) of ornamental nursery stock imported into the EU – 1999, 2002 69 and 2003 - AIPH, International Statistics Flowers and Plants. Table 6. Weight (100 kg) of azalea and rhododendron imported into the EU – 1999, 2002 70 and 2003 - AIPH, International Statistics flowers and plants. Table 7. Weight (100 kg) of plants for planting (unnamed genera) by Eurostat category 75 imported into the EU from six areas where P. ramorum occurs or may occur – 2003 to 2007. Table 8. Weight (100 kg) of foliage/cut branches of susceptible hosts (includes non-hosts) 76 (unnamed genera) by Eurostat category imported into the EU from six areas where P. ramorum occurs or may occur – 2003 to 2007. Table 9. Weight (100 kg) of seeds and fruits of susceptible hosts (named genera) by 77 Eurostat category imported into the EU from six areas where P. ramorum occurs or may occur – 2003 to 2007. Table 10. Weight (100 kg) of wood waste ‘other’ by Eurostat category imported into the 78 EU from six areas where P. ramorum occurs or may occur – 2003 to 2007. Table 11. Weight (100 kg) of wood by Eurostat category (named genera only) imported 78 into the EU from three of the six areas where P. ramorum occurs or may occur – 2003 to 2007. Table 12. (a) Estimated relative volume of each commodity imported into the EU in 79 relation to geographic source – 2002 to 2007 – based upon total weights (100 kg) from Eurostat Comext database; (b) Associated levels of uncertainty. Table 13. (a) Estimated likelihood of P. ramorum surviving or remaining undetected 89 during existing phytosanitary measures for each commodity type and potential origin (which assumes the worst-case scenario and that plants come from an area where the pathogen is known to occur); (b) Levels of uncertainty. 3 LIST OF TABLES continued. Page no. Table 14. (a) Estimated overall probability of entry for P. ramorum per pathway in the 96 absence of phytosanitary controls; (b) Levels of uncertainty. Table 15. Range of values for predictor variables and assigned ranks in the Meentemeyer et 114 al. (2004) Phytophthora ramorum spread risk model, ranked 0–5 from least to most suitable for spread of the pathogen. Table 16. CLIMEX parameter values used by Venette & Cohen (2006) to map potential 119 Phytophthora ramorum distribution in the USA and by the EU RAPRA Project to map potential P. ramorum distribution in Europe. Table 17. Summary of outdoor findings in Europe reported in RAPRA reports and EU MS 156 Surveys. Table 18. Pre-existing non-specific measures in the EU Plant Health Directive 181 (2000/29/EC) (Anon., 2000) that relate to known host plants (in bold) or potential hosts of Phytophthora ramorum originating from outside the Community. Table 19. Pre-existing non-specific measures in the EU Plant Health Directive 193 (29/2000/EC) (Anon., 2000) that relate to non-host plants for planting originating from outside the Community that might be contaminated with Phytophthora ramorum . (See also Table 18). Table 20. Pre-existing measures in the EU Plant Health Directive (2000/29/EC) (Anon., 199 2000) that relate to soil and growing media as a commodity. Table 21. Pre-existing non-specific measures in the EU Plant Health Directive 208 (2000/29/EC) (Anon., 2000) that relate to foliage and cut branches of host plants (emboldened) of Phytophthora ramorum originating from outside the Community. Table 22. Pre-existing measures in the EU Plant Health Directive (2000/29/EC) (Anon., 221 2000) that relate to susceptible isolated bark as a commodity. Table 23. Pre-existing measures in the EU Plant Health Directive (2000/29/EC) that relate 229 to susceptible wood. Table 24. Potential measures selected for managing the risks posed by the pathways of 239 entry for P. ramorum into the EU for consideration by the policy makers (some measures may need to be combined) 4 LIST OF FIGURES Page no. Figure 1. The PRA area: The European Union Member States – a subset of the EPPO 39 (European and Mediterranean Plant Protection Organisation) region. Figure 2. Calibrated broadleaved forest map as a percentage of land area for Europe, 102 produced by combining geographically referenced Earth observation data and forest statistics. Source: Päivinen et al. (2001) and Schuck et al. (2002). Figure 3. The area of European heathland around 1900. 