Lecture 25: Phylogenetic Trees; Speed; Trees in CS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rediscovery of Nycticebus Coucang Insularis Robinson, 1917
Sains Malaysiana 47(10)(2018): 2533–2542 http://dx.doi.org/10.17576/jsm-2018-4710-30 Rediscovery of Nycticebus coucang insularis Robinson, 1917 (Primates: Lorisidae) at Tioman Island and its Mitochondrial Genetic Assessment (Penemuan Semula Nycticebus coucang insularis Robinson, 1917 (Primate: Lorisidae) di Pulau Tioman dan Penilaian Genetik Mitokondrianya) JEFFRINE J. ROVIE-RYAN*, MILLAWATI GANI, HAN MING GAN, GILMOORE G. BOLONGON, TAN CHENG CHENG, NORAZLINDA RAZAK, NORSYAMIMI ROSLI, MOHD AZIZOL AZIZ & KALIP MATKASIM ABSTRACT Slow lorises (Nycticebus) consist of eight species native to Southeast Asia while three species are recognised in Malaysia - N. coucang, N. menagensis and N. kayan. This study reports on the rediscovery of the subspecies N. coucang insularis Robinson, 1917 in Tioman Island and the genetic assessment of its mitochondrial DNA variation. Morphological measurements conform the specimen as the putative N. coucang but with distinct colour and markings. Two mitochondrial DNA segments (cytochrome b and control region) were produced from the subspecies representing their first registered sequences in GenBank. Genetically, the subspecies showed 99% of nucleotide similarity to N. coucang species type for both the DNA segments and constitute its own unique haplotype. Phylogenetic trees constructed using three methods (neighbour joining, maximum likelihood and Bayesian inference) showed two major groups within Nycticebus; the basal group was formed by N. pygmaeus while the second group consisted of the remaining Nycticebus species. The phylogenetic position of the subspecies, however, remains unresolved due to the observed mixing between N. coucang and N. bengalensis. Several reasons could lead to this condition including the lack of well documented voucher specimens and the short DNA fragments used. -
World's Most Endangered Primates
Primates in Peril The World’s 25 Most Endangered Primates 2016–2018 Edited by Christoph Schwitzer, Russell A. Mittermeier, Anthony B. Rylands, Federica Chiozza, Elizabeth A. Williamson, Elizabeth J. Macfie, Janette Wallis and Alison Cotton Illustrations by Stephen D. Nash IUCN SSC Primate Specialist Group (PSG) International Primatological Society (IPS) Conservation International (CI) Bristol Zoological Society (BZS) Published by: IUCN SSC Primate Specialist Group (PSG), International Primatological Society (IPS), Conservation International (CI), Bristol Zoological Society (BZS) Copyright: ©2017 Conservation International All rights reserved. No part of this report may be reproduced in any form or by any means without permission in writing from the publisher. Inquiries to the publisher should be directed to the following address: Russell A. Mittermeier, Chair, IUCN SSC Primate Specialist Group, Conservation International, 2011 Crystal Drive, Suite 500, Arlington, VA 22202, USA. Citation (report): Schwitzer, C., Mittermeier, R.A., Rylands, A.B., Chiozza, F., Williamson, E.A., Macfie, E.J., Wallis, J. and Cotton, A. (eds.). 2017. Primates in Peril: The World’s 25 Most Endangered Primates 2016–2018. IUCN SSC Primate Specialist Group (PSG), International Primatological Society (IPS), Conservation International (CI), and Bristol Zoological Society, Arlington, VA. 99 pp. Citation (species): Salmona, J., Patel, E.R., Chikhi, L. and Banks, M.A. 2017. Propithecus perrieri (Lavauden, 1931). In: C. Schwitzer, R.A. Mittermeier, A.B. Rylands, F. Chiozza, E.A. Williamson, E.J. Macfie, J. Wallis and A. Cotton (eds.), Primates in Peril: The World’s 25 Most Endangered Primates 2016–2018, pp. 40-43. IUCN SSC Primate Specialist Group (PSG), International Primatological Society (IPS), Conservation International (CI), and Bristol Zoological Society, Arlington, VA. -
SILVERY GIBBON PROJECT Newsletterthe Page 1 September 2013 SILVERY GIBBON PROJECT
