On the Kronecker Nachlass 423
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Condenser Capacity and Hyperbolic Perimeter
CONDENSER CAPACITY AND HYPERBOLIC PERIMETER MOHAMED M. S. NASSER, OONA RAINIO, AND MATTI VUORINEN Abstract. We apply domain functionals to study the conformal capacity of condensers (G; E) where G is a simply connected domain in the complex plane and E is a compact subset of G. Due to conformal invariance, our main tools are the hyperbolic geometry and functionals such as the hyperbolic perimeter of E. Novel computational algorithms based on implementations of the fast multipole method are combined with analytic techniques. Computational experiments are used throughout to, for instance, demonstrate sharpness of established inequalities. In the case of model problems with known analytic solutions, very high precision of computation is observed. 1. Introduction A condenser is a pair (G; E), where G ⊂ Rn is a domain and E is a compact non-empty subset of G. The conformal capacity of this condenser is defined as [14, 17, 20] Z (1.1) cap(G; E) = inf jrujndm; u2A G 1 where A is the class of C0 (G) functions u : G ! [0; 1) with u(x) ≥ 1 for all x 2 E and dm is the n-dimensional Lebesgue measure. The conformal capacity of a condenser is one of the key notions in potential theory of elliptic partial differential equations [20, 29] and it has numerous applications to geometric function theory, both in the plane and in higher dimensions, [10, 14, 15, 17]. The isoperimetric problem is to determine a plane figure of the largest possible area whose boundary has a specified length, or, perimeter. Constrained extremal problems of this type, where the constraints involve geometric or physical quantities, have been studied in several thousands of papers, see e.g. -
Harmonic and Complex Analysis and Its Applications
Trends in Mathematics Alexander Vasil’ev Editor Harmonic and Complex Analysis and its Applications Trends in Mathematics Trends in Mathematics is a series devoted to the publication of volumes arising from conferences and lecture series focusing on a particular topic from any area of mathematics. Its aim is to make current developments available to the community as rapidly as possible without compromise to quality and to archive these for reference. Proposals for volumes can be submitted using the Online Book Project Submission Form at our website www.birkhauser-science.com. Material submitted for publication must be screened and prepared as follows: All contributions should undergo a reviewing process similar to that carried out by journals and be checked for correct use of language which, as a rule, is English. Articles without proofs, or which do not contain any significantly new results, should be rejected. High quality survey papers, however, are welcome. We expect the organizers to deliver manuscripts in a form that is essentially ready for direct reproduction. Any version of TEX is acceptable, but the entire collection of files must be in one particular dialect of TEX and unified according to simple instructions available from Birkhäuser. Furthermore, in order to guarantee the timely appearance of the proceedings it is essential that the final version of the entire material be submitted no later than one year after the conference. For further volumes: http://www.springer.com/series/4961 Harmonic and Complex Analysis and its Applications Alexander Vasil’ev Editor Editor Alexander Vasil’ev Department of Mathematics University of Bergen Bergen Norway ISBN 978-3-319-01805-8 ISBN 978-3-319-01806-5 (eBook) DOI 10.1007/978-3-319-01806-5 Springer Cham Heidelberg New York Dordrecht London Mathematics Subject Classification (2010): 13P15, 17B68, 17B80, 30C35, 30E05, 31A05, 31B05, 42C40, 46E15, 70H06, 76D27, 81R10 c Springer International Publishing Switzerland 2014 This work is subject to copyright. -
Mendelssohn Studien
