University of Florida Thesis Or Dissertation

Total Page:16

File Type:pdf, Size:1020Kb

University of Florida Thesis Or Dissertation ADAPTATION STRATEGIES TO MANAGE FLOODING: CASE STUDY ON THE HOOVER DIKE By MATTHEW KALAP A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF URBAN AND REGIONAL PLANNING UNIVERSITY OF FLORIDA 2019 © 2019 Matthew Kalap To future generations ACKNOWLEDGMENTS I want to make sure I thank all my professors, teachers, and mentors for helping me to achieve my goals and realize this work. I could not have written this thesis without the distinguished members of this thesis committee, I thank you Dr. Silver and Dr. Steiner for chairing and co-chairing and I thank you Dr.Noll for being a committee member. The knowledge and expertise you have shared with me during my education at the University of Florida is something I will always carry with me. I thank my mom and entire extended family for supporting me and the goals I have set for myself. I would not have been able to write this without you all. Finally, I thank you the reader. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................4 LIST OF TABLES ...........................................................................................................................7 LIST OF FIGURES .........................................................................................................................8 LIST OF ABBREVIATIONS ..........................................................................................................9 ABSTRACT ...................................................................................................................................10 CHAPTER 1 INTRODUCTION ..................................................................................................................11 2 LITERATURE REVIEW .......................................................................................................13 Flooding ..................................................................................................................................13 Hurricanes ...............................................................................................................................18 Adaptation ...............................................................................................................................20 3 LAKE OKEECHOBEE AND THE HOOVER DIKE ...........................................................24 The Lake .................................................................................................................................25 The Plan ..................................................................................................................................28 1926 and 1928 Hurricanes ......................................................................................................29 The Second Plan .....................................................................................................................34 More Hurricanes, More Plans .................................................................................................35 Current Plans ..........................................................................................................................37 4 METHODOLOGY .................................................................................................................39 Study Area ..............................................................................................................................40 Theoretical Framework ...........................................................................................................41 5 ANALYSIS.............................................................................................................................43 Hurricane King 1950 ..............................................................................................................44 Hurricane Charley 2004 ..........................................................................................................46 Hurricane Frances 2004 ..........................................................................................................48 Hurricane Jeanne 2004 ...........................................................................................................50 Hurricane Wilma 2005 ...........................................................................................................52 6 DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS .......................................54 LIST OF REFERENCES ...............................................................................................................58 5 BIOGRAPHICAL SKETCH .........................................................................................................60 6 LIST OF TABLES Table page 5-1 Hurricane King Data ..........................................................................................................45 5-2 Hurricane Charley Data .....................................................................................................47 5-3 Hurricane Frances Data......................................................................................................49 5-4 Hurricane Jeanne Data .......................................................................................................51 5-5 Hurricane Wilma Data .......................................................................................................53 6-1 All Hurricane Data .............................................................................................................55 7 LIST OF FIGURES Figure page 2-1 Image of the Los Angeles River ........................................................................................16 2-2 Graphic depicting a storm surge created by a hurricane as it approaches land .................18 2-3 Hurricane impacts ..............................................................................................................20 2-4 Graphic depicting the cyclical relationship between planning and adaptive capacity ......22 3-1 Map of Florida showing Lake Okeechobee in red letters ..................................................25 3-2 Map of Lake Okeechobee showing outflow through the canal systems ............................26 3-3 Shows the track of the 1926 Hurricane ..............................................................................30 