103 Figure 4: Comparison between rainfall in one area of Portugal with one area of California, 109 showing the longer period of rainfall at the Portuguese location. Figure 5: CLIMEX Match Index comparison of the 10’ latitude/longitude resolution grid 110 cell in Oregon where P. ramorum is damaging with climatic conditions in the rest of Europe. Figure 6: CLIMEX Match Index comparison of the 0.5’ latitude/longitude resolution grid 111 cell in a location in California where P. ramorum is damaging (an area just north of the San Francisco bay area, south of Santa Rosa) with climatic conditions in the rest of Europe. Figure 7. CLIMEX Match Index comparison of the 10’ latitude/longitude resolution grid 112 cell in Cornwall where P. ramorum is damaging, especially on rhododendron and beech, with climatic conditions in the rest of Europe. Figure 8. CLIMEX Match Index comparison of the 10’ latitude/longitude resolution grid 113 cell in Eastern Netherlands near Nijmegen where P. ramorum is damaging on rhododendron with climatic conditions in the rest of Europe. Figure 9. Phytophthora ramorum risk ranking model based on Meentemeyer et al. (2004) 115 for Europe using the New et al. (2000) 10’ latitude/longitude resolution global climatology for December–May 1961–1990. Figure 10. CLIMEX suitability based on the ecoclimatic index using parameters developed 117 by Venette & Cohen (2006) for: (a) Europe, using 1961-1990 climate interpolated to a 10’ latitude/longitude grid and using colours and categories that highlight the highest levels of risk; (b) Europe, but with colours and categories matching those used in their original risk map for the USA; (c) USA, as published in Venette & Cohen (2006).
Recommended publications
  • Relative Importance of Propagule Size and Propagule Number for Establishment of Non-Indigenous Species: a Stochastic Simulation Study
    Aquatic Invasions (2016) Volume 11, Issue 1: 101–110 DOI: http://dx.doi.org/10.3391/ai.2016.11.1.11 Open Access © 2016 The Author(s). Journal compilation © 2016 REABIC Research Article Relative importance of propagule size and propagule number for establishment of non-indigenous species: a stochastic simulation study 1,2 3 David Drolet * and Andrea Locke 1Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island, C1A 4P3 Canada 2Current address: Fisheries and Oceans Canada, Institut Maurice-Lamontagne, 850 route de la Mer, Mont-Joli, Québec, G5H 3Z4 Canada 3Department of Fisheries and Oceans Canada, Gulf Fisheries Centre, P.O. Box 5030, Moncton, New Brunswick, E1C 9B6 Canada E-mail: [email protected] (DD), [email protected] (AL) *Corresponding author Received: 11 February 2015 / Accepted: 23 September 2015 / Published online: 8 December 2015 Handling editor: Charles W. Martin Abstract Propagule pressure is emerging as the most consistent predictor of establishment in non-indigenous species. Increasing propagule size (the number of individuals arriving in a novel environment at one time) is thought to increase probability of establishment by counteracting demographic stochasticity and Allee effects. Increasing propagule number (the number of introduction events) is thought to increase probability of establishment by counteracting environmental stochasticity. However, the relative importance of these effects and the conditions under which one effect may become predominant is largely unexplored. We first used stochastic population simulations, with a constant number of immigrants distributed over varying numbers of introduction events, to determine the relative importance of propagule size and number on the probability of establishment.
    [Show full text]
  • Phylogenetics, Flow-Cytometry and Pollen Storage in Erica L
    Institut für Nutzpflanzenwissenschaft und Res sourcenschutz Professur für Pflanzenzüchtung Prof. Dr. J. Léon Phylogenetics, flow-cytometry and pollen storage in Erica L. (Ericaceae). Implications for plant breeding and interspecific crosses. Inaugural-Dissertation zur Erlangung des Grades Doktor der Agrarwissenschaften (Dr. agr.) der Landwirtschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn von Ana Laura Mugrabi de Kuppler aus Buenos Aires Institut für Nutzpflanzenwissenschaft und Res sourcenschutz Professur für Pflanzenzüchtung Prof. Dr. J. Léon Referent: Prof. Dr. Jens Léon Korreferent: Prof. Dr. Jaime Fagúndez Korreferent: Prof. Dr. Dietmar Quandt Tag der mündlichen Prüfung: 15.11.2013 Erscheinungsjahr: 2013 A mis flores Rolf y Florian Abstract Abstract With over 840 species Erica L. is one of the largest genera of the Ericaceae, comprising woody perennial plants that occur from Scandinavia to South Africa. According to previous studies, the northern species, present in Europe and the Mediterranean, form a paraphyletic, basal clade, and the southern species, present in South Africa, form a robust monophyletic group. In this work a molecular phylogenetic analysis from European and from Central and South African Erica species was performed using the chloroplast regions: trnL-trnL-trnF and 5´trnK-matK , as well as the nuclear DNA marker ITS, in order i) to state the monophyly of the northern and southern species, ii) to determine the phylogenetic relationships between the species and contrasting them with previous systematic research studies and iii) to compare the results provided from nuclear data and explore possible evolutionary patterns. All species were monophyletic except for the widely spread E. arborea , and E. manipuliflora . The paraphyly of the northern species was also confirmed, but three taxa from Central East Africa were polyphyletic, suggesting different episodes of colonization of this area.