3 MENDELSSOHN STUDIEN Beiträge zur neueren deutschen Kulturgeschichte Band 19 Herausgegeben für die Mendelssohn-Gesellschaft von Roland Dieter Schmidt-Hensel und Christoph Schulte Wehrhahn Verlag 4 Bibliograische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliograie; detaillierte bibliograische Daten sind im Internet über <http://dnb.ddb.de> abrufbar. 1. Aulage 2015 Wehrhahn Verlag www.wehrhahn-verlag.de Satz und Gestaltung: Wehrhahn Verlag Umschlagabbildung: Fromet Mendelssohn. Reproduktion einer verschollenen Miniatur aus dem Jahr 1767 Druck und Bindung: Beltz Bad Langensalza GmbH Alle Rechte vorbehalten Printed in Germany © by Wehrhahn Verlag, Hannover ISSN 0340–8140 ISBN 978–3–86525–469–6 50 Jahre Mendelssohn-Archiv der Staatsbibliothek zu Berlin 295 50 Jahre Mendelssohn-Archiv der Staatsbibliothek zu Berlin Geschichte und Bestände 1965–2015 Von Roland Dieter Schmidt-Hensel Die Musikabteilung der Staatsbibliothek zu Berlin – Preußischer Kulturbesitz verwahrt nicht nur eine der weltweit größten und bedeutendsten Sammlungen von Musikautographen und -abschriften, Musikerbriefen und -nachlässen so- wie gedruckten Notenausgaben, sondern besitzt mit dem Mendelssohn-Archiv auch eine der wichtigsten Sammelstätten für Handschriften, Briefe und son- stige Originaldokumente aus der und über die gesamte Familie Mendelssohn weit über die drei Komponisten der Familie – Felix Mendelssohn Bartholdy, Fanny Hensel und Arnold Ludwig Mendelssohn – hinaus. Den Grundstock dieses Mendelssohn-Archivs bildet eine umfangreiche Sammlung, die Hugo von Mendelssohn Bartholdy (1894–1975), Urenkel und letzter namenstragen- der Nachfahre des Komponisten Felix, aufgebaut hatte und 1964 als Schen- kung der Stiftung Preußischer Kulturbesitz übereignete, wo sie der Musikab- teilung der Staatsbibliothek angegliedert wurde. Mit dieser Schenkung stellte sich Hugo von Mendelssohn Bartholdy in die Tradition früherer Generationen seiner Familie, die sich im 19. -
Complex Numbers and Colors
Complex Numbers and Colors For the sixth year, “Complex Beauties” provides you with a look into the wonderful world of complex functions and the life and work of mathematicians who contributed to our understanding of this field. As always, we intend to reach a diverse audience: While most explanations require some mathemati- cal background on the part of the reader, we hope non-mathematicians will find our “phase portraits” exciting and will catch a glimpse of the richness and beauty of complex functions. We would particularly like to thank our guest authors: Jonathan Borwein and Armin Straub wrote on random walks and corresponding moment functions and Jorn¨ Steuding contributed two articles, one on polygamma functions and the second on almost periodic functions. The suggestion to present a Belyi function and the possibility for the numerical calculations came from Donald Marshall; the November title page would not have been possible without Hrothgar’s numerical solution of the Bla- sius equation. The construction of the phase portraits is based on the interpretation of complex numbers z as points in the Gaussian plane. The horizontal coordinate x of the point representing z is called the real part of z (Re z) and the vertical coordinate y of the point representing z is called the imaginary part of z (Im z); we write z = x + iy. Alternatively, the point representing z can also be given by its distance from the origin (jzj, the modulus of z) and an angle (arg z, the argument of z). The phase portrait of a complex function f (appearing in the picture on the left) arises when all points z of the domain of f are colored according to the argument (or “phase”) of the value w = f (z). -
Nevanlinna Theory of the Askey-Wilson Divided Difference
NEVANLINNA THEORY OF THE ASKEY-WILSON DIVIDED DIFFERENCE OPERATOR YIK-MAN CHIANG AND SHAO-JI FENG Abstract. This paper establishes a version of Nevanlinna theory based on Askey-Wilson divided difference operator for meromorphic functions of finite logarithmic order in the complex plane C. A second main theorem that we have derived allows us to define an Askey-Wilson type Nevanlinna deficiency which gives a new interpretation that one should regard many important infinite products arising from the study of basic hypergeometric series as zero/pole- scarce. That is, their zeros/poles are indeed deficient in the sense of difference Nevanlinna theory. A natural consequence is a version of Askey-Wilosn type Picard theorem. We also give an alternative and self-contained characterisation of the kernel functions of the Askey-Wilson operator. In addition we have established a version of unicity theorem in the