Endophytic Fungi Harbored in Panax Notoginseng

Total Page:16

File Type:pdf, Size:1020Kb

Endophytic Fungi Harbored in Panax Notoginseng JGR200_proof ■ 30 July 2016 ■ 1/8 J Ginseng Res xxx (2016) 1e8 55 Contents lists available at ScienceDirect 56 57 Journal of Ginseng Research 58 59 60 journal homepage: http://www.ginsengres.org 61 62 63 Research article 64 65 1 Endophytic fungi harbored in Panax notoginseng: diversity and 66 2 67 3 potential as biological control agents against host plant pathogens 68 4 of root-rot disease 69 5 70 6 1,q 1,q 2 1 1 71 7 Q9 You-Kun Zheng , Cui-Ping Miao , Hua-Hong Chen , Fang-Fang Huang , Yu-Mei Xia , 72 1 1,* 8 You-Wei Chen , Li-Xing Zhao 73 9 1 Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, 74 10 Yunnan Institute of Microbiology, Yunnan University, Kunming, China 75 11 2 Department of Chemistry and Life Science, Chuxiong Normal University, Chuxiong, China 76 12 77 13 78 14 article info abstract 79 15 80 16 Article history: Background: Endophytic fungi play an important role in balancing the ecosystem and boosting host 81 17 Received 14 August 2015 growth. In the present study, we investigated the endophytic fungal diversity of healthy Panax noto- 82 18 Received in Revised form ginseng and evaluated its potential antimicrobial activity against five major phytopathogens causing root- 31 May 2016 83 rot of P. notoginseng. 19 Accepted 9 July 2016 84 Methods: A culture-dependent technique, combining morphological and molecular methods, was used 20 Available online xxx 85 to analyze endophytic fungal diversity. A double-layer agar technique was used to challenge the phy- 21 86 topathogens of P. notoginseng. 22 Keywords: Results: A total of 89 fungi were obtained from the roots, stems, leaves, and seeds of P. notoginseng, and 87 23 biological control 41 isolates representing different morphotypes were selected for taxonomic characterization. The fungal 88 24 endophytic fungi fungal diversity isolates belonged to Ascomycota (96.6%) and Zygomycota (3.4%). All isolates were classified to 23 genera 89 25 Panax notoginseng and an unknown taxon belonging to Sordariomycetes. The number of isolates obtained from different 90 26 root-rot disease tissues ranged from 12 to 42 for leaves and roots, respectively. The selected endophytic fungal isolates 91 27 were challenged by the root-rot pathogens Alternaria panax, Fusarium oxysporum, Fusarium solani, Phoma 92 28 herbarum, and Mycocentrospora acerina. Twenty-six of the 41 isolates (63.4%) exhibited activity against at 93 29 least one of the pathogens tested. 94 Conclusion: Our results suggested that P. notoginseng harbors diversified endophytic fungi that would 30 95 provide a basis for the identification of new bioactive compounds, and for effective biocontrol of noto- 31 96 32 ginseng root rot. Copyright Ó 2016, The Korean Society of Ginseng, Published by Elsevier. This is an open access article 97 33 under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 98 34 99 35 100 36 101 37 1. Introduction acids [4], and polysaccharides [5], with the most emphasis being on 102 38 saponins. P. notoginseng saponins are considered as the major active 103 39 Panax notoginseng (Burkill) F.H. Chen (Araliaceae) is a perennial ingredients in notoginseng. The saponins display multiple phar- 104 40 herbaceous plant, cultivated mainly in Wenshan, Yunnan, China, macological effects, such as hemostatic [6e9], antioxidant [10,11], 105 41 and has been historically used as both a medicinal herb and food. neuroprotective [12,13], antitumor [14,15], antidiabetic [16,17], and 106 42 Rhizome and roots of P. notoginseng are officially recorded as other activities, and have been extensively used as therapeutic 107 43 notoginseng in the Chinese Pharmacopoeia [1]. About 61 Chinese agents in China. The pronounced efficacies of notoginseng saponins 108 44 patent medicines contain notoginseng, including Yunnan Bai Yao, a have led to the development of several Chinese patent medicines, 109 45 famous hemostatic proprietary herbal remedy. The secondary such as Xuesaitong Capsules/Soft Capsules [18] and Xuesaitong 110 46 metabolites of this plant include saponins [2,3], flavones [2], amino Injection [19]. 111 47 112 48 113 49 * Corresponding author. Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education and Laboratory for Conservation and Utilization of Bio- 114 50 Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, China. Q1 115 E-mail address: [email protected] (L.-X. Zhao). 