SILVERY GIBBON PROJECT NEWSLETTERThe Page 1 September 2013 SILVERY GIBBON PROJECT PO BOX 335 COMO 6952 WESTERN AUSTRALIA Website: www.silvery.org.au E-mail: [email protected] Phone: 0438992325 September 2013 Agile Gibbons, Siamangs, Sunbears, Clouded Leopards and even Sumatran Tigers, the area lies PRESIDENT’S REPORT adjacent to a larger protected forest and is also the location of Kalaweit Conservation Centre. We Dear Members and Friends hope to be able to provide additional support to this important project into the future. Keep an eye We are excited to report that the release of on our Facebook page for updates on camera trap Sadewa and Kiki in June went very well and they images from Supayang. continue to thrive in the forest. They are proving a little challenging for the monitoring team to keep Back in Perth, the SGP team is gearing up for our up with but thanks to their morning call the team Art Auction which will be held on October 26. are still able to locate them most days. Please Once again we have secured some amazing read the update on their release on page 4. pieces and the generosity of artists is truly inspiring. Be sure to get your tickets early as this event may sell out. We also have some exciting projects underway with Wildlife Asia. You can find out more about our crowd funding project on page 5. It was certainly an honour to be present at the release, which was the culmination of many years hard work for the Java Gibbon Centre (JGC) team. -
Groves #3 Layout 1
Vietnamese Journal of Primatology (2009) 3, 37-44 Diet and feeding behaviour of pygmy lorises (Nycticebus pygmaeus) in Vietnam Ulrike Streicher Wildlife Veterinarinan, Danang, Vietnam. <[email protected]> Key words: Diet, feeding behaviour, pygmy loris Summary Little is known about the diet and feeding behaviour of the pygmy loris. Within the Lorisidae there are faunivorous and frugivorous species represented and this study aimed to characterize where the pygmy loris (Nycticebus pygmaeus) ranges on this scale. Feeding behaviour was observed in adult animals which had been confiscated from the illegal wildlife trade and housed at the Endangered Primate Rescue Center at Cuc Phuong National Park for some time before they were radio collared and released into Cuc Phuong National Park. The lorises were located in daytime by methods of radio tracking and in the evenings they were directly observed with the help of red-light torches. The observed lorises exploited a large variety of different food sources, consuming insects as well as gum and other plant exudates, thus appearing to be truly omnivorous. Seasonal variations in food preferences were observed. Omnivory can be an adaptive strategy, helping to overcome difficulties in times of food shortage. The pygmy loris’ feeding behaviour enables it to rely on other food sources like gum in times when other feeding resource become rare. Gum as an alternative food sources has the advantage of being readily available all year round. However it does not permit the same energetic benefits and consequently the same lifestyle as other food sources. But it is an important part of the pygmy loris’ multifaceted strategy to survive times of hostile environmental conditions. -
An Assessment of Trade in Gibbons and Orang-Utans in Sumatra, Indoesia
AN ASSESSMENT OF TRADE IN GIBBONS AND ORANG-UTANS IN SUMATRA, INDONESIA VINCENT NIJMAN A TRAFFIC SOUTHEAST ASIA REPORT Published by TRAFFIC Southeast Asia, Petaling Jaya, Selangor, Malaysia © 2009 TRAFFIC Southeast Asia All rights reserved. All material appearing in this publication is copyrighted and may be reproduced with permission. Any reproduction in full or in part of this publication must credit TRAFFIC Southeast Asia as the copyright owner. The views of the authors expressed in this publication do not necessarily reflect those of the TRAFFIC Network, WWF or IUCN. The designations of geographical entities in this publication, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of TRAFFIC or its supporting organizations concerning the legal status of any country, territory, or area, or its authorities, or concerning the delimitation of its frontiers or boundaries. The TRAFFIC symbol copyright and Registered Trademark ownership is held by WWF. TRAFFIC is a joint programme of WWF and IUCN. Layout by Noorainie Awang Anak, TRAFFIC Southeast Asia Suggested citation: Vincent Nijman (2009). An assessment of trade in gibbons and orang-utans in Sumatra, Indonesia TRAFFIC Southeast Asia, Petaling Jaya, Selangor, Malaysia ISBN 9789833393244 Cover: A Sumatran Orang-utan, confiscated in Aceh, stares through the bars of its cage Photograph credit: Chris R. Shepherd/TRAFFIC Southeast Asia An assessment of trade in gibbons and orang-utans in Sumatra, Indonesia Vincent Nijman Cho-fui Yang Martinez -