sense of Askey-Wilson. This paper concludes with an application to difference equations generalising the Askey-Wilson second-order divided difference equation. Contents 1. Introduction 2 2. Askey-Wilson operator and Nevanlinna characteristic 6 3. Askey-Wilson type Nevanlinna theory – Part I: Preliminaries 8 4. Logarithmic difference estimates and proofs of Theorem 3.2 and 3.1 10 5. Askey-Wilson type counting functions and proof of Theorem 3.3 22 6. ProofoftheSecondMaintheorem3.5 25 7. Askey-Wilson type Second Main theorem – Part II: Truncations 27 8. Askey-Wilson-Type Nevanlinna Defect Relation 29 9. Askey-Wilson type Nevanlinna deficient values 31 arXiv:1502.02238v4 [math.CV] 3 Feb 2018 10. The Askey-Wilson kernel and theta functions 33 11. -
Multiplicities in Hayman's Alternative
J. Aust. Math. Soc. 78 (2005), 37-57 MULTIPLICITIES IN HAYMAN'S ALTERNATIVE WALTER BERGWEILER and J. K. LANGLEY (Received 3 September 2002; revised 28 August 2003) Communicated by P. C. Fenton Abstract In 1959 Hayman proved an inequality from which it follows that if/ is transcendental and meromorphic in the plane then either/ takes every finite complex value infinitely often or each derivative /(k), k > 1, takes every finite non-zero value infinitely often. We investigate the extent to which these values may be ramified, and we establish a generalization of Hayman's inequality in which multiplicities are not taken into account. 2000 Mathematics subject classification: primary 3OD35. 1. Introduction Our starting point is the following result of Hayman [8, 9]. THEOREM 1.1. Let k e H and let a, b e C, b ^ 0. Let f be nonconstant and meromorphic in the plane. Then at least one of f — a and f(Ar) — b has at least one zero, and infinitely many iff is transcendental. Hayman's proof of Theorem 1.1 is based on Nevanlinna theory, the result deduced from the following inequality. Here the notation is that of [9], with S(r,f) denoting any term which is o(T(r,f)) as r -> oo, possibly outside a set of finite Lebesgue measure. THEOREM 1.2 ([8, 9]). Let ieN and let f be transcendental and meromorphic in the plane. Then, as r -» oo, (1) r(rJ) © 2005 Australian Mathematical Society 1446-7887/05 $A2.00 + 0.00 Downloaded from https://www.cambridge.org/core. -
Math Times Is Published Twice a Year by Teaching, and Their Leadership in the Profession
Department of Mathematics Spring/Summer 2014 MathDepartment of Mathematics Times — Spring 2019 Architects hired to create designs for $100 million plan to modernize and expand learning spaces The University of Illinois has hired a Chicago design firm to “We are very pleased that the trustees approved CannonDesign begin planning the $100 million Altgeld Hall and Illini Hall for the Altgeld Hall and Illini Hall project,” said Derek Fultz, project to modernize learning spaces and increase capacity in director of facilities for the College of LAS who also served data science and other mathematical sciences. on the selection committee that recommended the firm. “We During their March meeting, the Board of Trustees approved fully expect the buildings to display the same, high levels of CannonDesign to conceptualize and create schematic designs creativity and practicality that CannonDesign has provided in for the project, which will include the construction of a new the past.” building on the site of Illini Campus is still raising money Hall, and the renovation for the Altgeld Hall and Illini of Altgeld Hall. Campus Hall project. The new building officials expect the new will be constructed on the building to be constructed site of Illini Hall, which is by 2022, and for the scheduled to be razed at the renovation of Altgeld to be corner of South Wright and complete by 2024. East John streets beginning Once the schematic in fall 2020. It will be replaced designs are complete— with a larger, world-class which will provide facility for learning and basically an overall discovery, including a data visualization of the science center that does not project—they will be currently exist on campus. -
This Is the File GUTINDEX.ALL Updated to July 5, 2013