3-4 Shown in green is the 1928 Hurricane, shown in red is the 1926 Hurricane .....................32 3-5 Outlined in blue are the areas flooded by the 1928 Hurricane ..........................................33 3-6 Erosion on lakeside of the Hoover Dike after the 1947 Hurricane ....................................36 3-7 This image shows the existing conditions within the Hoover Dike ..................................37 3-8 This image shows the proposed repair to the Hoover Dike ...............................................38 4-1 This figure shows the case study study area divided into six different basins ..................41 4-2 Theoretical framework .......................................................................................................42 5-1 89 storms that have passed within 65 miles of Lake Okeechobee .....................................43 5-2 This map shows the 9 storms selected from the 89 storms ................................................44 5-3 Hurricane King’s track across Florida ...............................................................................45 5-4 Hurricane Charley wind swath map ...................................................................................47 5-5 Wind swath map for Hurricane Frances ............................................................................49 5-6 Wind swath map for Hurricane Jeanne ..............................................................................51 5-7 Hurricane Wilma wind swath map ....................................................................................53 8 LIST OF ABBREVIATIONS ACE United States Army Corps of Engineers HHD Herbert Hoover Dike SFWMD South Florida Water Management District. 9 Abstract of Thesis Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Master of Urban and Regional Planning ADAPTATION STRATEGIES TO MANAGE FLOODING: CASE STUDY ON THE HOOVER DIKE By Matthew Kalap December 2019 Chair: Christopher Silver Cochair: Ruth Steiner Major: Urban and Regional Planning Floods can be a catastrophic event. One specific adaptation strategy to manage flooding in South Florida is the Herbert Hoover Dike (Hoover Dike). The aim of this thesis is to investigate and determine whether the Hoover Dike has been a successful adaptation to manage flooding in the Lake Okeechobee watershed. The literature reviewed initially suggests that the Hoover Dike has prevented floods from reoccurring in the region and thus, successful. In the analysis however, hurricanes that have affected the Lake Okeechobee watershed have been analyzed and compared to a previous catastrophic flood that occurred in 1928 and proves that the current situation is much more complex.This thesis adds to the existing information concerning the Hoover Dike’s history, implementation and current rehabilitation in addition to its status as a successful adaptation strategy to manage flooding. 10 CHAPTER 1 INTRODUCTION Floods can oftentimes be a catastrophic problem for people
Recommended publications
  • Resilience Potential: Assessing Jamaica's “Bounce-Back” from Hurricane Dean
    Resilience Potential: Assessing Jamaica’s “Bounce-Back” from Hurricane Dean CaPRI is a Caribbean think tank that promotes evidence- based policymaking in the region. CaPRI espouses a methodology which is built on the values of multi- disciplinary work, team work and the utilization of the diaspora in our search for evidence. Committed to the region’s development, CaPRI has strong linkages with the academic community, the private sector and civil society. For information and feedback, please contact: Caribbean Policy Research Institute GUANGO TREE HOUSE, 29 MUNROE ROAD, KINGSTON 6 JAMAICA, W.I. TEL: (876) 970-3447 (876) 970-2910 FAX: (876) 970-4544 E-mail: [email protected] WEBSITE: http://www.takingresponsibility.org 2 Table of Contents Pages List of Figures, Tables and Boxes .............................................................4 Preface......................................................................................................5 Executive Summary .................................................................................6-7 Introduction: Resilience Potential ...........................................................8-9 1. Natural Disasters: The Global Context................................................10-13 2. Natural Disasters in the Caribbean .....................................................14-18 3. Changing Practices in Disaster Management…………………………19-20 4. Disaster Management in Jamaica .....................................................21 4.1 National Disaster Plan…………………………………………….21
    [Show full text]
  • A Rapid Forecasting and Mapping System of Storm Surge and Coastal Flooding
    AUGUST 2020 Y A N G E T A L . 1663 A Rapid Forecasting and Mapping System of Storm Surge and Coastal Flooding KUN YANG,VLADIMIR A. PARAMYGIN, AND Y. PETER SHENG Department of Civil and Coastal Engineering, University of Florida, Gainesville, Florida (Manuscript received 16 July 2019, in final form 2 March 2020) ABSTRACT A prototype of an efficient and accurate rapid forecasting and mapping system (RFMS) of storm surge is presented. Given a storm advisory from the National Hurricane Center, the RFMS can generate a coastal inundation map on a high-resolution grid in 1 min (reference system Intel Core i7–3770K). The foundation of the RFMS is a storm surge database consisting of high-resolution simulations of 490 optimal storms generated by a robust storm surge modeling system, Curvilinear-Grid Hydrodynamics in 3D (CH3D-SSMS). The RFMS uses an efficient quick kriging interpolation scheme to interpolate the surge response from the storm surge database, which considers tens of thousands of combinations of five landfall parameters of storms: central pressure deficit, radius to maximum wind, forward speed, heading direction, and landfall location. The RFMS is applied to southwest Florida using data from Hurricane Charley in 2004 and Hurricane Irma in 2017, and to the Florida Panhandle using data from Hurricane Michael in 2018 and validated with observed high water mark data. The RFMS results agree well with observation and direct simulation of the high-resolution CH3D- SSMS. The RFMS can be used for real-time forecasting during a hurricane or ‘‘what-if’’ scenarios for miti- gation planning and preparedness training, or to produce a probabilistic flood map.