Behavioral and Feeding Ecology of a Small-Bodied Folivorous Primate (Lepilemur Leucopus)
Behavioral and Feeding Ecology of a Small-bodied Folivorous Primate (Lepilemur leucopus) Dissertation for the award of the degree “Doctor rerum naturalium” (Dr. rer. nat.) of the Georg-August-Universität Göttingen within the doctoral program Biology of the Georg-August University School of Science (GAUSS) submitted by Iris Dröscher from Scheifling, Austria Göttingen 2014 Thesis Committee: Prof. Dr. Peter M. Kappeler, Department of Sociobiology and Anthropology, Georg- August-Universität Göttingen, Behavioral Ecology and Sociobiology Unit, German Primate Center GmbH Prof. Dr. Eckhard W. Heymann, Department of Sociobiology and Anthropology, Georg- August-Universität Göttingen, Behavioral Ecology and Sociobiology Unit, German Primate Center GmbH Members of the Examination Board: Reviewer: Prof. Dr. Peter M. Kappeler Second Reviewer: Prof. Dr. Eckhard W. Heymann Further members of the Examination Board: Dr. Claudia Fichtel, Behavioral Ecology and Sociobiology Unit, German Primate Center GmbH Prof. Dr. Julia Ostner, Primate Social Evolution Group, Courant Research Centre Evolution of Social Behavior, Georg-August-Universität Göttingen Dr. Oliver Schülke, Primate Social Evolution Group, Courant Research Centre Evolution of Social Behavior, Georg-August-Universität Göttingen Dr. Dietmar Zinner, Cognitive Ethology Laboratory, German Primate Center GmbH Date of the oral examination: 12 December 2014 CONTENTS SUMMARY ………………………………………………………………………………1 ZUSAMMENFASSUNG …………………………………………………………………3 GENERAL INTRODUCTION …………………………………………………………...5 CHAPTER -
A Neuronal Morphologic Type Unique to Humans and Great Apes ESTHER A
Proc. Natl. Acad. Sci. USA Vol. 96, pp. 5268–5273, April 1999 Neurobiology, Anthropology A neuronal morphologic type unique to humans and great apes \ ESTHER A. NIMCHINSKY*†,EMMANUEL GILISSEN‡§,JOHN M. ALLMAN‡,DANIEL P. PERL¶,JOSEPH M. ERWIN , AND PATRICK R. HOF*,**††‡‡ *Kastor Neurobiology of Aging Laboratories and Fishberg Research Center for Neurobiology, and Departments of ¶Pathology (Neuropathology), **Geriatrics and Adult Development, and ††Ophthalmology, Mount Sinai School of Medicine, New York, NY 10029; ‡Division of Biology, California Institute of Technology, \ Pasadena, CA 91125; and Division of Neurobiology and Behavior, Bioqual Inc., Rockville, MD 20850 Communicated by Francis Crick, The Salk Institute for Biological Studies, San Diego, CA, March 1, 1999 (received for review November 16, 1998) ABSTRACT We report the existence and distribution of tical regions were available for comparison from all of the an unusual type of projection neuron, a large, spindle-shaped anthropoid species. All specimens were obtained postmortem cell, in layer Vb of the anterior cingulate cortex of pongids and or from terminally ill adult animals sacrificed for humane hominids. These spindle cells were not observed in any other reasons and were fixed by immersion in 10% neutral formalin. primate species or any other mammalian taxa, and their Specimens of macaque, owl, squirrel, and capuchin monkeys volume was correlated with brain volume residuals, a measure were obtained from animals perfused transcardially with 4% of encephalization in higher primates. These observations are paraformaldehyde in the context of unrelated experiments. of particular interest when considering primate neocortical The great ape brains were from young and adult individuals evolution, as they reveal possible adaptive changes and func- (age range, 4–34 years). -
Bengal Slow Loris, Nycticebus Bengalensis