51 q 116 These authors contributed equally to this work. 52 117 53 http://dx.doi.org/10.1016/j.jgr.2016.07.005 118 54 p1226-8453 e2093-4947/$ e see front matterCopyright Ó 2016, The Korean Society of Ginseng, Published by Elsevier. This is an open access article under the CC BY-NC-ND 119 license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Please cite this article in press as: Zheng Y-K, et al., Endophytic fungi harbored in Panax notoginseng: diversity and potential as biological control agents against host plant pathogens of root-rot disease, Journal of Ginseng Research (2016), http://dx.doi.org/10.1016/j.jgr.2016.07.005 JGR200_proof ■ 30 July 2016 ■ 2/8 2 J Ginseng Res 2016;-:1e8 1 In recent years, the demand for notoginseng has been potential of bacterial endophytes of P. notoginseng. However, little is 66 2 increasing. Unfortunately, the yield and quality of notoginseng are known about the fungal community harbored in P. notoginseng. 67 3 severely limited by replanting obstacles [20], and a number of In this study, the diversity of endophytic fungi isolated from 68 4 diseases caused by a plethora of phytopathogens [21]. Among the different tissues of healthy P. notoginseng was evaluated, and the 69 5 diseases, the root-rot disease complex is the most destructive one isolates were screened for their potential antimicrobial activity 70 6 Q2 as it results in yield reduction, no harvest, or low content of active against five major phytopathogens causing root rot of 71 7 ingredients [22]. The reported fungal pathogens causing root rot P. notoginseng. To the best of our knowledge, this is the first report 72 8 include Alternaria panax, Alternaria tenuissima, Cylindrocarpon of the biodiversity, phylogeny, and assessment of biocontrol po- 73 9 destructans, Cylindrocarpon didynum, Rhizoctonia solani, Phytoph- tential of endophytic fungi harbored in P. notoginseng. 74 10 thora cactorum, Phoma herbarum, Fusarium solani, Fusarium oxy- 75 11 sporum [21], and Fusarium flocciferum [23]. Although diverse 2. Materials and methods 76 12 chemical pesticides and some biocontrol methods are used, it is 77 13 difficult to control the root-rot diseases because of the pathogenic 2.1. Isolation of endophytic fungi 78 14 complex. More comprehensive, practical, and ecological methods 79 15 to eradicate the pathogenic diseases in P. notoginseng are urgently Three-year-old healthy P. notoginseng plant samples were 80 16 needed. Furthermore, specific and nonspecific fungi and bacteria collected in October 2013, from a plantation in Wenshan, Yunnan, 81 17 associated with the plant have been found with little information Southwest China. The collected plants were excised into roots, 82 18 about their ecological functions. stems, leaves, and seeds, put into plastic bags, transferred to the 83 19 Microbial communities associated with plants play an impor- laboratory within 24 h, and stored at 4C until the isolation pro- 84 20 tant role in balancing the ecosystem and boosting host growth. cedure of endophytic fungi was carried out. 85 21 Endophytic fungi, which live in healthy plant tissues for at least a The surface sterilization and isolation of fungal endophytes 86 22 part of their life cycle, without causing any noticeable symptoms of were carried out by following the procedures described by Park 87 23 infection or disease, may benefit their host in different ways, such et al [29]. The plant samples were washed thoroughly with running 88 24 as producing bioactive secondary metabolites, promoting germi- tap water to remove soil particles and rinsed six times with distilled 89 25 nation and shoot growth, inducing host plants to tolerate to biotic water. The separated parts (roots, stems, leaves, and seeds; Fig. 1A) 90 26 or abiotic stresses [24e27]. In a previous study, Ma et al [28] were immersed in 75% ethanol solution for 2e3 min, and subse- 91 27 demonstrated high phylogenetic diversity and biocontrol quently transferred to 5.5% sodium hypochlorite solution for 1e2 92 28 93 29 94 30 95 31 96 32 97 33 98 34 99 35 100 36 101 37 102 38 103 39 104 40 105 41 106 42 107 43 108 44 109 45 110 46 111 47 112 48 113 49 114 50 115 51 116 52 117 53 118 54 119 55 120 56 121 57 122 58 123 59 124 60 125 61 126 62 127 63 128 64 Fig. 1. Panax notoginseng, endophytic fungi and bioactivities. (A) Different parts of 3-year-old healthy plant of P. notoginseng; (B) isolation of endophytic fungi; (C) fermentation; 129 65 (D) screening of antagonistic endophytic fungi against host phytopathogens of root-rot disease. 130 Please cite this article in press as: Zheng Y-K, et al., Endophytic fungi harbored in Panax notoginseng: diversity and potential as biological control agents against host plant pathogens of root-rot disease, Journal of Ginseng Research (2016), http://dx.doi.org/10.1016/j.jgr.2016.07.005 JGR200_proof ■ 30 July 2016 ■ 3/8 Y.-K. Zheng et al / Endophytic fungi of P. notoginseng 3 1 min, depending on the different tissues. The surface-sterilized 2.5. In vitro antagonistic activity against host phytopathogens 66 2 samples were rinsed three times with sterile distilled water and 67 3 dried with sterile filter paper.