    [Show full text]
  • © Mitigation of Cyclonic Activity Lawrence Sirovich, Rockefeller University Abstract Under Realistic Estimates of Geophysical
    Management of Cyclonic Activity Lawrence Sirovich, Rockefeller University Abstract Based on realistic estimates of geophysical conditions, we demonstrate that the intensity of a hurricane may be diminished before reaching landfall, and under other circumstances, might be quenched in an incipient stage. It will be shown that with present-day technology, it is possible to mix the cold deep ocean with the warm surface layer sufficiently, and in a timely manner, in order to decrease cyclonic intensity. Two strategies will be presented: (1) In a manner similar to hurricane weakening by landfall, a virtual early landfall is created on the hurricane path, before true landfall; (2) An identified tropical depression might be quenched, by cyclonic or anti- cyclonic means, and timely intervention. Estimates of the power needed to perform the needed ocean mixing, in a timely manner, show that this might be accomplished by employing a sufficient number of high-performance submarines. The achievement of this goal is made possible by an unusually high coefficient of performance, O(10^4). The destructive power of the hurricane is a function of a hurricane’s maximal wind speed, Vm. It will be shown that even a 20% reduction in this wind speed produces a ~50% reduction in destructive costs. On the flip side of these considerations, there is the possibility of using such means, under favorable circumstances, to initiate rainfall for relief of drought areas. Novel vessel modifications are introduced to achieve the mixing process It is the contention of this paper that a practical framework now exists for sensibly exploring means by which to reduce the tragedy and devastation caused by hurricanes.
    [Show full text]
  • Geographical and Historical Variation in Hurricanes Across the Yucatán Peninsula
    Chapter 27 Geographical and Historical Variation in Hurricanes Across the Yucatán Peninsula Emery R. Boose David R. Foster Audrey Barker Plotkin Brian Hall INTRODUCTION Disturbance is a continual though varying theme in the history of the Yucatán Peninsula. Ancient Maya civilizations cleared and modified much of the forested landscape for millennia, and then abruptly abandoned large areas nearly 1,000 years ago, allowing forests of native species to reestablish and mature (Turner 1974; Hodell, Curtis, and Brenner 1995). More recently, late twentieth century population growth has fueled a resurgence of land-use activity including logging, slash-and-burn agriculture, large mechanized agricultural projects, tourism, and urban expansion (Turner et al. 2001; Turner, Geoghegan, and Foster 2002). Throughout this lengthy history, fires have affected the region—ignited purposefully or accidentally by humans, and occasionally by lightning (Lundell 1940; Snook 1998). And, as indicated by ancient Maya records, historical accounts, and contemporary observations, intense winds associated with hurricanes have repeatedly damaged forests and human settlements (Wilson 1980; Morales 1993). Despite the generally acknowledged importance of natural and human disturbance in the Yucatán Peninsula, there has been little attempt to quantify This research was supported by grants from the National Aeronautics and Space Agency (Land Cover Land-Use Change Program), the National Science Foundation (DEB-9318552, DEB-9411975), and the A. W. Mellon Foundation, and is a contribution from the Harvard Forest Long-Term Ecological Research Program. 495 496 THE LOWLAND MAYA AREA the spatial and temporal distribution of this activity, or to interpret its relationship to modern vegetation patterns (cf. Lundell 1937, 1938; Cairns et al.
    [Show full text]
  • Revista 224.Indd
    U CARIBBEAn TROPICAL STORMS Ecological Implications for Pre-Hispanic and Contemporary Maya Subsistence on the Yucatan Peninsula Herman W. Konrad ABSTRACT The ecological stress factor of hurricanes is examined as a dimension of pre-Hispanic Maya adaptation to a tropical forest habitat in the Yucatan peninsula. Pre-Hispanic, colonial and contemporary texts as well as climatic data from the Caribbean region support the thesis that the hurricane was an integral feature of the pre-Hispanic Maya cosmology and ecological paradigm. The author argues that destruction of forests by tropical storms and subsequent succession cycles mimic not only swidden —"slash- and-burn"— agriculture, but also slower, natural succession cycles. With varying degrees of success, flora and fauna adapt to periodic, radical ecosystem disruption in the most frequently hard-hit areas. While not ignoring more widely-discussed issues surrounding the longevity and decline of pre-Hispanic Maya civilization, such as political development, settlement patterns, migration, demographic stability, warfare and trade, the author suggests that effective adaptation to the ecological effects of tropical storms helped determine the success of pre-Hispanic Herman W. Konrad. university Maya subsistence strategies. of Calgary. Email: [email protected] gary.ca NÚMERO 224 • PRIMER TRIMESTRE DE 2003 • 99 Herman W. Konrad RESuMEn Los efectos ecológicos causados por los huracanes se analizan en el contexto de la adaptación de los mayas prehispánicos a la selva de la península de Yucatán. Textos prehispánicos, coloniales y contemporáneos, así como información climática sobre el Caribe en general, apoyan la hipótesis de que el huracán era un elemento central en la cosmovisión y el paradigma ecológico prehispánico.