Bengal Slow Loris, Nycticebus bengalensis © Papori Khatonier Authors: Adrian Wansaindor Lyngdoh, Papori Khatonier, Jyoti Das, Salvador Lyngdoh Suggested citation: Lyngdoh, A.W., Khatonier, P., Das., J., & Lyngdoh, S. (2021). A Survival Blueprint for the conservation and management of the Bengal Slow Loris, Nycticebus bengalensis, in Meghalaya, India. An output from the EDGE of Existence fellowship, Zoological Society of London and National Geographic PhotoArk Program, 2019-2021. 1. STATUS REVIEW 1.1 Taxonomy: Kingdom: Animalia > Phylum: Chordata > Class: Mammalia > Order: Primates > Suborder: Strepsirrhini > Family: Lorisidae > Genus: Nycticebus > Species: bengalensis Scientific name: Nycticebus bengalensis Author: Lacépède, 1800 Common name: Bengal Slow Loris, Ashy Slow Loris, Northern Slow Loris, Slow Loris Local names: Meghalaya, India: Khasi Hills: • Khasi tribe – Khaprang rit, Iapiang o Bhoi subtribe – Bhangsoh, Hyrno, Mrad manrain kmie kusim, Tyrlang Shrieh o Mnar subtribe – Jatyllioh o Maram subtribe – Ain-tong-mah o War subtribe – Brang, Thoh brang • Karbi/Mikir tribe – Holno • Marngar tribe – Nilaji bandor Jaintia Hills: • Jaintia tribe – Khaprang, Khonlor, Lor • Biate tribe – Sahuai Garo Hills: • Garo tribe – Durok, Gilwe Arunachal Pradesh: Adi-Galong (Baederi), Adi-Minyong (Besurai), Khampti (Ngangaay), Mishmi (Rinkho), Nishi (Lajuki Bandar), Tangsa (Rangchuwi), Wancho (Awai) Assam: Assamese (Lajuki bandar), Bodo (Nilaji makhra) Manipur: Loudraobi, Samrok gamkok, Yong ikaithibi Mizoram: Mizo (Sahuai nido), Hmar Kuki (Mitungki) Nagaland: Angami (Chümenga, Tehie) Tripura: Bengali (Lajiwati bandar, Lajwanti banor), Hrangkhawl (Zong ochai), Rukni (Mukhra ochai) 1.2 Distribution and population status: IUCN Red List category: Endangered, Criteria: A2acd+3cd+4acd ver 3.1 The Bengal Slow Loris is distributed throughout southeast Asia spread across south Bhutan, northeast India, northeast Bangladesh, southwest China, Myanmar, Lao PDR, Thailand, north Vietnam, Cambodia (West of Mekong river), and Malaysia. -
Conservation and Ecology of the Neglected Slow Loris: Priorities and Prospects
Vol. 28: 87–95, 2015 ENDANGERED SPECIES RESEARCH Published online June 24 doi: 10.3354/esr00674 Endang Species Res Contribution to the Theme Section ‘Conservation and ecology of slow lorises’ OPEN ACCESS OVERVIEW Conservation and ecology of the neglected slow loris: priorities and prospects K. A. I. Nekaris1, Carly R. Starr2,* 1Oxford Brookes University, Nocturnal Primate Research Group, School of Social Sciences and Law, Oxford OX3 0BP, UK 2Northern Gulf Resource Management Group, Mareeba, Queensland 4880, Australia ABSTRACT: Slow lorises Nycticebus spp. have one of the widest distributions of any nocturnal primate species, occurring in 14 Asian countries; yet, in terms of their taxonomy, ecology and dis- tribution, they remain amongst the least known of any primate taxa. Eight species are now recog- nised; 5 of these have been listed in the IUCN Red List as Vulnerable or Critically Endangered, with 3 Not Assessed. Threats to these primates not only include habitat loss, but the illegal wildlife trade. Slow lorises are highly desired in traditional medicines, and as pets both nationally and internationally. In this Theme Section (www.int-res.com/journals/esr/esr-specials/conservation- and-ecology-of-slow-lorises), we bring together 13 studies on several key topics. We present sur- vey data from the Indonesian island of Java, from Malaysian Sabah on the island of Borneo, from northeast India and from Singapore. All of these studies concur that slow lorises occur at low abundance, but that, where they are left alone, they can also persist in anthropogenically modified habitats. We present novel data on the feeding ecology of slow lorises, reifying that these primates are obligate exudativores. -
Variation in Predicted COVID-19 Risk Among Lemurs and Lorises
bioRxiv preprint doi: https://doi.org/10.1101/2021.02.03.429540; this version posted February 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Variation in predicted COVID-19 risk among lemurs and lorises Amanda D. Melin 1,2,3,&,*, Joseph D. Orkin 4,&, Mareike C. Janiak 5, Alejandro Valenzuela 4, Lukas Kuderna 4, Frank Marrone III 6, Hasinala Ramangason1, Julie E. Horvath 7,8,9,10, Christian Roos 11, Andrew C. Kitchener 12, Chiea Chuen Khor 13,14, Weng Khong Lim 15,16,17, Jessica G. H. Lee 18, Patrick Tan 13,15,17, Govindhaswamy Umapathy 19, Muthuswamy Raveendran 20, R. Alan Harris 20, Ivo Gut 21, Marta Gut 21, Esther Lizano 4, Tilo Nadler22, Dietmar Zinner23,24,25, Steig E. Johnson1, Erich D. Jarvis 26,27,28, Olivier Fedrigo 26,28, Dongdong Wu 29,30, Guojie Zhang 31,32,33, Kyle Kai-How Farh 34, Jeffrey Rogers 20, Tomas Marques-Bonet 4,35,36,37, Arcadi Navarro 4,35,36, David Juan 4, Paramjit S. Arora 6, James P. Higham 38,359,* 1 Department of Anthropology and Archaeology, University of Calgary, Canada 2 Department of Medical Genetics, University of Calgary, Canada 3 Alberta Children’s Hospital Research Institute, University of Calgary, Canada 4 Experimental and Health Sciences Department (DCEXS), Institut de Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, Barcelona, Spain 5 School of Science, Engineering & Environment, University of -
