Cerebrovascular Resuscitation After Polytrauma and Fluid Restriction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evaluation and Management of the Polytraumatized Patient in Various Centers
World J. Surg. 7, 143-148, 1983 Wor Journal of Stirgery Evaluation and Management of the Polytraumatized Patient in Various Centers S. Olerud, M.D., and M. Allg6wer, M.D. The Akademiska Sjukhuset Uppsala, Sweden, and the Department of Surgery, Kantonsspital, Basel, Switzerland A questionnaire was sent to the following 6 trauma centers: Paris: Two or more peripheral, visceral, or com- University Hospital for Accident Surgery, Hannover, Fed- plex injuries with respiratory and circulatory fail- eral Republic of Germany (Prof. H. Tscherne); University ure. (This excludes patients who only have sus- of Munich, Department of Surgery, Klinikum Grossha- tained fractures.) dern, Munich, Federal Republic of Germany (Prof. G. Dallas: Multiply injured patient presenting le- Heberer); Akademiska Sjukhuset Uppsala, Sweden (Prof. sions to 2 cavities, associated with 2 or more long S. Olerud); University Hospital, Department of Surgery, bone failures; lesions to 1 cavity associated with 2 Basel, Switzerland (Prof. M. Allgiiwer); H6pital de la Piti~, or more long bone failures; or lesions to multiple Paris, France (Prof. R. Roy-Camille); and University of extremities (at minimum, 3 long bone failures). Texas Southwestern Medical School, Dallas, Texas, U.S.A. (Prof. B. Claudi). Their answers have been summarized in a few short paragraphs where tabulation was not possible, Do You Grade Polytrauma, and If So, How? and then mainly in tabular form for convenient comparison among the various centers. There seems to be considerable international agreement on the main points of early aggres- Hannover: Yes, with our own grading system along sive cardiopulmonary management to prevent multiple with ISS and AIS. -
Management of Acute Liver Failure In
Management of Acute Liver Failure in ICU Philip Berry MRCP, Clinical Research Fellow, Institute of Liver Studies, Kings College Hospital, London, UK Email: [email protected] Self assessment questions Scenario: A twenty-year-old female is brought into the Emergency Department having been found unconscious in her bedsit. There is no other recent history. She did not respond to a bolus of 50% dextrose in the ambulance, despite having an unrecordable blood glucose when tested by the paramedics. While she is being intubated on account of reduced level of consciousness, an arterial blood gas sample reveals profound lactic acidosis (pH 7.05, pCO2 2.5 kPa, base deficit – 10, lactate 13 mg/L). Blood pressure is 95/50 mmHg. 1. What are the possible explanations for her presentation? Laboratory tests demonstrate hepatocellular necrosis (AST 21,000 U/L) and coagulopathy (INR 9.1) with thrombocytopenia (platelet count 26 x 109/L). Acute liver failure appears the most likely diagnosis. 2. What are the most likely causes of acute liver failure (ALF) in this previously well patient? Her mean arterial blood pressure remains low (50mmHg) after 3 litres of colloid and crystalloid. The casualty nurse, who is doing half-hourly neurological observations, reports reduced pupillary response to light. 3. What severe complications of ALF may result in death within hours, and what are the immediate management priorities for this patient? Introduction Successful management of this rare but potentially devastating disorder relies on early recognition. The hallmark of acute liver failure (ALF) is encephalopathy (ranging from a subtle alterations in consciousness level to coma) in the context of an acute, severe liver injury. -
Development of a Large Animal Model of Lethal Polytrauma and Intra
Open access Original research Trauma Surg Acute Care Open: first published as 10.1136/tsaco-2020-000636 on 1 February 2021. Downloaded from Development of a large animal model of lethal polytrauma and intra- abdominal sepsis with bacteremia Rachel L O’Connell, Glenn K Wakam , Ali Siddiqui, Aaron M Williams, Nathan Graham, Michael T Kemp, Kiril Chtraklin, Umar F Bhatti, Alizeh Shamshad, Yongqing Li, Hasan B Alam, Ben E Biesterveld ► Additional material is ABSTRACT abdomen and pelvic contents. The same review published online only. To view, Background Trauma and sepsis are individually two of showed that of patients with whole body injuries, please visit the journal online 1 (http:// dx. doi. org/ 10. 