    [Show full text]
  • Species List
    1 of 16 Claypits 20/09/2021 species list Group Taxon Common Name Earliest Latest Records acarine Aceria macrorhyncha 2012 2012 1 acarine Aceria nalepai 2018 2018 1 amphibian Bufo bufo Common Toad 2001 2018 6 amphibian Lissotriton helveticus Palmate Newt 2001 2018 5 amphibian Lissotriton vulgaris Smooth Newt 2001 2001 1 annelid Hirudinea Leech 2011 2011 1 bird Acanthis cabaret Lesser Redpoll 2013 2013 1 bird Acrocephalus schoenobaenus Sedge Warbler 2001 2011 2 bird Aegithalos caudatus Long-tailed Tit 2011 2014 2 bird Alcedo atthis Kingfisher 2020 2020 1 bird Anas platyrhynchos Mallard 2013 2018 4 bird Anser Goose 2011 2011 1 bird Ardea cinerea Grey Heron 2013 2013 1 bird Aythya fuligula Tufted Duck 2013 2014 1 bird Buteo buteo Buzzard 2013 2014 2 bird Carduelis carduelis Goldfinch 2011 2014 5 bird Chloris chloris Greenfinch 2011 2014 6 bird Chroicocephalus ridibundus Black-headed Gull 2014 2014 1 bird Coloeus monedula Jackdaw 2011 2013 2 bird Columba livia Feral Pigeon 2014 2014 1 bird Columba palumbus Woodpigeon 2011 2018 8 bird Corvus corax Raven 2020 2020 1 bird Corvus corone Carrion Crow 2011 2014 5 bird Curruca communis Whitethroat 2011 2014 4 bird Cyanistes caeruleus Blue Tit 2011 2014 6 bird Cygnus olor Mute Swan 2013 2014 4 bird Delichon urbicum House Martin 2011 2011 1 bird Emberiza schoeniclus Reed Bunting 2013 2014 2 bird Erithacus rubecula Robin 2011 2014 7 bird Falco peregrinus Peregrine 2013 2013 1 bird Falco tinnunculus Kestrel 2010 2020 3 bird Fringilla coelebs Chaffinch 2011 2014 7 bird Gallinula chloropus Moorhen 2013
    [Show full text]
  • Phytophthora Ramorum Sudden Oak Death Pathogen
    NAME OF SPECIES: Phytophthora ramorum Sudden Oak Death pathogen Synonyms: Common Name: Sudden Oak Death pathogen A. CURRENT STATUS AND DISTRIBUTION I. In Wisconsin? 1. YES NO X 2. Abundance: 3. Geographic Range: 4. Habitat Invaded: 5. Historical Status and Rate of Spread in Wisconsin: 6. Proportion of potential range occupied: II. Invasive in Similar Climate YES NO X Zones United States: In 14 coastal California Counties and in Curry County, Oregon. In nursery in Washington. Canada: Nursery in British Columbia. Europe: Germany, the Netherlands, the United Kingdom, Poland, Spain, France, Belgium, and Sweden. III. Invasive in Similar Habitat YES X NO Types IV. Habitat Affected 1. Habitat affected: this disease thrives in cool, wet climates including areas in coastal California within the fog belt or in low- lying forested areas along stream beds and other bodies of water. Oaks associated with understory species that are susceptible to foliar infections are at higher risk of becoming infected. 2. Host plants: Forty-five hosts are regulated for this disease. These hosts have been found naturally infected by P. ramorum and have had Koch’s postulates completed, reviewed and accepted. Approximately fifty-nine species are associated with Phytophthora ramorum. These species are found naturally infected; P. ramorum has been cultured or detected with PCR but Koch’s postulates have not been completed or documented and reviewed. Northern red oak (Quercus rubra) is considered an associated host. See end of document for complete list of plant hosts. National Risk Model and Map shows susceptible forest types in the mid-Atlantic region of the United States.