This is the file GUTINDEX.ALL Updated to July 5, 2013 -=] INTRODUCTION [=- This catalog is a plain text compilation of our eBook files, as follows: GUTINDEX.2013 is a plain text listing of eBooks posted to the Project Gutenberg collection between January 1, 2013 and December 31, 2013 with eBook numbers starting at 41750. GUTINDEX.2012 is a plain text listing of eBooks posted to the Project Gutenberg collection between January 1, 2012 and December 31, 2012 with eBook numbers starting at 38460 and ending with 41749. GUTINDEX.2011 is a plain text listing of eBooks posted to the Project Gutenberg collection between January 1, 2011 and December 31, 2011 with eBook numbers starting at 34807 and ending with 38459. GUTINDEX.2010 is a plain text listing of eBooks posted to the Project Gutenberg collection between January 1, 2010 and December 31, 2010 with eBook numbers starting at 30822 and ending with 34806. GUTINDEX.2009 is a plain text listing of eBooks posted to the Project Gutenberg collection between January 1, 2009 and December 31, 2009 with eBook numbers starting at 27681 and ending with 30821. GUTINDEX.2008 is a plain text listing of eBooks posted to the Project Gutenberg collection between January 1, 2008 and December 31, 2008 with eBook numbers starting at 24098 and ending with 27680. GUTINDEX.2007 is a plain text listing of eBooks posted to the Project Gutenberg collection between January 1, 2007 and December 31, 2007 with eBook numbers starting at 20240 and ending with 24097. GUTINDEX.2006 is a plain text listing of eBooks posted to the Project Gutenberg collection between January 1, 2006 and December 31, 2006 with eBook numbers starting at 17438 and ending with 20239. -
Helmut Hasse Und Die Familie Mendelssohn
Helmut Hasse und die Familie Mendelssohn Peter Roquette, 29.10.2012 Vor einigen Jahren erhielt ich von Martin Kneser, dem Schwiegersohn von Helmut Hasse, eine Mappe mit einer Reihe von Papieren aus dem Hasse- Nachlass, die mehr oder minder privaten Charakter tragen und wohl des- halb von Hasse nicht zur Ubergabe¨ an das Archiv der G¨ottinger Universit¨at vorgesehen waren. Unter diesen fand sich ein Blatt mit einem sogenannten Familienstammbaum der Familie Mendelssohn. Darin sind eine Reihe von Namen bekannter Mathematiker zu finden. Das ist nicht neu, aber es ist wohl nicht ganz uninteressant, dass hier auch der Name von Helmut Hasse erscheint. Aufgrund dieses Stammbaums ist Hasse zwar nicht direkter Nachfahre eines Mendelssohn, aber einer der Vorfahren von Hasse, mit Namen Daniel Itzig (1722-1799), war mit den Mendelssohns verschw¨agert. Das Blatt enth¨alt zus¨atzlich die Angabe einiger literarischer Quellen als Beleg fur¨ die in Rede stehenden Verwandtschaftsbeziehungen. Diese Quellen- angaben waren, wie es scheint, von Martin Kneser hinzugefugt¨ worden. Ich habe das Blatt ausgedruckt und lege es im Anhang bei. Dabei habe ich den Namen des britischen Mathematikers Walter Hayman, eines Enkels von Kurt Hensel, hinzugefugt,¨ der sich auf dem Original nicht befindet. Hasse pflegte in kleinem Kreise gerne uber¨ seine Verwandtschaft mit den Mendelssohns zu erz¨ahlen, offenbar nicht nur weil er als Klavierspieler mit der Musik von Felix Mendelssohn vertraut war. (Sein Lieblings-Komponist war allerdings Beethoven.) Sondern es war fur¨ ihn auch wichtig, dass dadurch seine wenn auch nur entfernte Verwandtschaft mit seinem von ihm verehrten akademischen Lehrer Kurt Hensel bezeugt wurde. -
A Sprig of the Mendelssohn Family Tree
A Sprig of the Mendelssohn Family Tree Edward Gelles The progeny of Moses Mendelssohn, the 18th century German philosopher and pillar of Jewish Enlightenment, possess an illustrious ancestry. Moses Mendelssohn’s mother .was a direct descendant of the 16th century Jewish community leader and Polish statesman Saul Wahl, a scion of the Katzenellenbogen Chief Rabbis of Padua and Venice. More widely known than his famous grandfather Moses Mendelssohn is the composer Felix Mendelssohn-Bartholdy. The latter’s sister Fanny was also a highly gifted musician, who was overshadowd by her renowned brother. The early generations of the Mendelssohns were connected by marriage to distinguished families of their time, such as the Guggenheim, Oppenheimer, Wertheimer, Salomon, and Jaffe (Itzig), from whose ranks prominent Court Jews and other notables had emerged in Germany and Austria.. In a study of some descendants of my ancestor Saul Wahl I used DNA tests to show that my own