    [Show full text]
  • ANNUAL SUMMARY Atlantic Hurricane Season of 2005
    MARCH 2008 ANNUAL SUMMARY 1109 ANNUAL SUMMARY Atlantic Hurricane Season of 2005 JOHN L. BEVEN II, LIXION A. AVILA,ERIC S. BLAKE,DANIEL P. BROWN,JAMES L. FRANKLIN, RICHARD D. KNABB,RICHARD J. PASCH,JAMIE R. RHOME, AND STACY R. STEWART Tropical Prediction Center, NOAA/NWS/National Hurricane Center, Miami, Florida (Manuscript received 2 November 2006, in final form 30 April 2007) ABSTRACT The 2005 Atlantic hurricane season was the most active of record. Twenty-eight storms occurred, includ- ing 27 tropical storms and one subtropical storm. Fifteen of the storms became hurricanes, and seven of these became major hurricanes. Additionally, there were two tropical depressions and one subtropical depression. Numerous records for single-season activity were set, including most storms, most hurricanes, and highest accumulated cyclone energy index. Five hurricanes and two tropical storms made landfall in the United States, including four major hurricanes. Eight other cyclones made landfall elsewhere in the basin, and five systems that did not make landfall nonetheless impacted land areas. The 2005 storms directly caused nearly 1700 deaths. This includes approximately 1500 in the United States from Hurricane Katrina— the deadliest U.S. hurricane since 1928. The storms also caused well over $100 billion in damages in the United States alone, making 2005 the costliest hurricane season of record. 1. Introduction intervals for all tropical and subtropical cyclones with intensities of 34 kt or greater; Bell et al. 2000), the 2005 By almost all standards of measure, the 2005 Atlantic season had a record value of about 256% of the long- hurricane season was the most active of record.
    [Show full text]
  • Florida Hurricanes and Tropical Storms
    FLORIDA HURRICANES AND TROPICAL STORMS 1871-1995: An Historical Survey Fred Doehring, Iver W. Duedall, and John M. Williams '+wcCopy~~ I~BN 0-912747-08-0 Florida SeaGrant College is supported by award of the Office of Sea Grant, NationalOceanic and Atmospheric Administration, U.S. Department of Commerce,grant number NA 36RG-0070, under provisions of the NationalSea Grant College and Programs Act of 1966. This information is published by the Sea Grant Extension Program which functionsas a coinponentof the Florida Cooperative Extension Service, John T. Woeste, Dean, in conducting Cooperative Extensionwork in Agriculture, Home Economics, and Marine Sciences,State of Florida, U.S. Departmentof Agriculture, U.S. Departmentof Commerce, and Boards of County Commissioners, cooperating.Printed and distributed in furtherance af the Actsof Congressof May 8 andJune 14, 1914.The Florida Sea Grant Collegeis an Equal Opportunity-AffirmativeAction employer authorizedto provide research, educational information and other servicesonly to individuals and institutions that function without regardto race,color, sex, age,handicap or nationalorigin. Coverphoto: Hank Brandli & Rob Downey LOANCOPY ONLY Florida Hurricanes and Tropical Storms 1871-1995: An Historical survey Fred Doehring, Iver W. Duedall, and John M. Williams Division of Marine and Environmental Systems, Florida Institute of Technology Melbourne, FL 32901 Technical Paper - 71 June 1994 $5.00 Copies may be obtained from: Florida Sea Grant College Program University of Florida Building 803 P.O. Box 110409 Gainesville, FL 32611-0409 904-392-2801 II Our friend andcolleague, Fred Doehringpictured below, died on January 5, 1993, before this manuscript was completed. Until his death, Fred had spent the last 18 months painstakingly researchingdata for this book.
