Absolute Quantification of Transcription Factors Reveals Principles of Gene
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CHD4/Nurd Complex Regulates Complement Gene Expression And
Shao et al. Clinical Epigenetics (2020) 12:31 https://doi.org/10.1186/s13148-020-00827-3 RESEARCH Open Access CHD4/NuRD complex regulates complement gene expression and correlates with CD8 T cell infiltration in human hepatocellular carcinoma Simin Shao1†, Haowei Cao1†, Zhongkun Wang1, Dongmei Zhou2, Chaoshen Wu1, Shu Wang1, Dian Xia1 and Daoyong Zhang1* Abstract Backgrounds: The NuRD (Nucleosome Remodeling and Deacetylation) complex is a repressive complex in gene transcription by modulating chromatin accessibility of target genes to transcription factors and RNA polymerase II. Although individual subunits of the complex have been implicated in many other cancer types, the complex’s role in human hepatocellular carcinoma (HCC) is not fully understood. More importantly, the NuRD complex has not yet been investigated as a whole in cancers. Methods: We analyzed the expression of the NuRD complex in HCC and evaluated the prognostic value of NuRD complex expression in HCC using the RNA-seq data obtained from the TCGA project. We examined the effect of CHD4 knockdown on HCC cell proliferation, apoptosis, migration, invasion, epithelial-mesenchymal transition, colony-forming ability, and on complement gene expression. We also performed bioinformatic analyses to investigate the correlation between the NuRD complex expression and immune infiltration. Results: We found that nine subunits, out of 14 subunits of the NuRD complex examined, were significantly overexpressed in HCC, and their expression levels were positively correlated with cancer progression. More importantly, our data also demonstrated that these subunits tended to be overexpressed as a whole in HCC. Subsequent studies demonstrated that knockdown of CHD4 in HCC cells inhibits cell proliferation, migration, invasion, and colony-forming ability and promotes apoptosis of HCC cells, indicating that the CHD4/NuRD complex plays oncogenic roles in HCC. -
Recombinant CHD1 Protein
Recombinant CHD1 protein Catalog No: 81307, 81607 Quantity: 20, 1000 µg Expressed In: Baculovirus Concentration: 0.4 µg/µl Source: Human Buffer Contents: Recombinant CHD1 protein is supplied in 25 mM HEPES-NaOH pH 7.5, 300 mM NaCl, 10% glycerol, 0.04% Triton X-100, and 0.5 mM TCEP. Background: CHD1 (Chromodomain Helicase DNA Binding Protein 1) is one of the CHD family proteins. They are characterized by the presence of chromo (chromatin organization modifier) domains and SNF2-related helicase/ATPase domains. CHD1 is a ATP-dependent chromatin-remodeling factor which functions as substrate recognition component of the transcription regulatory histone acetylation (HAT) complex SAGA. It can regulate polymerase II transcription, and is also required for efficient transcription by RNA polymerase I, and more specifically the polymerase I transcription termination step. CHD1 is not only involved in transcription-related chromatin-remodeling, but also required to maintain a specific chromatin configuration across the genome. It is required for the bridging of SNF2, the FACT complex, the PAF complex as well as the U2 snRNP complex to H3K4me3. Protein Details: Full length CHD1 protein (accession number AAI17135.1) was expressed in a baculovirus system with an N-terminal FLAG-Tag. The molecular weight of the protein is 197.9 kDa. Recombinant CHD1 protein gel Application Notes: This product was manufactured as described in Protein Details. 7.5% SDS-PAGE gel with Where possible, Active Motif has developed functional or activity assays for Coomassie blue staining recombinant proteins. Additional characterization such as enzyme kinetic activity assays, inhibitor screening or other biological activity assays may not have been MW: 197.9 kDa performed for every product. -
Cyclin D1 Is a Direct Transcriptional Target of GATA3 in Neuroblastoma Tumor Cells
