Management of Acute Liver Failure In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Validation of Lactate Clearance at 6 H for Mortality Prediction in Critically Ill Children
570 Research Article Validation of lactate clearance at 6 h for mortality prediction in critically ill children Rajeev Kumar, Nirmal Kumar Background and Aims: To validate the lactate clearance (LC) at 6 h for mortality Access this article online prediction in Pediatric Intensive Care Unit (PICU)-admitted patients and its comparison Website: www.ijccm.org with a pediatric index of mortality 2 (PIM 2) score. Design: A prospective, observational DOI: 10.4103/0972-5229.192040 study in a tertiary care center. Materials and Methods: Children <13 years of age, Quick Response Code: Abstract admitted to PICU were included in the study. Lactate levels were measured at 0 and 6 h of admission for clearance. LC and delayed or nonclearance group compared for in-hospital mortality and compared with PIM 2 score for mortality prediction. Results: Of the 140 children (mean age 33.42 months) who were admitted to PICU, 23 (16.42%) patients died. For LC cut-off (16.435%) at 6 h, 92 patients qualified for clearance and 48 for delayed or non-LC group. High mortality was observed (39.6%) in delayed or non-LC group as compared to clearance group (4.3%) (P = 0.000). LC cut-off of 16.435% at 6 h (sensitivity 82.6%, specificity 75.2%, positive predictive value 39.6%, and negative predictive value 95.7%) correlates with mortality. Area under receiver operating characteristic (ROC) for LC at 6 h for mortality prediction was 0.823 (P = 0.000). The area under ROC curve for expected mortality prediction by PIM 2 score at admission was 0.906 and at 12.3% cut-off of PIM 2 Score was related with mortality. -
Package for Emergency Resuscitation and Intensive Care Unit
Package for Emergency Resuscitation and Intensive Care Unit Extracted from WHO manual Surgical Care at the District Hospital and WHO Integrated Management for Emergency & Essential Surgical Care toolkit For further details and anaesthetic resources please refer to full text at: http://www.who.int/surgery/publications/imeesc/en/index.html 1 1. Anaesthesia and Oxygen XYGEN KEY POINTS: • A reliable oxygen supply is essential for anaesthesia and for any seriously ill patients • In many places, oxygen concentrators are the most suitable and economical way of providing oxygen, with a few backup cylinders in case of electricity failure • Whatever your source of oxygen, you need an effective system for maintenance and spares • Clinical staff need to be trained how to use oxygen safely, effectively and economically. • A high concentration of oxygen is needed during and after anaesthesia: • If the patient is very young, old, sick, or anaemic • If agents that cause cardio-respiratory depression, such as halothane, are used. Air already contains 20.9% oxygen, so oxygen enrichment with a draw-over system is a very economical method of providing oxygen. Adding only 1 litre per minute may increase the oxygen concentration in the inspired gas to 35–40%. With oxygen enrichment at 5 litres per minute, a concentration of 80% may be achieved. Industrial-grade oxygen, such as that used for welding, is perfectly acceptable for the enrichment of a draw-over system and has been widely used for this purpose. Oxygen Sources In practice, there are two possible sources of oxygen for medical purposes: • Cylinders: derived from liquid oxygen • Concentrators: which separate oxygen from air. -
Anytown Trauma Center Trauma Protocols
ANYTOWN TRAUMA CENTER TRAUMA PROTOCOLS TITLE: TRAUMA TEAM ACTIVATION PROTOCOL PURPOSE: The purpose of the protocol is to establish guidelines for trauma team activation and define the members of the responding trauma team to facilitate the resuscitation and management of critical or seriously injured patients who require rapid, organized resuscitation, evaluation and stabilization to promote optimal outcomes. It also serves to provide triage guidelines for adult and pediatric patients. PROCESS: 1. TRAUMA TEAM ACTIVATION PROTCOL A. The criteria for activation of the trauma team is clearly defined and posted at the Emergency Department triage desk, by the EMS communication station and in the resuscitation rooms. B. The trauma team may be activated prior to arrival based on the EMS communication and their assessment. C. The trauma surgeon, emergency