Behavioral and Feeding Ecology of a Small-Bodied Folivorous Primate (Lepilemur Leucopus)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rediscovery of Nycticebus Coucang Insularis Robinson, 1917
Sains Malaysiana 47(10)(2018): 2533–2542 http://dx.doi.org/10.17576/jsm-2018-4710-30 Rediscovery of Nycticebus coucang insularis Robinson, 1917 (Primates: Lorisidae) at Tioman Island and its Mitochondrial Genetic Assessment (Penemuan Semula Nycticebus coucang insularis Robinson, 1917 (Primate: Lorisidae) di Pulau Tioman dan Penilaian Genetik Mitokondrianya) JEFFRINE J. ROVIE-RYAN*, MILLAWATI GANI, HAN MING GAN, GILMOORE G. BOLONGON, TAN CHENG CHENG, NORAZLINDA RAZAK, NORSYAMIMI ROSLI, MOHD AZIZOL AZIZ & KALIP MATKASIM ABSTRACT Slow lorises (Nycticebus) consist of eight species native to Southeast Asia while three species are recognised in Malaysia - N. coucang, N. menagensis and N. kayan. This study reports on the rediscovery of the subspecies N. coucang insularis Robinson, 1917 in Tioman Island and the genetic assessment of its mitochondrial DNA variation. Morphological measurements conform the specimen as the putative N. coucang but with distinct colour and markings. Two mitochondrial DNA segments (cytochrome b and control region) were produced from the subspecies representing their first registered sequences in GenBank. Genetically, the subspecies showed 99% of nucleotide similarity to N. coucang species type for both the DNA segments and constitute its own unique haplotype. Phylogenetic trees constructed using three methods (neighbour joining, maximum likelihood and Bayesian inference) showed two major groups within Nycticebus; the basal group was formed by N. pygmaeus while the second group consisted of the remaining Nycticebus species. The phylogenetic position of the subspecies, however, remains unresolved due to the observed mixing between N. coucang and N. bengalensis. Several reasons could lead to this condition including the lack of well documented voucher specimens and the short DNA fragments used. -
The Evolution of the Lepilemuridae-Cheirogaleidae Clade
The evolution of the Lepilemuridae-Cheirogaleidae clade By Curswan Allan Andrews Submitted in fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY In the Faculty of SCIENCE at the NELSON MANDELA UNIVERSITY Promoters Prof. Judith C. Masters Dr. Fabien G.S. Génin Prof. Graham I.H. Kerley April 2019 1 i Dedication To my mothers’ Cecelia Andrews & Johanna Cloete ii DECLARATION FULL NAME: Curswan Allan Andrews STUDENT NUMBER: 214372952 QUALIFICATION: Doctor of Philosophy DECLARATION: In accordance with Rule G5.6.3, I hereby declare that the above-mentioned thesis is my own work and that it has not previously been submitted for assessment to another University or for another qualification. Signature ________________ Curswan Andrews iii ABSTRACT The Lepilemuridae and the Cheirogaleidae, according to recent molecular reconstructions, share a more recent common ancestor than previously thought. Further phylogenetic reconstructions have indicated that body size evolution in this clade was marked by repeated dwarfing events that coincided with changes in the environment. I aimed to investigate the morphological implications of changes in body size within the Lepilemur-cheirogaleid clade, testing four predictions. Together with Dr. Couette, I collected data on the overall palate shape and predicted that shape is likely to be influenced by several factors including phylogeny, body size and diet. Geometric morphometric analyses revealed that, although a strong phylogenetic signal was detected, diet had the major effect on palate shape. In a similar vein, when examining the arterial circulation patterns in these taxa, I predicted that changes in body size would result in changes and possible reductions in arterial size, particularly the internal carotid artery (ICA) and stapedial artery (SA). -
Exam 1 Set 3 Taxonomy and Primates
Goodall Films • Four classic films from the 1960s of Goodalls early work with Gombe (Tanzania —East Africa) chimpanzees • Introduction to Chimpanzee Behavior • Infant Development • Feeding and Food Sharing • Tool Using Primates! Specifically the EXTANT primates, i.e., the species that are still alive today: these include some prosimians, some monkeys, & some apes (-next: fossil hominins, who are extinct) Diversity ...200$300&species& Taxonomy What are primates? Overview: What are primates? • Taxonomy of living • Prosimians (Strepsirhines) – Lorises things – Lemurs • Distinguishing – Tarsiers (?) • Anthropoids (Haplorhines) primate – Platyrrhines characteristics • Cebids • Atelines • Primate taxonomy: • Callitrichids distinguishing characteristics – Catarrhines within the Order Primate… • Cercopithecoids – Cercopithecines – Colobines • Hominoids – Hylobatids – Pongids – Hominins Taxonomy: Hierarchical and Linnean (between Kingdoms and Species, but really not a totally accurate representation) • Subspecies • Species • Genus • Family • Infraorder • Order • Class • Phylum • Kingdom Tree of life -based on traits we think we observe -Beware anthropocentrism, the concept that humans may regard themselves as the central and most significant entities in the universe, or that they assess reality through an exclusively human perspective. Taxonomy: Kingdoms (6 here) Kingdom Animalia • Ingestive heterotrophs • Lack cell wall • Motile at at least some part of their lives • Embryos have a blastula stage (a hollow ball of cells) • Usually an internal -