Oncogene (2010) 29, 2739–2745 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 $32.00 www.nature.com/onc SHORT COMMUNICATION Cyclin D1 is a direct transcriptional target of GATA3 in neuroblastoma tumor cells JJ Molenaar1,2, ME Ebus1, J Koster1, E Santo1, D Geerts1, R Versteeg1 and HN Caron2 1Department of Human Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands and 2Department of Pediatric Oncology, Emma Kinderziekenhuis, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands Almost all neuroblastoma tumors express excess levels of 2000). Several checkpoints normally prevent premature Cyclin D1 (CCND1) compared to normal tissues and cell-cycle progression and cell division. The crucial G1 other tumor types. Only a small percentage of these entry point is controlled by the D-type Cyclins that can neuroblastoma tumors have high-level amplification of the activate CDK4/6 that in turn phosphorylate the pRb Cyclin D1 gene. The other neuroblastoma tumors have protein. This results in a release of the E2F transcription equally high Cyclin D1 expression without amplification. factor that causes transcriptional upregulation of Silencing of Cyclin D1 expression was previously found to numerous genes involved in further progression of the trigger differentiation of neuroblastoma cells. Over- cell cycle (Sherr, 1996). expression of Cyclin D1 is therefore one of the most Neuroblastomas are embryonal tumors that originate frequent mechanisms with a postulated function in neuro- from precursor cells of the sympathetic nervous system. blastoma pathogenesis. The cause for the Cyclin D1 This tumor has a very poor prognosis and despite the overexpression is unknown. -
Molecular Evolution of the Avian CHD1 Genes on the Z and W Sex Chromosomes
Copyright 2000 by the Genetics Society of America Molecular Evolution of the Avian CHD1 Genes on the Z and W Sex Chromosomes Anna-Karin Fridolfsson and Hans Ellegren Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752-36 Uppsala, Sweden Manuscript received December 8, 1999 Accepted for publication April 14, 2000 ABSTRACT Genes shared between the nonrecombining parts of the two types of sex chromosomes offer a potential means to study the molecular evolution of the same gene exposed to different genomic environments. We have analyzed the molecular evolution of the coding sequence of the ®rst pair of genes found to be shared by the avian Z (present in both sexes) and W (female-speci®c) sex chromosomes, CHD1Z and CHD1W. We show here that these two genes evolve independently but are highly conserved at nucleotide as well as amino acid levels, thus not indicating a female-speci®c role of the CHD1W gene. From comparisons of sequence data from three avian lineages, the frequency of nonsynonymous substitutions (Ka) was found to be higher for CHD1W (1.55 per 100 sites) than for CHD1Z (0.81), while the opposite was found for synonymous substitutions (Ks, 13.5 vs. 22.7). We argue that the lower effective population size and the absence of recombination on the W chromosome will generally imply that nonsynonymous substitutions accumulate faster on this chromosome than on the Z chromosome. The same should be true for the Y chromosome relative to the X chromosome in XY systems. Our data are compatible with a male-biased mutation rate, manifested by the faster rate of neutral evolution (synonymous substitutions) on the Z chromosome than on the female-speci®c W chromosome. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
CHD1 Loss Negatively Influences Metastasis-Free Survival in R0
Cancer Gene Therapy https://doi.org/10.1038/s41417-020-00288-z ARTICLE CHD1 loss negatively influences metastasis-free survival in R0- resected prostate cancer patients and promotes spontaneous metastasis in vivo 1,2 2 1,2 3 4 2 Su Jung Oh-Hohenhorst ● Derya Tilki ● Ann-Kristin Ahlers ● Anna Suling ● Oliver Hahn ● Pierre Tennstedt ● 1 1 1 1 1 5,8 Christiane Matuszcak ● Hanna Maar ● Vera Labitzky ● Sandra Hanika ● Sarah Starzonek ● Simon Baumgart ● 6 7 7 7 7 2 Steven A. Johnsen ● Martina Kluth ● Hüseyin Sirma ● Ronald Simon ● Guido Sauter ● Hartwig Huland ● 1 1 Udo Schumacher ● Tobias Lange Received: 21 September 2020 / Revised: 9 December 2020 / Accepted: 10 December 2020 © The Author(s) 2021. This article is published with open access Abstract The outcome of prostate cancer (PCa) patients is highly variable and depends on whether or not distant metastases occur. Multiple chromosomal deletions have been linked to early tumor marker PSA recurrence (biochemical relapse, BCR) after radical prostatectomy (RP), but their potential role for distant metastasis formation is largely unknown. Here, we 1234567890();,: 1234567890();,: specifically analyzed whether deletion of the tumor suppressor CHD1 (5q21) influences the post-surgical risk of distant metastasis and whether CHD1 loss directly contributes to metastasis formation in vivo. By considering >6800 patients we found that the CHD1 deletion negatively influences metastasis-free survival in R0 patients (HR: 2.32; 95% CI: 1.61, 3.33; p < 0.001) independent of preoperative PSA, pT stage, pN status, Gleason Score, and BCR. Moreover, CHD1 deletion predicts shortened BCR-free survival in pT2 patients and cancer-specific survival in all patients. -