    [Show full text]
  • Geomorphologic Recovery of North Captiva Island from the Landfall of Hurricane Charley in 2004
    geosciences Article Geomorphologic Recovery of North Captiva Island from the Landfall of Hurricane Charley in 2004 Emma Wilson Kelly and Felix Jose * Department of Marine & Earth Sciences, The Water School, Florida Gulf Coast University, Fort Myers, FL 33965, USA; [email protected] * Correspondence: [email protected] Abstract: Hurricane Charley made landfall on the Gulf Coast of Florida on 13 August 2004 as a category 4 hurricane, devastating North Captiva Island. The hurricane caused a breach to occur to the southern end of the island, which naturally healed itself over the course of three years. By 2008, the cut was completely repaired geomorphologically. LiDAR data analysis shows the northern half of the island has been subjected to persistent erosion from 1998–2018, while the southern half experienced accretion since 2004, including the complete closure of the “Charley cut”. The maxi- mum volume of sediment erosion in the northern sector of the island (R71–R73) from 2004–2018 was −85,710.1 m3, which was the source of southern accretion. The breached area of the island (R78b–R79a) obtained 500,163.9 m3 of sediments from 2004–2018 to heal the cut made by Hurricane Charley. Along with LiDAR data analysis, Google Earth Pro historical imageries and SANDS volu- metric analysis confirmed the longshore transport of sediments from the northern to the southern end of the island. Winter storms are mainly responsible for this southerly longshore transport and are hypothesized to be the main factor driving the coastal dynamics that restored the breach and Citation: Kelly, E.W.; Jose, F. helps in widening the southern end of North Captiva Island.
    [Show full text]
  • Reimbursement to American Red Cross for Hurricanes Charley, Frances, Ivan, and Jeanne
    United States Government Accountability Office GAO Report to Congressional Committees May 2006 DISASTER RELIEF Reimbursement to American Red Cross for Hurricanes Charley, Frances, Ivan, and Jeanne a GAO-06-518 May 2006 DISASTER RELIEF Accountability Integrity Reliability Highlights Reimbursement to American Red Cross Highlights of GAO-06-518, a report to for Hurricanes Charley, Frances, Ivan, congressional committees and Jeanne Why GAO Did This Study What GAO Found In accordance with Public Law 108- The signed agreement between FEMA and the Red Cross properly 324, GAO is required to audit the established criteria for the Red Cross to be reimbursed for allowable reimbursement of up to $70 million expenses for disaster relief, recovery, and emergency services related to of appropriated funds to the hurricanes Charley, Frances, Ivan, and Jeanne. The Red Cross incurred American Red Cross (Red Cross) $88.6 million of allowable expenses. for disaster relief associated with 2004 hurricanes Charley, Frances, Ivan, and Jeanne. The audit was Consistent with the law, the agreement explicitly provided that the Red performed to determine if (1) the Cross would not seek reimbursement for any expenses reimbursed by other Federal Emergency Management federal funding sources. GAO identified $0.3 million of FEMA paid costs that Agency (FEMA) established the Red Cross properly deducted from its reimbursement requests, so as not criteria and defined allowable to duplicate funding by other federal sources. The Red Cross also reduced its expenditures to ensure that requested reimbursements by $60.2 million to reflect private donations for reimbursement claims paid to the disaster relief for the four hurricanes, for a net reimbursement of Red Cross met the purposes of the 28.1 million.
    [Show full text]
  • A Classification Scheme for Landfalling Tropical Cyclones
    A CLASSIFICATION SCHEME FOR LANDFALLING TROPICAL CYCLONES BASED ON PRECIPITATION VARIABLES DERIVED FROM GIS AND GROUND RADAR ANALYSIS by IAN J. COMSTOCK JASON C. SENKBEIL, COMMITTEE CHAIR DAVID M. BROMMER JOE WEBER P. GRADY DIXON A THESIS Submitted in partial fulfillment of the requirements for the degree Master of Science in the Department of Geography in the graduate school of The University of Alabama TUSCALOOSA, ALABAMA 2011 Copyright Ian J. Comstock 2011 ALL RIGHTS RESERVED ABSTRACT Landfalling tropical cyclones present a multitude of hazards that threaten life and property to coastal and inland communities. These hazards are most commonly categorized by the Saffir-Simpson Hurricane Potential Disaster Scale. Currently, there is not a system or scale that categorizes tropical cyclones by precipitation and flooding, which is the primary cause of fatalities and property damage from landfalling tropical cyclones. This research compiles ground based radar data (Nexrad Level-III) in the U.S. and analyzes tropical cyclone precipitation data in a GIS platform. Twenty-six landfalling tropical cyclones from 1995 to 2008 are included in this research where they were classified using Cluster Analysis. Precipitation and storm variables used in classification include: rain shield area, convective precipitation area, rain shield decay, and storm forward speed. Results indicate six distinct groups of tropical cyclones based on these variables. ii ACKNOWLEDGEMENTS I would like to thank the faculty members I have been working with over the last year and a half on this project. I was able to present different aspects of this thesis at various conferences and for this I would like to thank Jason Senkbeil for keeping me ambitious and for his patience through the many hours spent deliberating over the enormous amounts of data generated from this research.