1136/ the leading causes of death worldwide. When combined, 37.9% had penetrating injuries. The abdomen is tsaco- 2020- 000636). the mortality is greater than 50%. Thus, it is imperative one area of the body which is particularly suscep- to have a reproducible and reliable animal model to tible to penetrating injuries.2 In a review of patients Surgery, Michigan Medicine, study the effects of polytrauma and sepsis and test novel in Afghanistan with penetrating abdominal wounds, University of Michigan, Ann treatment options. Porcine models are more translatable the majority of injuries were to the gastrointes- Arbor, Michigan, USA to humans than rodent models due to the similarities tinal tract with the most common injury being to 3 Correspondence to in anatomy and physiological response. We embarked the small bowel. While this severe constellation Dr Glenn K Wakam; gw akam@ on a study to develop a reproducible model of lethal of injuries is uncommon in the civilian setting, med. -
Renal Endocrine Manifestations During Polytrauma: a Cause of Concern for the Anesthesiologist
Review Article Renal endocrine manifestations during polytrauma: A cause of concern for the anesthesiologist Sukhminder Jit Singh Bajwa, Ashish Kulshrestha Department of Anesthesiology and Intensive Care, Gian Sagar Medical College and Hospital, Ram Nagar, Banur, Punjab, India ABSTRACT Nowadays, an increasing number of patients get admitted with polytrauma, mainly due to road traffic accidents. These polytrauma victims may exhibit associated renal injuries, in addition to bone injuries and injuries to other visceral organs. Nevertheless, even in cases of polytrauma, renal tissue is hyperfunctional as part of the normal protective responses of the body to external insults. Both polytrauma and renal injuries exhibit widespread renal, endocrine, and metabolic responses. The situation is very challenging for the attending anesthesiologist, as he is expected to contribute immensely, not only in the resuscitation of such patients, but if required, to allow the operative procedures in case of life-threatening injuries. During administration of anesthesia, care has to be taken, not only to maintain hemodynamic stability, but equal attention has to be paid to various renal protection strategies. At the same time, various renoendocrine manifestations have to be taken into account, so that a judicious use of anesthesia drugs can be made, to minimize the renal insults. Key words: Anesthesia, polytrauma, renal injuries, renal protection, renoendocrine manifestations INTRODUCTION trauma are also one of the major protective responses exerted by the body to maintain a normal metabolic and Major trauma is a pathophysiological state that threatens endocrine milieu. The caloric substitutes are mobilized so [2] the integrity of the internal environment, causing alteration that supply of glucose to the vital organs is maintained. -
Validation of Lactate Clearance at 6 H for Mortality Prediction in Critically Ill Children
570 Research Article Validation of lactate clearance at 6 h for mortality prediction in critically ill children Rajeev Kumar, Nirmal Kumar Background and Aims: To validate the lactate clearance (LC) at 6 h for mortality Access this article online prediction in Pediatric Intensive Care Unit (PICU)-admitted patients and its comparison Website: www.ijccm.org with a pediatric index of mortality 2 (PIM 2) score. Design: A prospective, observational DOI: 10.4103/0972-5229.192040 study in a tertiary care center. Materials and Methods: Children <13 years of age, Quick Response Code: Abstract admitted to PICU were included in the study. Lactate levels were measured at 0 and 6 h of admission for clearance. LC and delayed or nonclearance group compared for in-hospital mortality and compared with PIM 2 score for mortality prediction. Results: Of the 140 children (mean age 33.42 months) who were admitted to PICU, 23 (16.42%) patients died. For LC cut-off (16.435%) at 6 h, 92 patients qualified for clearance and 48 for delayed or non-LC group. High mortality was observed (39.6%) in delayed or non-LC group as compared to clearance group (4.3%) (P = 0.000). LC cut-off of 16.435% at 6 h (sensitivity 82.6%, specificity 75.2%, positive predictive value 39.6%, and negative predictive value 95.7%) correlates with mortality. Area under receiver operating characteristic (ROC) for LC at 6 h for mortality prediction was 0.823 (P = 0.000). The area under ROC curve for expected mortality prediction by PIM 2 score at admission was 0.906 and at 12.3% cut-off of PIM 2 Score was related with mortality. -