    [Show full text]
  • Notes Oak News
    THE NEWSLETTER OF THE INTERNATIONAL OAK SOCIETY&, VOLUME 16, NO. 1, WINTER 2012 Greek OakOak Open Days: News September 26 - October Notes 2, 2011 From the 21st century CE to the 2nd century—BCE! The next morning early we met our large tour bus and its charming and skillful driver, Grigoris, who hails from the mountain village of Gardiki not far from here. We did a bit of leisurely botanizing before we reached Perdika, our first destination of the day. There are two reasons to visit Perdika: one is the Karavostasi beach, a curving strand with golden sand, and the archaeological site of Dymokastron, a Hellenis- tic mountain-top town reached by a steep hike. The view of the beach far below was beautiful, as it must have been when the town was still inhabited. The town was destroyed in 167 BCE by a Roman army, along with most of the other towns in the vicinity, all allied with Rome’s enemy, Macedonia. The site is under active excavation, and we were able to admire the remnants of protective walls (how in the world did they get those big stones up there?), building foundations, and cisterns, which were certainly needed in case of a prolonged siege, Some members of the IOS Greek tour relaxing under the plane tree in the which Dymocastron must have experienced more than once. village square. Vitsa, Epirus, Greece. (Photo: Gert Dessoy) The site also has many living trees, including wild pears (Py- rus spinosa Vill., also known as P. amygdaliformis Vill.) and uring this early autumn week of incomparable weather, figs (Ficus carica L.) which appear to be descendants of wild Dtwelve members of the IOS, and three others who were native trees selected by the original inhabitants, as well as guests, enjoyed a truly memorable time in northern Greece.
    [Show full text]
  • Diagnosis of Phytophthora Ramorum in Trees
    Diagnosis of PhytophthoraPhytophthora ramorumramorum in Trees by Dr. Kim D. Coder, Warnell School of Forest Resources, University of Georgia April, 2004 The organism shown to be responsible for SOD (sudden oak death) is Phytophthora ramorum, a fungus / yeast-like brown algae. This pathogen generates a number of symptoms in the trees infected. Of the trees and large shrubs shown to be infectable with this pathogen, some species have more serious stem and branch lesions like oaks, while other species have primarily leaf and twig lesions. In a single landscape, multiple hosts can keep the pathogen present for further attacks. This publication was prepared by reviewing approximately 35 research or disease announcement publications in Europe and North America. In addition, a number of factsheets and synthesized informa- tion guides were reviewed for continuity. This publication is designed for field diagnosis of SOD-like symptoms and related symptom sets on community trees. This publication should not be used in tree nursery situations, and is not a pathogen centered review. It is critical to seek pathological expertise and testing for confirming disease organism presence. A selected bibliography is available entitled “Sudden Oak Death – SOD: Bibliography of Important Literature.” (Coder, Kim D. 2004. University of Georgia, Warnell School of Forest Resources outreach publication SFR04-1. 2pp.). Names The tree syndrome or symptom set which characterizes attack by Phytophthora ramorum has common names of “ramorum dieback,” “ramorum blight,” “ramorum twig blight,”“ramorum leaf blight,” “ramorum stem canker,” “blood spot disease,” or “sudden oak death” (SOD). Phytophthora ramorum, and the less virulent Phytophthora nemorosa and Phytophthora pseudosyringae are all relatively new pathogen species recovered from trees which show ramorum blight symptoms.