Recommended publications
  • Characterization of Alternaria Alternata Isolates Causing Brown Spot of Potatoes in South Africa
    Characterization of Alternaria alternata isolates causing brown spot of potatoes in South Africa By Joel Prince Dube Submitted in partial fulfilment of the requirements for the degree of Master in Science (Agriculture) Plant Pathology In the faculty of Natural and Agricultural Sciences Department of Microbiology and Plant Pathology University of Pretoria Pretoria February 2014 © University of Pretoria DECLARATION I, Joel Prince Dube, declare that the thesis, which I hereby submit for the degree Master of Science (Agriculture) Plant Pathology at the University of Pretoria, is my own work and has not been previously submitted by me for a degree at this or any other tertiary institution. Signed: ___________________________ Date: ____________________________ i © University of Pretoria Acknowledgements I would like to extend my heartfelt thanks the contributions of the following: 1. First and foremost, the Almighty God by whose grace I am where I am today. I owe everything to him. 2. My supervisors, Prof. Jacquie van der Waals and Dr. Mariette Truter, for their unwavering support and guidance throughout my Masters journey. 3. Pathology programme @ UP for the opportunity and funding for my studies. 4. Syngenta for funding one of my chapters. 5. Charles Wairuri, Nelisiwe Khumalo, Alain Misse for their help with all my molecular work. 6. Colleagues in greenhouse for all their help, suggestions and contributions throughout my studies. 7. My family and friends for their financial, spiritual and moral support, it is greatly appreciated. ii © University of Pretoria Characterization of Alternaria alternata isolates causing brown spot of potatoes in South Africa By Joel Prince Dube Supervisor : Prof. J.
    [Show full text]
  • Studies in Mycology 75: 171–212
    STUDIES IN MYCOLOGY 75: 171–212. Alternaria redefined J.H.C. Woudenberg1,2*, J.Z. Groenewald1, M. Binder1 and P.W. Crous1,2,3 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; 3Utrecht University, Department of Biology, Microbiology, Padualaan 8, 3584 CH Utrecht, The Netherlands *Correspondence: Joyce H.C. Woudenberg, [email protected] Abstract: Alternaria is a ubiquitous fungal genus that includes saprobic, endophytic and pathogenic species associated with a wide variety of substrates. In recent years, DNA- based studies revealed multiple non-monophyletic genera within the Alternaria complex, and Alternaria species clades that do not always correlate to species-groups based on morphological characteristics. The Alternaria complex currently comprises nine genera and eight Alternaria sections. The aim of this study was to delineate phylogenetic lineages within Alternaria and allied genera based on nucleotide sequence data of parts of the 18S nrDNA, 28S nrDNA, ITS, GAPDH, RPB2 and TEF1-alpha gene regions. Our data reveal a Pleospora/Stemphylium clade sister to Embellisia annulata, and a well-supported Alternaria clade. The Alternaria clade contains 24 internal clades and six monotypic lineages, the assemblage of which we recognise as Alternaria. This puts the genera Allewia, Brachycladium, Chalastospora, Chmelia, Crivellia, Embellisia, Lewia, Nimbya, Sinomyces, Teretispora, Ulocladium, Undifilum and Ybotromyces in synonymy with Alternaria. In this study, we treat the 24 internal clades in the Alternaria complex as sections, which is a continuation of a recent proposal for the taxonomic treatment of lineages in Alternaria.