Checkerboard Patterns, Interspecific Competition, and Extinction
Checkerboard Patterns, Interspecific Competition, and Extinction: Lessons from Distribution Patterns of Tarsiers (Tarsius) and Slow Lorises (Nycticebus) in Insular Southeast Asia International Journal of Primatology The Official Journal of the International Primatological Society ISSN 0164-0291 Volume 31 Number 6 Int J Primatol (2010) 31:1147-1160 DOI 10.1007/ s10764-010-9458-7 1 23 Your article is published under the Creative Commons Attribution Non-Commercial license which allows users to read, copy, distribute and make derivative works for non- commercial purposes from the material, as long as the author of the original work is cited. All commercial rights are exclusively held by Springer Science + Business Media. You may self-archive this article on your own website, an institutional repository or funder’s repository and make it publicly available immediately. 1 23 Author's personal copy Int J Primatol (2010) 31:1147–1160 DOI 10.1007/s10764-010-9458-7 Checkerboard Patterns, Interspecific Competition, and Extinction: Lessons from Distribution Patterns of Tarsiers (Tarsius) and Slow Lorises (Nycticebus) in Insular Southeast Asia V. Nijman & K. A. I. Nekaris Received: 11 May 2009 /Accepted: 17 March 2010 # The Author(s) 2010. This article is published with open access at Springerlink.com Abstract Tarsiers (Tarsius) and slow lorises (Nycticebus)aretheonlyextant nocturnal primates occurring in Southeast Asia. Harcourt (1999) hypothesized that in insular Southeast Asia, slow lorises and tarsiers showed a checkerboard distribution on 12 small (<12,000 km2) islands, i.e., only one or the other occurs, and attributed this to extreme levels of competition between these 2 largely faunivorous primates. Further, he predicted slow lorises were able to persist on smaller islands than tarsiers. -
Behavioral Variability in Captive Slow Lorises, Nycticebus Coucang (Lorisidae, Primates) Shan Dustin Duncan University of the Pacific
University of the Pacific Scholarly Commons University of the Pacific Theses and Dissertations Graduate School 1982 Behavioral variability in captive slow lorises, Nycticebus coucang (Lorisidae, primates) Shan Dustin Duncan University of the Pacific Follow this and additional works at: https://scholarlycommons.pacific.edu/uop_etds Part of the Animal Studies Commons, Other Animal Sciences Commons, and the Zoology Commons Recommended Citation Duncan, Shan Dustin. (1982). Behavioral variability in captive slow lorises, Nycticebus coucang (Lorisidae, primates). University of the Pacific, Thesis. https://scholarlycommons.pacific.edu/uop_etds/2071 This Thesis is brought to you for free and open access by the Graduate School at Scholarly Commons. It has been accepted for inclusion in University of the Pacific Theses and Dissertations by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. BEHAVIORAL VARIABILITY IN. CAPTIVE SLOW LORISES, NYCTICEBUS COUCANG (LORISIDAE,PRIMATES) A Thesis Presented to the Graduate Faculty of the University of the Pacific In Partial Fulf,illment of the Requ:i,.r~rn~nts for>·the Degree Master o+ Sc~ence by Sha:n. Ihistin .Duncan May 1982 ACKNOWLEDGMENTS I would like to thank Dr. R. Tenaza for instruction in the necessary art of selective destruction of information, Dr. and Mrs. Christianson for their advice, understanding and help in all things statistical, Maureen Bagley, Sandra McNett-McGowan (and Willy) for the excellent illustrations, Dr. McNeal, the Schillings, Charles and Sarah, Dr. Hunter, and all the rest of the cast in the Biology Department for providing welcome relief from the daily grind. And special thanks to Mom and family--of course.