    [Show full text]
  • Diversity of Fungal Assemblages in Roots of Ericaceae in Two
    Diversity of fungal assemblages in roots of Ericaceae in two Mediterranean contrasting ecosystems Ahlam Hamim, Lucie Miche, Ahmed Douaik, Rachid Mrabet, Ahmed Ouhammou, Robin Duponnois, Mohamed Hafidi To cite this version: Ahlam Hamim, Lucie Miche, Ahmed Douaik, Rachid Mrabet, Ahmed Ouhammou, et al.. Diversity of fungal assemblages in roots of Ericaceae in two Mediterranean contrasting ecosystems. Comptes Rendus Biologies, Elsevier Masson, 2017, 340 (4), pp.226-237. 10.1016/j.crvi.2017.02.003. hal- 01681523 HAL Id: hal-01681523 https://hal.archives-ouvertes.fr/hal-01681523 Submitted on 23 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/315062117 Diversity of fungal assemblages in roots of Ericaceae in two Mediterranean contrasting ecosystems Article in Comptes rendus biologies · March 2017 DOI: 10.1016/j.crvi.2017.02.003 CITATIONS READS 0 37 7 authors, including: Ahmed Douaik Rachid Mrabet Institut National de Recherche Agronomique
    [Show full text]
  • Eco-Pastoral Diagnosis in the Karaburun Peninsula 15 to 22 May 2016 Conclusions and Strategic Issues for Natural Protected Areas
    ECO-PASTORAL DIAGNOSIS IN THE KARABURUN PENINSULA 15 TO 22 MAY 2016 CONCLUSIONS AND STRATEGIC ISSUES FOR NATURAL PROTECTED AREAS Claire Bernard*, Alice Garnier*, Chloé Lerin**, François Lerin*, Julien Marie*** (*Ciheam Montpellier, **Benevolent intern, ***Parc National des Cévennes) Ciheam Montpellier, July 2016 BiodivBalkans Project (2012-2016): In partnership for the Ecological and Pastoral Funded by : Implemented by : Diagnosis Method with: Pastoralism & Biodiversity Management in Protected Areas Strategic proposals from an Eco-Pastoral Diagnosis in the Karaburun Peninsula, Vlorë County May 2016 Executive summary Claire Bernard, Alice Garnier, Chloé Lerin, François Lerin, Julien Marie This short report is produced within the frame of the BiodivBalkans project (2012-2016). This project is dedicated to foster rural development in mountainous regions through the construction of Signs of quality and origin (SIQO). One of its main outputs was to shed the light on the pastoral and localized livestock systems in Albania and in Balkans’ surrounding countries, as a central issue for biodiversity conservation through the maintenance of High Nature Value farming systems. They are an important component of European agriculture not only for the conservation of biodiversity, but also for cultural heritage, quality products, and rural employment. The core experience of this project was (and still is) the creation of a Protected Geographical Indication on the “Hasi goat kid meat” based on stakeholders collective action and knowledge brokering. During that learning process and to effectively enforce the relation between rural development and biodiversity conservation, we used an original Ecological and Pastoral diagnosis method, imported from an EU Life+ program (Mil’Ouv, 2013-2017). This method seeks to improve pastoral resources management in a way that is both environmentally sustainable and efficient from an economic perspective.
    [Show full text]
  • Proceedings, 18Th Central Hardwood Forest Conference; 2012 March 26-28; Morgantown, WV; Gen
    United States Department of Agriculture Proceedings Forest Service 18th Central Hardwood Northern Research Station Forest Conference General Technical Report NRS-P-117 Morgantown, WV March 26-28, 2012 This document is being published in electronic format only (Web and CD). Any corrections or additions will be posted to the Web site (www.nrs.fs.fed.us/pubs). Cover photo of a morel mushroom by Shawn T. Grushecky, West Virginia University, used with permission. The findings and conclusions of each article in this publication are those of the individual author(s) and do not necessarily represent the views of the U.S. Department of Agriculture or the Forest Service. All articles were received in digital format and were edited for uniform type and style. Each author is responsible for the accuracy and content of his or her paper. The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture or the Forest Service of any product or service to the exclusion of others that may be suitable. This publication/database reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed CAUTION: here have been registered. All uses of pesticides must be registered PESTICIDES by appropriate State and/or Federal agencies before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife—if they are not handled or applied properly.