Chromatin Regulator CHD1 Remodels the Immunosuppressive Tumor Microenvironment in PTEN-Defi Cient Prostate Cancer
Published OnlineFirst May 8, 2020; DOI: 10.1158/2159-8290.CD-19-1352 RESEARCH ARTICLE Chromatin Regulator CHD1 Remodels the Immunosuppressive Tumor Microenvironment in PTEN-Defi cient Prostate Cancer Di Zhao 1 , 2 , Li Cai 1 , Xin Lu 1 , 3 , Xin Liang 1 , 4 , Jiexi Li 1 , Peiwen Chen 1 , Michael Ittmann 5 , Xiaoying Shang 1 , Shan Jiang6 , Haoyan Li 2 , Chenling Meng 2 , Ivonne Flores 6 , Jian H. Song 4 , James W. Horner 6 , Zhengdao Lan 1 , Chang-Jiun Wu6 , Jun Li 6 , Qing Chang 7 , Ko-Chien Chen 1 , Guocan Wang 1 , 4 , Pingna Deng 1 , Denise J. Spring 1 , Y. Alan Wang1 , and Ronald A. DePinho 1 Downloaded from cancerdiscovery.aacrjournals.org on September 28, 2021. © 2020 American Association for Cancer Research. Published OnlineFirst May 8, 2020; DOI: 10.1158/2159-8290.CD-19-1352 ABSTRACT Genetic inactivation of PTEN is common in prostate cancer and correlates with poorer prognosis. We previously identifi edCHD1 as an essential gene in PTEN- defi cient cancer cells. Here, we sought defi nitivein vivo genetic evidence for, and mechanistic under- standing of, the essential role of CHD1 in PTEN-defi cient prostate cancer. In Pten and Pten /Smad4 genetically engineered mouse models, prostate-specifi c deletion ofChd1 resulted in markedly delayed tumor progression and prolonged survival. Chd1 deletion was associated with profound tumor microenvironment (TME) remodeling characterized by reduced myeloid-derived suppressor cells (MDSC) and increased CD8+ T cells. Further analysis identifi ed IL6 as a key transcriptional target of CHD1, which plays a major role in recruitment of immunosuppressive MDSCs. -
Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia. -
Dynamic Landscape of Chromatin Accessibility and Transcriptomic
www.nature.com/scientificreports OPEN Dynamic landscape of chromatin accessibility and transcriptomic changes during diferentiation of human embryonic stem cells into dopaminergic neurons César Meléndez‑Ramírez1,2,6, Raquel Cuevas‑Diaz Duran3,6*, Tonatiuh Barrios‑García3, Mayela Giacoman‑Lozano3, Adolfo López‑Ornelas1,2,4, Jessica Herrera‑Gamboa3, Enrique Estudillo2, Ernesto Soto‑Reyes5, Iván Velasco1,2* & Víctor Treviño3* Chromatin architecture infuences transcription by modulating the physical access of regulatory factors to DNA, playing fundamental roles in cell identity. Studies on dopaminergic diferentiation have identifed coding genes, but the relationship with non‑coding genes or chromatin accessibility remains elusive. Using RNA‑Seq and ATAC‑Seq we profled diferentially expressed transcripts and open chromatin regions during early dopaminergic neuron diferentiation. Hierarchical clustering of diferentially expressed genes, resulted in 6 groups with unique characteristics. Surprisingly, the abundance of long non‑coding RNAs (lncRNAs) was high in the most downregulated transcripts, and depicted positive correlations with target mRNAs. We observed that open chromatin regions decrease upon diferentiation. Enrichment analyses of accessibility depict an association between open chromatin regions and specifc functional pathways and gene‑sets. A bioinformatic search for motifs allowed us to identify transcription factors and structural nuclear proteins that potentially regulate dopaminergic diferentiation. Interestingly, we also found changes in protein and mRNA abundance of the CCCTC‑binding factor, CTCF, which participates in genome organization and gene expression. Furthermore, assays demonstrated co‑localization of CTCF with Polycomb‑repressed chromatin marked by H3K27me3 in pluripotent cells, progressively decreasing in neural precursor cells and diferentiated neurons. Our work provides a unique resource of transcription factors and regulatory elements, potentially involved in the acquisition of human dopaminergic neuron cell identity. -