    [Show full text]
  • Impacts of Replanting American Ginseng on Fungal Assembly and Abundance in Response to Disease Outbreaks
    Archives of Microbiology https://doi.org/10.1007/s00203-021-02196-8 ORIGINAL PAPER Impacts of replanting American ginseng on fungal assembly and abundance in response to disease outbreaks Li Ji1,2 · Lei Tian1 · Fahad Nasir1 · Jingjing Chang1,2 · Chunling Chang1 · Jianfeng Zhang3 · Xiujun Li1 · Chunjie Tian1,3 Received: 24 June 2020 / Revised: 24 December 2020 / Accepted: 4 February 2021 © The Author(s) 2021 Abstract Soil physicochemical properties and fungal communities are pivotal factors for continuous cropping of American ginseng (Panax quinquefolium L.). However, the response of soil physicochemical properties and fungal communities to replant disease of American ginseng has not yet been studied. High-throughput sequencing and soil physicochemical analyses were undertaken to investigate the diference of soil fungal communities and environmental driver factors in new and old ginseng felds; the extent of replant disease in old ginseng felds closely related to changes in soil properties and fungal communi- ties was also determined. Results indicated that fungal communities in an old ginseng feld were more sensitive to the soil environment than those in a new ginseng feld, and fungal communities were mainly driven by soil organic matter (SOM), soil available phosphorus (AP), and available potassium (AK). Notably, healthy ginseng plants in new and old ginseng felds may infuence fungal communities by actively recruiting potential disease suppressive fungal agents such as Amphinema, Cladophialophora, Cadophora, Mortierella, and Wilcoxina. When these key groups and members were depleted, suppres- sive agents in the soil possibly declined, increasing the abundance of pathogens. Soil used to grow American ginseng in the old ginseng feld contained a variety of fungal pathogens, including Alternaria, Armillaria, Aphanoascus, Aspergillus, Setophoma, and Rhexocercosporidium.
    [Show full text]
  • Fungal Flora of Korea
    Fungal Flora of Korea Volume 1, Number 2 Ascomycota: Dothideomycetes: Pleosporales: Pleosporaceae Alternaria and Allied Genera 2015 National Institute of Biological Resources Ministry of Environment Fungal Flora of Korea Volume 1, Number 2 Ascomycota: Dothideomycetes: Pleosporales: Pleosporaceae Alternaria and Allied Genera Seung Hun Yu Chungnam National University Fungal Flora of Korea Volume 1, Number 2 Ascomycota: Dothideomycetes: Pleosporales: Pleosporaceae Alternaria and Allied Genera Copyright ⓒ 2015 by the National Institute of Biological Resources Published by the National Institute of Biological Resources Environmental Research Complex, Hwangyeong-ro 42, Seo-gu Incheon, 404-708, Republic of Korea www.nibr.go.kr All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the National Institute of Biological Resources. ISBN : 9788968111259-96470 Government Publications Registration Number 11-1480592-000905-01 Printed by Junghaengsa, Inc. in Korea on acid-free paper Publisher : Kim, Sang-Bae Author : Seung Hun Yu Project Staff : Youn-Bong Ku, Ga Youn Cho, Eun-Young Lee Published on March 1, 2015 The Flora and Fauna of Korea logo was designed to represent six major target groups of the project including vertebrates, invertebrates, insects, algae, fungi, and bacteria. The book cover and the logo were designed by Jee-Yeon Koo. Preface The biological resources represent all the composition of organisms and genetic resources which possess the practical and potential values essential for human lives, and occupies a firm position in producing highly value-added products such as new breeds, new materials and new drugs as a means of boosting the national competitiveness.