Prehospital Determination of Tracheal Tube Placement in Severe Head Injury
518 PREHOSPITAL CARE Prehospital determination of tracheal tube placement in severe head injury Emerg Med J: first published as on 18 June 2004. Downloaded from Sˇ Grmec, Sˇ Mally ............................................................................................................................... Emerg Med J 2004;21:518–520. doi: 10.1136/emj.2002.001974 Objectives: The aim of this prospective study in the prehospital setting was to compare three different methods for immediate confirmation of tube placement into the trachea in patients with severe head injury: auscultation, capnometry, and capnography. Methods: All adult patients (.18 years) with severe head injury, maxillofacial injury with need of protection of airway, or polytrauma were intubated by an emergency physician in the field. Tube position was initially evaluated by auscultation. Then, capnometry and capnography was performed (infrared method). Emergency physicians evaluated capnogram and partial pressure of end tidal carbon dioxide See end of article for (EtCO2) in millimetres of mercury. Determination of final tube placement was performed by a second direct authors’ affiliations ....................... visualisation with laryngoscope. Data are mean (SD) and percentages. Results: There were 81 patients enrolled in this study (58 with severe head injury, 6 with maxillofacial Correspondence to: trauma, and 17 politraumatised patients). At the first attempt eight patients were intubated into the ˇ Dr S Mally, Zdravstveni oesophagus. Afterwards endotracheal intubation was undertaken in all without complications. The initial Dom, dr Adolfa Droica, Ulica talcev 9, Maribor, capnometry (sensitivity 100%, specificity 100%), capnometry after sixth breath (sensitivity 100%, specificity Slovenia; stefan.mally@ 100%), and capnography after sixth breath (sensitivity 100%, specificity 100%) were significantly better guest.arnes.si indicators for tracheal tube placement than auscultation (sensitivity 94%, specificity 66%, p,0.01). -
Package for Emergency Resuscitation and Intensive Care Unit
Package for Emergency Resuscitation and Intensive Care Unit Extracted from WHO manual Surgical Care at the District Hospital and WHO Integrated Management for Emergency & Essential Surgical Care toolkit For further details and anaesthetic resources please refer to full text at: http://www.who.int/surgery/publications/imeesc/en/index.html 1 1. Anaesthesia and Oxygen XYGEN KEY POINTS: • A reliable oxygen supply is essential for anaesthesia and for any seriously ill patients • In many places, oxygen concentrators are the most suitable and economical way of providing oxygen, with a few backup cylinders in case of electricity failure • Whatever your source of oxygen, you need an effective system for maintenance and spares • Clinical staff need to be trained how to use oxygen safely, effectively and economically. • A high concentration of oxygen is needed during and after anaesthesia: • If the patient is very young, old, sick, or anaemic • If agents that cause cardio-respiratory depression, such as halothane, are used. Air already contains 20.9% oxygen, so oxygen enrichment with a draw-over system is a very economical method of providing oxygen. Adding only 1 litre per minute may increase the oxygen concentration in the inspired gas to 35–40%. With oxygen enrichment at 5 litres per minute, a concentration of 80% may be achieved. Industrial-grade oxygen, such as that used for welding, is perfectly acceptable for the enrichment of a draw-over system and has been widely used for this purpose. Oxygen Sources In practice, there are two possible sources of oxygen for medical purposes: • Cylinders: derived from liquid oxygen • Concentrators: which separate oxygen from air. -
Predictive Value of Scoring System in Severe Pediatric Head Injury