medicine physician, emergency department charge nurse/ house supervisor, emergency department nurses and the Trauma Program Manager may activate the trauma team. D. The person calling the trauma activation will initiate the trauma page to group page the trauma team and will specify the MOI, BP, HR, ETA and level of activation required and age if available. E. If the trauma team members are present in the emergency department and alert is still communicated to ensure everyone is notified. F. Trauma team member notification and arrival times will be documented on the trauma flow sheet (paper or electronic). G. Trauma team members will sign-in when they arrive. H. Trauma team members will be activated for all patients who meet the following criteria: 1. Level 1 trauma activation (major): life threatening injuries and/or unstable vital signs, limb-threating or disability threatening injury 2. -
Central Venous Catheter (CVC) Placement
Medical Education Policy: Central Venous Catheter (CVC) Placement Facility: CMC Origin Date: June 2015 Revision Date: March 2019 Sponsor: GMEC 1. PURPOSE: Carilion Clinic is committed to excellent patient care, with the highest priority towards patient safety and excellent clinical outcomes. As a graduate medical education training site, Carilion Clinic will standardize the basic education, competency assessment, supervision and procedural methods for medical students, resident physicians and fellows inserting central venous catheters (CVCs) under this policy. This policy will guide the education of trainees in the use of proper sterile technique, anatomical landmarks and ultrasound guidance when inserting CVCs. The CVCs covered by this policy are all percutaneously inserted central catheters including large bore central catheters such as dialysis and resuscitation catheters. This policy supports the routine use of ultrasound guidance for internal jugular and femoral venous sites of CVC placement unless the clinical urgency and/or immediate unavailability of ultrasound precludes sonographic guidance. At times, extraordinary clinical circumstances or clinical judgment of the attending physician may dictate that different approaches to central line placement may be utilized. It is expected that these will be an unusual occurrences. 2. SCOPE: This policy outlines the education, training and supervision of all trainees involved in CVC insertion. All postgraduate medical trainees performing CVC placement in their clinical duties will be trained in anatomic landmarks and ultrasound guided CVC insertion techniques as appropriate to location. This policy designates the minimum standard by which a resident or fellow will be educated to place CVCs, when they may place central lines WITHOUT direct supervision, and who may supervise and teach central line placement. -
Mass Casualty Incident (MCI) Response Module 1
Mass Casualty Incident (MCI) Response Module 1 (Hamilton County Fire Chief's Association, 2013) 1 Objectives Purpose: This module will educate staff on mass casualty triage incident response, including how to: • Define mass casualty triage • Determine considerations for adults and pediatrics • Understand the importance of a patient tracking system • Recognize and implement the patient admission/ discharge MCI triage process • Determine how to appropriately handle the deceased in a large-scale MCI • Recognize the range of incidents that may cause MCIs 2 MCI Basics 3 What is an MCI? • A mass casualty incident (MCI) is an incident where the number of patients exceeds the amount of healthcare resources available. • This number varies widely across the country, but is typically greater than 10 patients. 4 Types of MCI Notifications • During a large scale incident such as a mass casualty, it is important to have a mass notification system. Successful mass notification systems will: . Internally: alert staff to activate MCI protocols and prepare for a potential surge of patients . Externally: increase community awareness 5 Assisting in MCI Response Considerations for hospital staff in an MCI: • Some patients may arrive to the hospital without having been assessed/ triaged at the scene • MCI response requires efficiency and coordination • Non-clinical personnel (including hospital volunteers) can assist in moving patients to designated areas based on level of care • Help gather patient information in the emergency treatment area • Staff should review patients in clinical assignment for any potential discharges/ transfers to make room for potential MCI admissions, a process known as “surge discharge” (Chung S, 2019) 6 Triage Basics Definition of MCI Triage Triage means “to sort.” Triage in an MCI is the assignment of resources based on the initial patient assessment and consideration of available resources. -