    [Show full text]
  • Index of Fungal Names
    INDEX OF FUNGAL NAMES Alternaria cerealis 187 Alternaria cetera 188–189 Alphabetical list of fungal species, genera and families treated in Alternaria chartarum 201 the Taxonomy sections of the included manuscripts. Alternaria chartarum f. stemphylioides 201 Alternaria cheiranthi 189 A Alternaria chlamydospora 190, 199 Alternaria chlamydosporigena 190 Acicuseptoria 376–377 Alternaria “chlamydosporum” 199 Acicuseptoria rumicis 376–377 Alternaria chrysanthemi 204 Allantozythia 384 Alternaria cichorii 200 Allewia 183 Alternaria cinerariae 202 Allewia eureka 193 Alternaria cinerea 207 Allewia proteae 193 Alternaria cirsinoxia 200 Alternaria 183, 186, 190, 193, 198, 207 Alternaria citriarbusti 187 Alternaria abundans 189 Alternaria citrimacularis 187 Alternaria acalyphicola 200 Alternaria colombiana 187 Alternaria agerati 200 Alternaria concatenata 201 Alternaria agripestis 200 Alternaria conjuncta 196 Alternaria allii 191 Alternaria conoidea 188 Alternaria alternantherae 185 Alternaria “consortiale” 204 Alternaria alternariae 206 Alternaria consortialis 204 Alternaria alternarina 195 Alternaria crassa 200 Alternaria cretica 200 Alternaria alternata 183, 185–186 Alternaria cucumerina 200 Alternaria anagallidis 200 Alternaria cucurbitae 204 Alternaria angustiovoidea 187 Alternaria cumini 193 Alternaria anigozanthi 193 Alternaria cyphomandrae 201 Alternaria aragakii 200 Alternaria danida 201 Alternaria araliae 199 Alternaria dauci 201 Alternaria arborescens 187, 201 Alternaria daucicaulis 196 Alternaria arbusti 195 Alternaria daucifollii 187
    [Show full text]
  • Rhizospheric Fungi of Panax Notoginseng: Diversity and Antagonism to Host Phytopathogens
    J Ginseng Res xxx (2015) 1e8 Contents lists available at ScienceDirect Journal of Ginseng Research journal homepage: http://www.ginsengres.org Research article Rhizospheric fungi of Panax notoginseng: diversity and antagonism to host phytopathogens q q Cui-Ping Miao 1, , Qi-Li Mi 1,2, , Xin-Guo Qiao 1, You-Kun Zheng 1, You-Wei Chen 1, Li-Hua Xu 1, Hui-Lin Guan 3, Li-Xing Zhao 1,* 1 Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China 2 Technology Center, China Tobacco Yunnan Industrial Co., Ltd, Kunming, China 3 School of Energy and Environment Science, Yunnan Normal University, Kunming, China article info abstract Article history: Background: Rhizospheric fungi play an essential role in the plantesoil ecosystem, affecting plant growth Received 12 January 2015 and health. In this study, we evaluated the fungal diversity in the rhizosphere soil of 2-yr-old healthy Received in Revised form Panax notoginseng cultivated in Wenshan, China. 4 May 2015 Methods: Culture-independent Illumina MiSeq and culture-dependent techniques, combining molecular Accepted 14 June 2015 and morphological characteristics, were used to analyze the rhizospheric fungal diversity. A diffusion test Available online xxx was used to challenge the phytopathogens of P. notoginseng. Results: A total of 16,130 paired-end reads of the nuclear ribosomal internal transcribed spacer 2 were Keywords: fungal diversity generated and clustered into 860 operational taxonomic units at 97% sequence similarity. All the opera- fi Illumina MiSeq tional taxonomic units were assigned to ve phyla and 79 genera.
    [Show full text]
  • Universidad Central Del Ecuador Facultad De Ciencias Agrícolas Carrera De Ingeniería Agronómica
    UNIVERSIDAD CENTRAL DEL ECUADOR FACULTAD DE CIENCIAS AGRÍCOLAS CARRERA DE INGENIERÍA AGRONÓMICA “ANÁLISIS DE RIESGO DE PLAGAS DE GRANOS DE ARROZ (Oryza sativa L.) PARA CONSUMO, ORIGINARIOS DE URUGUAY” Trabajo de Titulación presentado como requisito previo a la obtención del Título de Ingeniero Agrónomo Autor: Sisalima Abad Jairo Vicente Tutor: Ing. Agr. Juan León, M.Sc. Quito, Abril 2017 II III IV V DEDICATORIA: Con cariño a mis padres Vicente y Peregrina. A mis perritos Luna, Negrito y Doke, que siempre están conmigo. VI AGRADECIMIENTO A mis amigos, que han ayudado a mi formación como profesional y persona. A la Agencia Ecuatoriana de Aseguramiento de la Calidad del Agro- AGROCALIDAD, y en especia a mi tutora por tener la paciencia y disponibilidad de ayudarme en mi trabajo de titulación A mi familia, por estar siempre conmigo ayudándome, con consejos y cariño. Finalmente a la vida, por permitirme ser el afortunado que puede disfrutarla. VII INDICE DE CONTENIDO CAPÍTULOS PÁGINAS 1.INTRODUCCIÓN .................................................................................................................................... 1 2.OBJETIVO ............................................................................................................................................... 2 2.1.Objetivo General ..................................................................................................................................... 2 2.2.Objetivo Específico ................................................................................................................................