lineage exhibited some significant matches with latter day members of the above mentioned old Ashkenazi families. While the genealogy of the Mendelssohn main line is well documented there has hitherto been a lack of relevant genetic data. Sheila Hayman, who is a descendant of Fanny Mendelssohn, agreed to take a “Family Finder” autosomal DNA test, the results of which are outlined below in so far they shed light on our family connections © EDWARD GELLES 2015 Ancestry of Sheila Hayman As may be seen from the appended family tree of Sheila Hayman, she is the daughter of a Jewish Professor of German extraction and an English Quaker mother. -
Walter Kurt Hayman (6.1.1926 – 1.1.2020)
Walter Kurt Hayman (6.1.1926 – 1.1.2020) Am Neujahrstag 2020 verstarb kurz vor seinem 94. Geburtstag Walter Kurt Hayman. Er war seit 1982 korrespondierendes Mitglied der Bayerischen Akademie der Wissenschaften. Seine Eltern waren der Jura-Professor Franz Haymann und Ruth Therese Haymann, Tochter des bedeutenden Mathematikers Kurt Hensel. Beide Eltern hatten judische¨ Vorfahren; der Vater verlor deshalb 1935 seine Professur in Koln.¨ Ein Jahr zuvor war ein Vetter der Mutter (Kurt Hahn, einer der Grunder¨ des Internats Schloss Salem) nach Schottland emigriert, wo er die Gordonstoun School grundete.¨ Walter wurde von seinen Eltern 1938 alleine nach Schottland geschickt, um in Gordonstoun seine Schulbildung fortzusetzen. Es gelang ihm, mithilfe seiner dortigen Forderer¨ seinen Eltern die Emigration nach Großbritannien zu ermoglichen,¨ sodass sie der Verfolgung durch das NS-Regime entgingen. Das Studium der Mathematik in Cambridge schloss er in Rekordzeit mit seiner Promotion bei Mary Cartwright1 ab und nahm 1947 eine Stelle als Lecturer an der University of Newcastle an. Noch im selben Jahr wurde er Fellow des St. John’s College in Cambridge und spater¨ Lecturer in Exeter. Das hohere¨ Gehalt ermoglichte¨ die Heirat mit Margaret Riley. Er blieb bis 1956 in Exeter (seit 1953 als Reader) und wurde dann als erster Professor fur¨ Reine Mathematik ans Imperial College London berufen, wo er bis 1985 tatig¨ war. Ebenfalls 1956 wurde er zum damals jungsten¨ Mitglied der Royal Society gewahlt.¨ Nach seiner Emeritierung am Imperial College nahm er bis 1993 eine Teilzeit-Professur an der University of York wahr und ging dann 1995 als Senior Research Fellow ans Imperial College zuruck.¨ Fur¨ seine Forschungsarbeiten in der Funktionentheorie (das Studium von komplex differen- zierbaren Funktionen einer komplexen Variablen) hat Walter Hayman neben anderen Preisen sowohl den Junior (1955) als auch den Senior Berwick Prize (1964) und schließlich 1995 die de-Morgan-Medaille der London Mathematical Society erhalten. -
Karel Rychlík (1885–1968)
Karel Rychlík (1885–1968) Life and work of Karel Rychlík In: Magdalena Hykšová (author): Karel Rychlík (1885–1968). (English). Praha: Prometheus, 2003. pp. 265–276. Persistent URL: http://dml.cz/dmlcz/401163 Terms of use: © Hykšová, Magdalena Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz ooooooooooooooooooooooooooooooooooooooooooooooooooo*******************************************ooooooooooooooooooooooooooooooooooo 8 LIFE AND WORK OF KAREL RYCHLÍK oo 8.1 INTRODUCTION The monograph is devoted to the life and work of the Czech mathematician Karel Rychlík. The first chapter contains the brief overview of Rychlík’s life, the survey of his scientific and pedagogical activities and the detailed description of his life story. The subsequent five chapters discuss particular groups of Rych- lík’s publications: 2. Algebra and Number theory, 3. Works on Mathematical Analysis, 4. Textbooks, Popularizing Papers, Translations, 5. Karel Rychlík and Bernard Bolzano, 6. Other Works on History of Mathematics. These chapters are conceived separately, each of them is provided with the conclusion and the list of references. The seventh chapter presents the list of Rychlík’s publications, reviews and lectures at Charles University, at the Czech Technical University and in the Union of Czech Mathematicians and Physicists. The book ends with the pic- torial appendix, the survey of abbreviations and the name index. The aim of this summary is to provide the basic information on Rychlík’s life and on his most important mathematical results.