Medicina (Kaunas) 2007; 43(11) 861 Predictive value of scoring system in severe pediatric head injury Dovilė Evalda Grinkevičiūtė, Rimantas Kėvalas, Viktoras Šaferis1, Algimantas Matukevičius1, Vytautas Ragaišis2, Arimantas Tamašauskas1 Department of Children’s Diseases, 1Institute for Biomedical Research, 2Department of Neurosurgery, Kaunas University of Medicine, Lithuania Key words: pediatric head trauma; Glasgow Coma Scale, Pediatric Trauma Score; Glasgow Outcome Scale, Pediatric Index of Mortality 2. Summary. Objectives. To determine the threshold values of Pediatric Index of Mortality 2 (PIM 2) score, Pediatric Trauma Score (PTS), and Glasgow Coma Scale (GCS) score for mortality in children after severe head injury and to evaluate changes in outcomes of children after severe head injury on discharge and after 6 months. Material and methods. All children with severe head injury admitted to the Pediatric Intensive Care Unit of Kaunas University of Medicine Hospital, Lithuania, from January 2004 to June 2006 were prospectively included in the study. The severity of head injury was categorized according to the GCS score ≤8. As initial assessment tools, the PTS, postresuscitation GCS, and PIM 2 scores were calculated for each patient. Outcome was assessed according to Glasgow Outcome Scale on discharge and after 6 months. Results. The study population consisted of 59 children with severe head injury. The group consisted of 37 (62.7%) boys and 22(37.3%) girls; the mean age was 10.6±6.02. The mean GCS, PTS, and PIM 2 scores were 5.9±1.8, 4.8±2.7, and 14.0±19.5, respectively. In terms of overall outcome, 46 (78.0%) patients survived and 13 (22.0%) died. -
Anytown Trauma Center Trauma Protocols
ANYTOWN TRAUMA CENTER TRAUMA PROTOCOLS TITLE: TRAUMA TEAM ACTIVATION PROTOCOL PURPOSE: The purpose of the protocol is to establish guidelines for trauma team activation and define the members of the responding trauma team to facilitate the resuscitation and management of critical or seriously injured patients who require rapid, organized resuscitation, evaluation and stabilization to promote optimal outcomes. It also serves to provide triage guidelines for adult and pediatric patients. PROCESS: 1. TRAUMA TEAM ACTIVATION PROTCOL A. The criteria for activation of the trauma team is clearly defined and posted at the Emergency Department triage desk, by the EMS communication station and in the resuscitation rooms. B. The trauma team may be activated prior to arrival based on the EMS communication and their assessment. C. The trauma surgeon, emergency medicine physician, emergency department charge nurse/ house supervisor, emergency department nurses and the Trauma Program Manager may activate the trauma team. D. The person calling the trauma activation will initiate the trauma page to group page the trauma team and will specify the MOI, BP, HR, ETA and level of activation required and age if available. E. If the trauma team members are present in the emergency department and alert is still communicated to ensure everyone is notified. F. Trauma team member notification and arrival times will be documented on the trauma flow sheet (paper or electronic). G. Trauma team members will sign-in when they arrive. H. Trauma team members will be activated for all patients who meet the following criteria: 1. Level 1 trauma activation (major): life threatening injuries and/or unstable vital signs, limb-threating or disability threatening injury 2. -
Yarrowia Lipolytica Fungemia in Patients with Severe Polytrauma
Intensive Care Med DOI 10.1007/s00134-017-4900-3 LETTER Yarrowia lipolytica fungemia in patients with severe polytrauma requiring intensive care admission: analysis of 32 cases Mabrouk Bahloul1*, Kamilia Chtara1, Olfa Turki1, Nadia Khlaf Bouaziz2, Kais Regaieg1, Maha Hammami1, Wiem Ben Amar3, Imen Chabchoub4, Rania Ammar1, Chokri Ben Hamida1, Hedi Chelly1, Ali Ayedi5 and Mounir Bouaziz1 © 2017 Springer-Verlag GmbH Germany and ESICM Dear Editor, score on admission was at 38 ± 11 (median 37.7). Te Systemic fungal infections are a signifcant cause of mor- mean Sequential Organ Failure Assessment (SOFA) bidity and mortality in hospitalized patients. Incidences score on ICU admission was at 7.47 ± 3 (median 7). All of candidemia have been increasing signifcantly in recent patients had a polytrauma. Epidemiological and clini- years [1]. Critically ill medical and surgical patients cal characteristics of these 32 polytrauma patients with often undergo surgery, receive total parenteral nutrition, fungemia caused by Y. lipolytica are given in Table 1. Te require central venous catheters and/or are administered mean duration of onset of candidemia in the ICU was broad spectrum antibiotics—all factors which predispose 20 ± 13 (median 18 days) days. Te Pittet index calcu- them to develop blood stream infections caused by Can- lated on the day of fungemia diagnosis was <50% in 71% dida spp. [1–5]. Yarrowia lipolytica, also known as Can- of cases. Moreover, the Candida score calculated the dida lipolytica, is a ubiquitous and opportunistic yeast day of fungemia diagnosis was >3 in 38% of cases (ESM [3, 4]. However, to the best of our knowledge, the devel- Fig. -