Trauma Resuscitation and the Damage Control Approach
SURGERY FOR MAJOR INCIDENTS anatomy’). This philosophy has increasingly been adopted in the Trauma resuscitation and the civilian environment. DCS describes the specific, systematic surgical approaches damage control approach focussing on normalizing physiology from the dual insults of injury and surgery, as opposed to providing immediate definitive Nathan West repair.3,4 DCRad incorporates diagnostic and interventional Rob Dawes radiological solutions used to treat severely injured patients.5 Recent history of trauma care Abstract Haemorrhage remains the biggest killer of major trauma patients. One- Advances in trauma care commonly occur during warfare, where third of trauma patients are coagulopathic on admission, which is exacer- high numbers of seriously injured soldiers are treated, although a bated further by other factors. Failure to address this results in poor out- landmark change was the introduction of the Advanced Trauma Ò comes. Damage control resuscitation is current best practice for bleeding Life Support (ATLS) programme in 1978. ATLS was originally trauma patients, and encompasses damage control surgery and damage targeted at doctors with little expertise in trauma and provides a control radiography. This review provides a summary of the latest con- structured system for recognizing life-threatening problems and cepts in the rapidly evolving field of trauma resuscitation management. instigating appropriate interventions. The ATLS ‘Airway, Keywords Damage control; massive haemorrhage; resuscitation; trauma Breathing, Circulation, Disability, and Exposure’ (ABCDE) mantra is familiar the world over. Whilst it is likely this approach has saved many lives over the years, with the advent of regional Introduction trauma networks and experience gained from large recent mili- tary campaigns, an approach that reaches beyond ATLS is now Damage control (DC) was first termed to describe measures required in civilian practice. -
Cerebrovascular Resuscitation After Polytrauma and Fluid Restriction
Cerebrovascular Resuscitation after Polytrauma and Fluid Restriction Steven A Earle, MD,MarcAdeMoya,MD, Jennifer E Zuccarelli, BA, Michael D Norenberg, MD, Kenneth G Proctor, MD, PhD BACKGROUND: There are few reproducible models of blast injury, so it is difficult to evaluate new or existing therapies. We developed a clinically relevant polytrauma model to test the hypothesis that cerebrovascular resuscitation is optimized when intravenous fluid is restricted. STUDY DESIGN: Anesthetized swine (42 Ϯ 5 kg, n ϭ 35) received blasts to the head and bilateral chests with captive bolt ϭ guns, followed by hypoventilation (4 breaths/min; FiO2 0.21). After 30 minutes, resuscitation was divided into phases to simulate typical prehospital, emergency room, and ICU care. For 30 to 45 minutes, group 1, the control group (n ϭ 5), received 1L of normal saline (NS). For 45 to 120 minutes, additional NS was titrated to mean arterial pressure (MAP) Ͼ 60 mmHg. After 120 minutes, mannitol (1g/kg) and phenylephrine were administered to manage cerebral perfusion pressure (CPP) Ͼ 70 mmHg, plus addi- tional NS was given to maintain central venous pressure (CVP) Ͼ 12 mmHg. In group 2 (n ϭ 5), MAP and CPP targets were the same, but the CVP target was Ͼ 8 mmHg. Group 3 (n ϭ 5) received1LofNS followed only by CPP management. Group 4 (n ϭ 5) received Hextend (Abbott Laboratories), instead of NS, to the same MAP and CPP targets as group 2. RESULTS: Polytrauma caused 13 deaths in the 35 animals. In survivors, at 30 minutes, MAP was 60 Ͼ Ͻ to 65 mmHg, heart rate was 100 beats/min, PaO2 was 50 mmHg, and lactate was Ͼ 5 mmol/L. -
Characteristics, Course and Outcomes of Children Admitted to a Paediatric Intensive Care Unit After Cardiac Arrest