Reproductive Seasonality in Captive Wild Ruminants: Implications for Biogeographical Adaptation, Photoperiodic Control, and Life History
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2012 Reproductive seasonality in captive wild ruminants: implications for biogeographical adaptation, photoperiodic control, and life history Zerbe, Philipp Abstract: Zur quantitativen Beschreibung der Reproduktionsmuster wurden Daten von 110 Wildwiederkäuer- arten aus Zoos der gemässigten Zone verwendet (dabei wurde die Anzahl Tage, an denen 80% aller Geburten stattfanden, als Geburtenpeak-Breite [BPB] definiert). Diese Muster wurden mit verschiede- nen biologischen Charakteristika verknüpft und mit denen von freilebenden Tieren verglichen. Der Bre- itengrad des natürlichen Verbreitungsgebietes korreliert stark mit dem in Menschenobhut beobachteten BPB. Nur 11% der Spezies wechselten ihr reproduktives Muster zwischen Wildnis und Gefangenschaft, wobei für saisonale Spezies die errechnete Tageslichtlänge zum Zeitpunkt der Konzeption für freilebende und in Menschenobhut gehaltene Populationen gleich war. Reproduktive Saisonalität erklärt zusätzliche Varianzen im Verhältnis von Körpergewicht und Tragzeit, wobei saisonalere Spezies für ihr Körpergewicht eine kürzere Tragzeit aufweisen. Rückschliessend ist festzuhalten, dass Photoperiodik, speziell die abso- lute Tageslichtlänge, genetisch fixierter Auslöser für die Fortpflanzung ist, und dass die Plastizität der Tragzeit unterstützend auf die erfolgreiche Verbreitung der Wiederkäuer in höheren Breitengraden wirkte. A dataset on 110 wild ruminant species kept in captivity in temperate-zone zoos was used to describe their reproductive patterns quantitatively (determining the birth peak breadth BPB as the number of days in which 80% of all births occur); then this pattern was linked to various biological characteristics, and compared with free-ranging animals. Globally, latitude of natural origin highly correlates with BPB observed in captivity, with species being more seasonal originating from higher latitudes. -
World's Most Endangered Primates
Primates in Peril The World’s 25 Most Endangered Primates 2016–2018 Edited by Christoph Schwitzer, Russell A. Mittermeier, Anthony B. Rylands, Federica Chiozza, Elizabeth A. Williamson, Elizabeth J. Macfie, Janette Wallis and Alison Cotton Illustrations by Stephen D. Nash IUCN SSC Primate Specialist Group (PSG) International Primatological Society (IPS) Conservation International (CI) Bristol Zoological Society (BZS) Published by: IUCN SSC Primate Specialist Group (PSG), International Primatological Society (IPS), Conservation International (CI), Bristol Zoological Society (BZS) Copyright: ©2017 Conservation International All rights reserved. No part of this report may be reproduced in any form or by any means without permission in writing from the publisher. Inquiries to the publisher should be directed to the following address: Russell A. Mittermeier, Chair, IUCN SSC Primate Specialist Group, Conservation International, 2011 Crystal Drive, Suite 500, Arlington, VA 22202, USA. Citation (report): Schwitzer, C., Mittermeier, R.A., Rylands, A.B., Chiozza, F., Williamson, E.A., Macfie, E.J., Wallis, J. and Cotton, A. (eds.). 2017. Primates in Peril: The World’s 25 Most Endangered Primates 2016–2018. IUCN SSC Primate Specialist Group (PSG), International Primatological Society (IPS), Conservation International (CI), and Bristol Zoological Society, Arlington, VA. 99 pp. Citation (species): Salmona, J., Patel, E.R., Chikhi, L. and Banks, M.A. 2017. Propithecus perrieri (Lavauden, 1931). In: C. Schwitzer, R.A. Mittermeier, A.B. Rylands, F. Chiozza, E.A. Williamson, E.J. Macfie, J. Wallis and A. Cotton (eds.), Primates in Peril: The World’s 25 Most Endangered Primates 2016–2018, pp. 40-43. IUCN SSC Primate Specialist Group (PSG), International Primatological Society (IPS), Conservation International (CI), and Bristol Zoological Society, Arlington, VA. -
Dry Forest Trees of Madagascar