    [Show full text]
  • Hurricane Charley the Storm Everyone Said Could Happen, but Few Believed Would, Makes Landfall in Southwest Florida
    Hurricane Charley The storm everyone said could happen, but few believed would, makes landfall in Southwest Florida. For years, emergency management planners in Cape Coral have said that it is not a matter of “if” Cape Coral would be impacted by a major hurricane, but rather “when” a storm would occur. The answer arrived in August on Friday the 13th when the City of Cape Coral received its first exposure to the effects of a major hurricane as “Charley” approached the coastline of Southwest Florida. Cape Coral was not incorporated in 1960 when Hurricane Donna blew through Southwest Florida, the last time this area experienced a direct impact from a hurricane. Hurricane Charley had been projected to be a weak Category 2 hurricane, making landfall in Tampa Bay. However, by late-morning on Friday, Charley had evolved quickly into a frightening Category 4 storm. Even more frightening was Hurricane Charley had made a turn to the east, and the storm pointed squarely at the Cape Coral/Ft. Myers area. Much to Cape Coral’s relief, the storm took a last-minute jog to the north, and the eye of Hurricane Charley missed the city by only 20 miles. Unfortunately, our neighbors in Punta Gorda and Port Charlotte suffered the harshest effects of the storm, and many homes and businesses were devastated by the 140 mph winds as Charley moved through the area. Within two hours of the storm’s passing, City crews were on the street clearing downed trees from the roadways and providing access to emergency vehicles. Hurricane Charley approaches the Cape Coral/Fort Myers area.
    [Show full text]
  • Tropical Storm Fay August 18-23, 2008
    Tropical Storm Fay August 18-23, 2008 Tropical Storm Fay radar-based rainfall accumulation The Preliminary Summary Report, containing all storm-related data gathered from east-central Florida, including wind, rainfall and barometric pressure extremes. National Hurricane Center Summary of Tropical Storm Fay (pdf) Three tornadoes were reported with Fay. They are documented here. Rainfall map, from NOAA's Weather Prediction Center More maps are available at the WPC's website Brevard County has also produced a map of rainfall This map (pdf format) can "zoom in" for more detail. 3-hour radar-based rainfall estimates Day animated gif 18th loop0818.gif 19th loop0819.gif 20th loop0820.gif 21st loop0821.gif PRELIMINARY data indicates that this event is the 4th wettest tropical cyclone to affect the state of Florida and by far the wettest for east central Florida. A maximum rainfall total of 27.65 occurred 8 miles NW of Melbourne. The previous rainfall record for a tropical cyclone in the region was set in 1950, when Hurricane King dumped 15.44" of rain on Patrick Air Force Base near Cape Canaveral. Hurricane Wilma of 2005 holds third place--it dumped 13.26" on Kennedy Space Center. The "top ten" list for Florida follows: Storm Name (Year) Max Rainfall (ins) Location Easy (1950) 38.70 Yankeetown Georges (1998) 38.46 Munson Unnamed (1941) 35.00 Trenton Dennis (1985) 25.56 Homestead TD 1A (1992) 25.00 Arcadia Tower Jeanne (1980) 29.48 Key West Dora (1964) 23.73 Mayo TD (1969) 23.40 Havana Unnamed (1924) 23.22 Marcos Island Bob (1985) 21.50 Everglades City Alberto (1994) 21.38 Niceville Below is a map depicting the wind fields of Tropical Storm Fay (Click the map to see a larger version) Map based upon data provided by NOAA's Hurricane Research Division Photographs of Flooding in the Melbourne Area POST TROPICAL CYCLONE REPORT...TROPICAL STORM FAY NATIONAL WEATHER SERVICE MELBOURNE FL 225 PM EDT TUE SEP 2 2008...UPDATE 3 UPDATE...FOR KCOF: ADDED MIN PRES...UPDATED MAX SUSTAINED WIND AND TOTAL PRECIP.
    [Show full text]