This open-access article is distributed under Creative Commons licence CC-BY-NC 4.0. RESEARCH Characteristics, course and outcomes of children admitted to a paediatric intensive care unit after cardiac arrest J Appiah,1,2,3 MB ChB, MWACP, MPhil, Cert Crit Care (Paed); S Salie,1,2 MB ChB, DCH, FCPaed, Cert Crit Care (Paed); A Argent,1,2 MB ChB, MMed(Paed), MD(Paed), DCH (SA), FCPaed (SA); B Morrow,2 PhD, BSc (Physiotherapy) 1 Paediatric Intensive Care Unit, Red Cross War Memorial Children’s Hospital, Cape Town, South Africa 2 Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa 3 Paediatric Intensive Care Unit, Department of Child Health, Komfo Anokye Teaching Hospital, Kumasi, Ghana Corresponding author: J Appiah ([email protected]) Background. Cardiac arrest is a potentially devastating event, associated with death or severe neurological complications in survivors. There is little evidence on paediatric cardiac arrest prevalence, characteristics and outcomes in South Africa (SA). Objective. To describe the characteristics, course and outcomes of children admitted to an SA paediatric intensive care unit (PICU) following cardiac arrest. Methods. Retrospective descriptive study of routinely collected data (January 2010 - December 2011). Results. Of 2 501 PICU admissions, 110 (4.4%) had preceding cardiac arrest. The median (interquartile range (IQR)) age of children was 7.2 (2.5 - 21.6) months. In-hospital arrests accounted for 80.6% of the events. The most common primary diagnostic categories were respiratory (29.1%), cardiovascular (21.4%) and gastrointestinal (21.4%). Twenty-four patients (23.3%) arrested during endotracheal intubation. -
Cardiopulmonary Resuscitation: to Intubate Or Not to Intubate
ISSN 2379-4046 EMERGENCY MEDICINE Open Journal PUBLISHERS Editorial Cardiopulmonary Resuscitation: To Intubate or Not to Intubate Chien-Chang Lee, MD, ScD1*; Jon Wolfshohl, MD2; Eric H Chou, MD2 1Department of Emergency Medicine, National Taiwan University, Taipei 106, Taiwan 2Department of Emergency Medicine, John Peter Smith Hospital, Fort Worth, Texas, USA *Corresponding author Chien-Chang Lee, MD, ScD Department of Emergency Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 100, Taiwan; Tel. +886-2-23123456 ext 62831; Fax. +886-2-23223150; E-mail: [email protected] Article information Received: July 27th, 2018; Accepted: August 20th, 2018; Published: August 20th, 2018 Cite this article Lee C-C, Wolfshohl J, Chou EH. Cardiopulmonary resuscitation: To intubate or not to intubate. Emerg Med Open J. 2018; 4(1): e1-e3. doi: 10.17140/EMOJ-4-e005 INTRODUCTION intrathoracic pressure resulting in depressed coronary perfusion pressure.4,5 Coronary perfusion pressure is the single most impor- ardiopulmonary resuscitation (CPR) is a “tug of war” between tant indicator for return of spontaneous circulation (ROSC). Low Clife and death. The most suspenseful and technically difficult coronary perfusion pressure (CPP) results in low ROSC rate. Giv- task in the resuscitation process is often endotracheal intubation. en the potential harm associated with tracheal intubation during re- However, the benefits of endotracheal intubation during CPR suscitation, a bold hypothesis was postulated: using a less invasive have been seriously challenged in recent literature.1 way of ventilation, such as bag-valve-mask ventilation or laryngeal mask ventilation, in place of tracheal intubation during CPR may POTENTIAL HARMS OF ENDOTRACHEAL INTUBATION reduce the interruption of chest compression and could improve DURING RESUSCITATION the CPR success rate.4-7 Establishment of an advanced airway to maintain gas exchange EVIDENCE FROM OBSERVATIONAL STUDIES and oxygenation has been viewed as an essential life-saving pro- cedure during resuscitation. -
Sepsis ACP 2019
Sepsis ACP 2019 • Are sepsis bundles good for patient care? • Politics • CMS requirements • New York’s Rory Staunton Law • Industry involvement Controversial • Is the science sound? • Emergency room physician petition to retire guidelines • More than 5800 ER physicians signed petition Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016 Critical Care Medicine 2017. 