    [Show full text]
  • Molecular Analysis of the Fungal Community Associated with Phyllosphere and Carposphere of Fruit Crops
    Dottorato di Ricerca in Scienze Agrarie – Indirizzo “Gestione Fitosanitaria Ecocompatibile in Ambienti Agro-Forestali e Urbani” Dipartimento di Agraria – Università Mediterranea di Reggio Calabria (sede consorziata) Agr/12 – Patologia Vegetale Molecular analysis of the fungal community associated with phyllosphere and carposphere of fruit crops IL DOTTORE IL COORDINATORE Ahmed ABDELFATTAH Prof. Stefano COLAZZA IL TUTOR CO-TUTOR Prof. Leonardo SCHENA Dr. Anna Maria D'ONGHIA Dr. Michael WISNIEWSKI CICLO XXVI 2016 ACKNOWLEDGEMENTS I appreciate everyone’s contributions of time, ideas, and funding to make my PhD possible. First I want to thank my advisor Leonardo Schena. He has taught me so many things in science and in life. It was a great honor to work with him during this PhD. It has been an amazing experience, not only for his tremendous academic support, but also for giving me so many wonderful opportunities. I am greatly thankful to Dr. Michael Wisniewski for giving the opportunity to work in his lab at the USDA in West Virginia. Michael was a great advisor, I learnt so many thing from working with him and it was a great honor to know him and his amazing family. I am grateful to the University of Reggio Calabria for giving me the chance to work in their laboratories during my PhD. I’m sincerely grateful to the past and present group members of the Reggio Calabria University that I have had the pleasure to work with or alongside: Demetrio Serra, Antonio Biasi, Marisabel Prigigallo, Sonia Pangallo, David Ruano Rosa, Antonino Malacrinò, Orlando Campolo, Vincenzo Palmeri, and especially Saveria Mosca for being a great coworker and wonderful friend.
    [Show full text]
  • The Relationship of Ilyonectria to Replant Disease of American Ginseng (Panax
    The relationship of Ilyonectria to replant disease of American ginseng (Panax quinquefolius) by Behrang Behdarvandi A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Environmental Sciences Guelph, Ontario, Canada © Behrang Behdarvandi, September, 2020 ABSTRACT THE RELATIONSHIP OF Ilyonectria TO REPLANT DISEASE OF AMERICAN GINSENG (Panax quinquefolius) Behrang Behdarvandi Advisor: University of Guelph, 2020 Professor Paul H. Goodwin Ginseng replant disease involves the high mortality of ginseng plants (Panax quinquefolius) growing in fields previously used for ginseng cultivation, and is linked to root rot caused by Ilyonectria mors-panacis. One hypothesis for replant disease is that there is a selection for highly virulent isolates in the first crop, but no significant differences in root lesion size were observed among 12 isolates of I. mors-panacis and four isolates of Ilyonectria robusta obtained from diseased roots of ginseng in replant or non-replant soil. However, the average growth rate on potato dextrose agar for I. robusta isolates was greater than for I. mors-panacis, and the average virulence was greater for isolates with greater hyphal pigmentation in culture. Based on nucleotide sequences of all exons of the genomes, the I. robusta isolates were distinguishable from the I. mors-panacis isolates, which were divided into types 1 and 2. The division of I. mors-panacis into types was not related to virulence but to secretome sequence differences, particularly small secreted cysteine-rich proteins and secreted lipases. Treatment of ginseng roots with replant soil extract, but not ginseng root extract or non-replant soil extract, increased lesion sizes of roots inoculated with I.