Central Venous Catheter (CVC) Placement
Medical Education Policy: Central Venous Catheter (CVC) Placement Facility: CMC Origin Date: June 2015 Revision Date: March 2019 Sponsor: GMEC 1. PURPOSE: Carilion Clinic is committed to excellent patient care, with the highest priority towards patient safety and excellent clinical outcomes. As a graduate medical education training site, Carilion Clinic will standardize the basic education, competency assessment, supervision and procedural methods for medical students, resident physicians and fellows inserting central venous catheters (CVCs) under this policy. This policy will guide the education of trainees in the use of proper sterile technique, anatomical landmarks and ultrasound guidance when inserting CVCs. The CVCs covered by this policy are all percutaneously inserted central catheters including large bore central catheters such as dialysis and resuscitation catheters. This policy supports the routine use of ultrasound guidance for internal jugular and femoral venous sites of CVC placement unless the clinical urgency and/or immediate unavailability of ultrasound precludes sonographic guidance. At times, extraordinary clinical circumstances or clinical judgment of the attending physician may dictate that different approaches to central line placement may be utilized. It is expected that these will be an unusual occurrences. 2. SCOPE: This policy outlines the education, training and supervision of all trainees involved in CVC insertion. All postgraduate medical trainees performing CVC placement in their clinical duties will be trained in anatomic landmarks and ultrasound guided CVC insertion techniques as appropriate to location. This policy designates the minimum standard by which a resident or fellow will be educated to place CVCs, when they may place central lines WITHOUT direct supervision, and who may supervise and teach central line placement. -
Subclavian Central Venous Catheter-Related Thrombosis in Trauma Patients: Incidence, Risk Factors and Influence of Polyurethane Type Gentile Et Al
Subclavian central venous catheter-related thrombosis in trauma patients: incidence, risk factors and influence of polyurethane type Gentile et al. Gentile et al. Critical Care 2013, 17:R103 http://ccforum.com/content/17/3/R103 (29 May 2013) Gentile et al. Critical Care 2013, 17:R103 http://ccforum.com/content/17/3/R103 RESEARCH Open Access Subclavian central venous catheter-related thrombosis in trauma patients: incidence, risk factors and influence of polyurethane type Ariane Gentile1,2, Laurent Petit1, Françoise Masson1*, Vincent Cottenceau1, Josseline Bertrand-Barat3, Geneviève Freyburger4, Catherine Pinaquy1, Alain Léger1, Jean-François Cochard1 and François Sztark1,5 Abstract Introduction: The incidence of deep venous thrombosis (DVT) related to a central venous catheter varies considerably in ICUs depending on the population included. The aim of this study was to determine subclavian central venous catheter (SCVC)-related DVT risk factors in severely traumatized patients with regard to two kinds of polyurethane catheters. Methods: Critically ill trauma patients needing a SCVC for their usual care were prospectively included in an observational study. Depending on the month of inclusion, patients received one of the two available products in the emergency unit: either an aromatic polyurethane SCVC or an aliphatic polyurethane SCVC. Patients were screened weekly by ultrasound for SCVC-related DVT. Potential risk factors were collected, including history-related, trauma-related and SCVC-related characteristics. Results: A total of 186 patients were included with a median Injury Severity Sore of 30 and a high rate of severe brain injuries (21% of high intracranial pressure). Incidence of SCVC-related DVT was 37% (95% confidence interval: 26 to 40) in patients or 20/1,000 catheter-days.