45(3):486 • Initial Resuscitation. • At least 30 mL/Kg of IV crystalloid fluid within first 3 hours • After initial resuscitation, additional fluids guided by frequent reassessment • MAP >65 mm Hg • Guiding resuscitation to normalize lactate in patients with elevated lactate levels as a marker of tissue hypoperfusion. • Appropriate routine microbiologic cultures before starting antimicrobial therapy and within one hour. • Empiric coverage for all likely pathogens • Combination therapy for initial management of septic shock • Procalcitonin levels to support shortening duration of therapy. Sepsis Guidelines Continued: • Source control intervention be implemented as soon as medically and logistically practical. • Fluid therapy. • Fluid challenge technique with continued fluid administration as long as hemodynamics factors continue to improve. • Vasopressors. • Norepinephrine as the first-choose vasopressor • Adding vasopressin 0.03 U/min or epinephrine. • Recommend against IV hydrocortisone if adequate fluid resuscitation and vasopressor are able to restore hemodynamics stability. Sepsis Guidelines Continued • Transfusion only when -
Surviving Sepsis Campaign Hour 1 Bundle
Hour-1 Bundle Initial Resuscitation for Sepsis and Septic Shock 3 5 ! Administer broad- Apply vasopressors if MEDICAL spectrum antibiotics. hypotensive during or EMERGENCY after fluid resuscitation to maintain a mean arterial Initiate bundle upon 4 pressure ≥ 65 mm Hg. recognition of sepsis/septic shock. Begin rapid May not complete all bundle elements administration of within one hour of recognition. 30 mL/kg crystalloid for hypotension or lactate ≥ 4 mmol/L. 1 68 Measure lactate level. 100/50 96 Remeasure lactate 14 if initial lactate elevated (> 2 mmol/L). 2 Obtain blood cultures before administering antibiotics. Bundle: SurvivingSepsis.org/Bundle Complete Guidelines: SurvivingSepsis.org/Guidelines © 2019 the Society of Critical Care Medicine and the European Society of Intensive Care Medicine. All Rights Reserved. BUNDLE HOUR-1 BUNDLE: INITIAL RESUSCITATION FOR SEPSIS AND SEPTIC SHOCK: 1) Measure lactate level.* 2) Obtain blood cultures before administering antibiotics. 3) Administer broad-spectrum antibiotics. 4) Begin rapid administration of 30mL/kg crystalloid for hypotension or lactate ≥4 mmol/L. 5) Apply vasopressors if hypotensive during or after fluid resuscitation to maintain a mean arterial pressure ≥ 65 mm Hg. *Remeasure lactate if initial lactate elevated (> 2 mmol/L). © 2019 the Society of Critical Care Medicine and the European survivingsepsis.org Society of Intensive Care Medicine. All Rights Reserved. 1. *Act quickly upon sepsis & septic shock recognition 2. Minimize time to treatment - sepsis & septic shock are medical emergencies 3. Monitor closely for response to interventions 4. Communicate sepsis status in hand-offs *All elements of the Hour-1 bundle may or may not be completed in the first hour after sepsis recognition survivingsepsis.org BUNDLE HOUR-1 BUNDLE: INITIAL RESUSCITATION FOR SEPSIS AND SEPTIC SHOCK: 1) Measure lactate level.* 2) Obtain blood cultures before administering antibiotics. -
Viewed Publications
Knaup et al. Journal of Intensive Care (2019) 7:38 https://doi.org/10.1186/s40560-019-0392-2 RESEARCH Open Access Long-stay pediatric patients in Japanese intensive care units: their significant presence and a newly developed, simple predictive score Emily Knaup1,2, Nobuyuki Nosaka1,2,3* , Takashi Yorifuji4, Kohei Tsukahara1,2, Hiromichi Naito1,HirokazuTsukahara2, and Atsunori Nakao1 for the JaRPAC Study Group Abstract Background: The length of stay (LOS) in intensive care units (ICUs) has been used as a good indicator not only for resource consumption but also for health outcomes of patients. However, data regarding pediatric LOS in Japanese ICUs are limited. The primary aim of this study was to characterize the Japanese pediatric ICU patients based on their LOS. Second, we aimed to develop a simple scoring system to predict long-stay pediatric ICU patients on admission. Methods: We performed a retrospective cohort study using consecutive pediatric data (aged < 16 years) registered in the Japanese Registry of Pediatric Acute Care (JaRPAC) from October 2013 to September 2016, which consisted of descriptive and diagnostic information. The factors for long-stay patients (LSPs; LOS > 14 days) were identified using multiple regression analysis, and subsequently, a simple predictive scoring system was developed based on the results. The validity of the score was prospectively tested using data from the JaRPAC registration from October 2016 to September 2017. Results: Overall, 4107 patients were included. Although LSPs were few (8.0% [n = 330]), they consumed 38.0% of ICU bed days (9750 for LSPs versus 25,659 overall). Mortality was seven times higher in LSPs than in short-stay patients (9.1% versus 1.3%).