    [Show full text]
  • Oak Open Days in Czech Republic Celebrate IOS 25Th Anniversary by Shaun Haddock
    Oak News & Notes The Newsletter of the International Oak Society, Volume 21, No. 2, 2017 Twenty-six participants from ten countries plus local hosts at Plaček Quercetum © Guy Sternberg Oak Open Days in Czech Republic Celebrate IOS 25th Anniversary by Shaun Haddock wenty-six participants from ten countries arrived our first “official” visit of the event in the Park itself. T to take part in the European celebration of the From the entrance, a modest garden leads into Průho- IOS’s 25th birthday at Dušan Plaček’s Quercetum nice Castle. After passing through an arch, we found near Podĕbrady in the Czech Republic. The main ourselves on a terrace overlooking a steep-sided val- event ran from early afternoon on July 21st to the af- ley with a lake, beside which was a tree of enormous ternoon of the 23rd, but some members arrived as ear- significance for Dušan and thus for oak collecting in ly as the 19th, and by the evening of the 20th there the Czech Republic. Our mentor for the entire event, was a quorum sufficient to dine together in the event Ondřej Fous, described how this Quercus imbricaria hotel, Hotel Golfi, where we lodged. After our night’s showed Dušan that oaks have great diversity of leaf stay we departed by bus the next morning to view the shape, and that a collection of oaks would be much gardens within the grounds of Prague Castle, which more rewarding in terms of interest and variety than offer superb and enticing views over the city. The Fagus, Dušan’s original preference.
    [Show full text]
  • Biotechnological Approaches in Strawberry Tree (Arbutus Unedo L.) Breedi̇ Ng
    36 Review Article Ekin Journal of Crop Breeding and Genetics (2015) 1-1:36-41 www.ekinjournal.com Biotechnological approaches in strawberry tree (Arbutus unedo L.) breedi̇ ng Aysun Cavuşoğlu1,2 Melekber Sulusoglu1,2 Suleyman Erkal1 1Kocaeli University, Arslanbey Agricultural Vocational School, TR-41285, Kocaeli/Turkey. 2Kocaeli University, Graduate School of Natural and Applied Sciences, Department of Horticulture, TR-41380, Kocaeli/Turkey. Corresponding author e-mail: [email protected] Citation: Cavusoglu A, Sulusoglu M and Erkal S 2015. Biotechnological approaches in strawberry tree (Arbutus unedo L.) breeding. Ekin J Crop Breed and Gen 1-1:36-41. Received: 07.06.2014 Accepted: 27.10.2014 Published Online: 15.01.2015 Printed: 25.01.2015 ABSTRACT Arbutus unedo L. (Strawberry tree) belongs to Ericaceae family, is an evergreen shrub or tree, mostly known around Mediterranean region in natural habitat, has valuable medicinal and aromatic properties. The plant is mainly used for its edible fruits. In addition, A. unedo have increasing importance in afforestration programmes, beekeeping facilities, ornamental purposes and elucidating plant physiology. Therefore, the species is seemingly a promising fruit plant. Orchards are very limited but increasing demand to the plant will result in initiations of establishment new fruit orchards with superior genotypes viz. tolerant to the abiotic stress, resistant to pests and diseases, rich contents in terms of valuable compounds, convenience to postharvest operations, being visually preferable and suitable to target climate. Plant breeding is an important component to overcome elimination of unwanted features and to reach admirable characters. The main steps in breeding are effective selection, succesfully adaptation and inheritance via transferring the features to subsequent generations.
    [Show full text]
  • Heathers and Heaths
    Heathers and Heaths Heathers and heaths are easy care evergreen plants that can give year-round garden color. With careful planning, you can have varieties in bloom every month of the year. Foliage colors include shades of green, gray, gold, and bronze; some varieties change color or have colored tips in the winter or spring. Flower colors are white and shades of pink, red, and purple. Heathers make excellent companions to rhododendrons and azaleas. They are also excellent in rock gardens or on slopes. Bees love traditional heaths and heathers; however, the new bud-bloomer Scotch heathers, whose flowers are long-lasting because they don’t open completely, do not provide good bee forage, nor do the new foliage-only series. Choose other varieties if that is a consideration. Heathers grow best in neutral to slightly acid soil with good drainage. A sandy soil mixed with compost or leaf mold is ideal. Heathers bloom best in full or partial sun. Plants will grow in a shady location but will not bloom as well and tend to get leggy. They will not do well in areas of hot reflected sunlight. To plant heather, work compost into the planting area, then dig a hole at least twice the width of the rootball. Partially fill with your amended soil and place the plant at the same level it grew in the container. Excess soil over the rootball will kill the plant. For the same reason, do not mulch too deeply or allow mulch to touch the trunks. Normally a spacing of 12-30” apart is good, depending on the variety.
    [Show full text]