Investigation of the Underlying Hub Genes and Molexular Pathogensis in Gastric Cancer by Integrated Bioinformatic Analyses
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Investigation of the underlying hub genes and molexular pathogensis in gastric cancer by integrated bioinformatic analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The high mortality rate of gastric cancer (GC) is in part due to the absence of initial disclosure of its biomarkers. The recognition of important genes associated in GC is therefore recommended to advance clinical prognosis, diagnosis and and treatment outcomes. The current investigation used the microarray dataset GSE113255 RNA seq data from the Gene Expression Omnibus database to diagnose differentially expressed genes (DEGs). Pathway and gene ontology enrichment analyses were performed, and a proteinprotein interaction network, modules, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. Finally, validation of hub genes was performed. The 1008 DEGs identified consisted of 505 up regulated genes and 503 down regulated genes. -
The Gene Repressor Complex Nurd Interacts with the Histone Variant H3.3
Downloaded from genome.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press The gene repressor complex NuRD interacts with the histone variant H3.3 at promoters of active genes Daniel C. Kraushaar1,3,4, Zuozhou Chen2,4, Qingsong Tang1, Kairong Cui1, Junfang Zhang2,*, Keji Zhao1,* 1 Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, MD 2 Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China. 3 Current address: Genomic and RNA Profiling Core, Baylor College of Medicine, TX 4These authors contributed equally to this work *Correspondence: Junfang Zhang ([email protected]); Keji Zhao ([email protected]) Key words: histone variant H3.3; chromatin modification; epigenetics; ChIP-seq; protein interaction; NuRD; histone modification 1 Downloaded from genome.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract The histone variant H3.3 is deposited across active genes, regulatory regions and telomeres. It remains unclear how H3.3 interacts with chromatin modifying enzymes and thereby modulates gene activity. In this study, we performed a co- immunoprecipitation-mass spectrometry analysis of proteins associated with H3.3-containing nucleosomes and identified the Nucleosome Remodeling and Deacetylase complex (NuRD) as a major H3.3-interactor. We show that the H3.3- NuRD interaction is dependent on the H3.3 lysine 4 residue and that NuRD binding occurs when lysine 4 is in its unmodified state. -
Mir-17-92 Fine-Tunes MYC Expression and Function to Ensure
ARTICLE Received 31 Mar 2015 | Accepted 22 Sep 2015 | Published 10 Nov 2015 DOI: 10.1038/ncomms9725 OPEN miR-17-92 fine-tunes MYC expression and function to ensure optimal B cell lymphoma growth Marija Mihailovich1, Michael Bremang1, Valeria Spadotto1, Daniele Musiani1, Elena Vitale1, Gabriele Varano2,w, Federico Zambelli3, Francesco M. Mancuso1,w, David A. Cairns1,w, Giulio Pavesi3, Stefano Casola2 & Tiziana Bonaldi1 The synergism between c-MYC and miR-17-19b, a truncated version of the miR-17-92 cluster, is well-documented during tumor initiation. However, little is known about miR-17-19b function in established cancers. Here we investigate the role of miR-17-19b in c-MYC-driven lymphomas by integrating SILAC-based quantitative proteomics, transcriptomics and 30 untranslated region (UTR) analysis upon miR-17-19b overexpression. We identify over one hundred miR-17-19b targets, of which 40% are co-regulated by c-MYC. Downregulation of a new miR-17/20 target, checkpoint kinase 2 (Chek2), increases the recruitment of HuR to c- MYC transcripts, resulting in the inhibition of c-MYC translation and thus interfering with in vivo tumor growth. Hence, in established lymphomas, miR-17-19b fine-tunes c-MYC activity through a tight control of its function and expression, ultimately ensuring cancer cell homeostasis. Our data highlight the plasticity of miRNA function, reflecting changes in the mRNA landscape and 30 UTR shortening at different stages of tumorigenesis. 1 Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, Milan 20139, Italy. 2 Units of Genetics of B cells and lymphomas, IFOM, FIRC Institute of Molecular Oncology Foundation, Milan 20139, Italy.