    [Show full text]
  • An Inventory of Fungal Diversity in Ohio Research Thesis Presented In
    An Inventory of Fungal Diversity in Ohio Research Thesis Presented in partial fulfillment of the requirements for graduation with research distinction in the undergraduate colleges of The Ohio State University by Django Grootmyers The Ohio State University April 2021 1 ABSTRACT Fungi are a large and diverse group of eukaryotic organisms that play important roles in nutrient cycling in ecosystems worldwide. Fungi are poorly documented compared to plants in Ohio despite 197 years of collecting activity, and an attempt to compile all the species of fungi known from Ohio has not been completed since 1894. This paper compiles the species of fungi currently known from Ohio based on vouchered fungal collections available in digitized form at the Mycology Collections Portal (MyCoPortal) and other online collections databases and new collections by the author. All groups of fungi are treated, including lichens and microfungi. 69,795 total records of Ohio fungi were processed, resulting in a list of 4,865 total species-level taxa. 250 of these taxa are newly reported from Ohio in this work. 229 of the taxa known from Ohio are species that were originally described from Ohio. A number of potentially novel fungal species were discovered over the course of this study and will be described in future publications. The insights gained from this work will be useful in facilitating future research on Ohio fungi, developing more comprehensive and modern guides to Ohio fungi, and beginning to investigate the possibility of fungal conservation in Ohio. INTRODUCTION Fungi are a large and very diverse group of organisms that play a variety of vital roles in natural and agricultural ecosystems: as decomposers (Lindahl, Taylor and Finlay 2002), mycorrhizal partners of plant species (Van Der Heijden et al.
    [Show full text]
  • Alternaria Redefined
    STUDIES IN MYCOLOGY 75: 171–212. Alternaria redefined J.H.C. Woudenberg1,2*, J.Z. Groenewald1, M. Binder1, and P.W. Crous1,2,3 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; 3Utrecht University, Department of Biology, Microbiology, Padualaan 8, 3584 CH Utrecht, The Netherlands *Correspondence: Joyce H.C. Woudenberg, [email protected] Abstract: Alternaria is a ubiquitous fungal genus that includes saprobic, endophytic and pathogenic species associated with a wide variety of substrates. In recent years, DNA- based studies revealed multiple non-monophyletic genera within the Alternaria complex, and Alternaria species clades that do not always correlate to species-groups based on morphological characteristics. The Alternaria complex currently comprises nine genera and eight Alternaria sections. The aim of this study was to delineate phylogenetic lineages within Alternaria and allied genera based on nucleotide sequence data of parts of the 18S nrDNA, 28S nrDNA, ITS, GAPDH, RPB2 and TEF1-alpha gene regions. Our data reveal a Pleospora/Stemphylium clade sister to Embellisia annulata, and a well-supported Alternaria clade. The Alternaria clade contains 24 internal clades and six monotypic lineages, the assemblage of which we recognise as Alternaria. This puts the genera Allewia, Brachycladium, Chalastospora, Chmelia, Crivellia, Embellisia, Lewia, Nimbya, Sinomyces, Teretispora, Ulocladium, Undifilum and Ybotromyces in synonymy with Alternaria. In this study, we treat the 24 internal clades in the Alternaria complex as sections, which is a continuation of a recent proposal for the taxonomic treatment of lineages in Alternaria.
    [Show full text]
  • Alternaria Redefined
    STUDIEs IN MYCOLOGY 75: 171–212. Alternaria redefined J.H.C. Woudenberg1,2*, J.Z. Groenewald1, M. Binder1, and P.W. Crous1,2,3 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; 3Utrecht University, Department of Biology, Microbiology, Padualaan 8, 3584 CH Utrecht, The Netherlands *Correspondence: Joyce H.C. Woudenberg, [email protected] Abstract: Alternaria is a ubiquitous fungal genus that includes saprobic, endophytic and pathogenic species associated with a wide variety of substrates. In recent years, DNA- based studies revealed multiple non-monophyletic genera within the Alternaria complex, and Alternaria species clades that do not always correlate to species-groups based on morphological characteristics. The Alternaria complex currently comprises nine genera and eight Alternaria sections. The aim of this study was to delineate phylogenetic lineages within Alternaria and allied genera based on nucleotide sequence data of parts of the 18S nrDNA, 28S nrDNA, ITS, GAPDH, RPB2 and TEF1-alpha gene regions. Our data reveal a Pleospora/Stemphylium clade sister to Embellisia annulata, and a well-supported Alternaria clade. The Alternaria clade contains 24 internal clades and six monotypic lineages, the assemblage of which we recognise as Alternaria. This puts the genera Allewia, Brachycladium, Chalastospora, Chmelia, Crivellia, Embellisia, Lewia, Nimbya, Sinomyces, Teretispora, Ulocladium, Undifilum and Ybotromyces in synonymy with Alternaria. In this study, we treat the 24 internal clades in the Alternaria complex as sections, which is a continuation of a recent proposal for the taxonomic treatment of lineages in Alternaria.
    [Show full text]