The Red List of Dry Forest Trees of Madagascar Emily Beech, Malin Rivers, Sylvie Andriambololonera, Faranirina Lantoarisoa, Helene Ralimanana, Solofo Rakotoarisoa, Aro Vonjy Ramarosandratana, Megan Barstow, Katharine Davies, Ryan Hills, Kate Marfleet & Vololoniaina Jeannoda Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK. © 2020 Botanic Gardens Conservation International ISBN-10: 978-1-905164-75-2 ISBN-13: 978-1-905164-75-2 Reproduction of any part of the publication for educational, conservation and other non-profit purposes is authorized without prior permission from the copyright holder, provided that the source is fully acknowledged. Reproduction for resale or other commercial purposes is prohibited without prior written permission from the copyright holder. Recommended citation: Beech, E., Rivers, M., Andriambololonera, S., Lantoarisoa, F., Ralimanana, H., Rakotoarisoa, S., Ramarosandratana, A.V., Barstow, M., Davies, K., Hills, BOTANIC GARDENS CONSERVATION INTERNATIONAL (BGCI) R., Marfleet, K. and Jeannoda, V. (2020). Red List of is the world’s largest plant conservation network, comprising more than Dry Forest Trees of Madagascar. BGCI. Richmond, UK. 500 botanic gardens in over 100 countries, and provides the secretariat to AUTHORS the IUCN/SSC Global Tree Specialist Group. BGCI was established in 1987 Sylvie Andriambololonera and and is a registered charity with offices in the UK, US, China and Kenya. Faranirina Lantoarisoa: Missouri Botanical Garden Madagascar Program Helene Ralimanana and Solofo Rakotoarisoa: Kew Madagascar Conservation Centre Aro Vonjy Ramarosandratana: University of Antananarivo (Plant Biology and Ecology Department) THE IUCN/SSC GLOBAL TREE SPECIALIST GROUP (GTSG) forms part of the Species Survival Commission’s network of over 7,000 Emily Beech, Megan Barstow, Katharine Davies, Ryan Hills, Kate Marfleet and Malin Rivers: BGCI volunteers working to stop the loss of plants, animals and their habitats. -
SILVERY GIBBON PROJECT Newsletterthe Page 1 September 2013 SILVERY GIBBON PROJECT
SILVERY GIBBON PROJECT NEWSLETTERThe Page 1 September 2013 SILVERY GIBBON PROJECT PO BOX 335 COMO 6952 WESTERN AUSTRALIA Website: www.silvery.org.au E-mail: [email protected] Phone: 0438992325 September 2013 Agile Gibbons, Siamangs, Sunbears, Clouded Leopards and even Sumatran Tigers, the area lies PRESIDENT’S REPORT adjacent to a larger protected forest and is also the location of Kalaweit Conservation Centre. We Dear Members and Friends hope to be able to provide additional support to this important project into the future. Keep an eye We are excited to report that the release of on our Facebook page for updates on camera trap Sadewa and Kiki in June went very well and they images from Supayang. continue to thrive in the forest. They are proving a little challenging for the monitoring team to keep Back in Perth, the SGP team is gearing up for our up with but thanks to their morning call the team Art Auction which will be held on October 26. are still able to locate them most days. Please Once again we have secured some amazing read the update on their release on page 4. pieces and the generosity of artists is truly inspiring. Be sure to get your tickets early as this event may sell out. We also have some exciting projects underway with Wildlife Asia. You can find out more about our crowd funding project on page 5. It was certainly an honour to be present at the release, which was the culmination of many years hard work for the Java Gibbon Centre (JGC) team. -
Estrous Cycle in Equine and Camels
Prepared by- Dr. S. K. Sheetal Assistant Professor cum Jr. Scientist Department of Veterinary Gynaecology and Obstetrics, Bihar Veterinary College, Bihar Animal Sciences University, Patna-800014 1 Estrous Cycle of Mare 2 Terminology "Estrous" or Ostrous refers to the entire cycle. "Estrus" or Oestrus refers to the "heat" stage of that cycle when the mare is receptive to the stallion "Diestrus" (diœstrus) Period in between the estrus phases when the mare is not receptive to the stallion "Anestrus" (anœstrus) Compete absence of estrus. Long Day Breeder The mare is a "seasonally polyestrus" animal undergoes regular estrus cycles during a portion of the year (late spring, summer and early fall) Not in winter. This is nature's way of preventing the arrival of a foal during bad weather. 3 Signs of Estrus • Vulva become large and swollen, scarlet or orange colour, wet, glossy, covered with mucous. • Labial folds Loose • Vaginal mucosa highly vascular • Tail raised. • Urine expelled in small amount frequently • Clitoris is exposed by prolonged rhythmic contraction Known as Winking of clitoris • Ovulatory Cycle 21 days • Luteal phase= 14 days • Follicular or estrous phase = 7 days 4 Long Duration Estrus in Mare It may be due to Ovary surrounded by serous coat and takes longer time for migration of follicles to reach the ovulation fossa to rupture. Preovulatory follicle requires longer time to reach maximal size (due to less sensitiveness of ovary with exogenous FSH) Low level of LH delays ovulation 5 Ovulation • Most ovulations days 3, 4,or 5 of estrus, 24 to 48 hours before the end of behavioral estrus • Time of ovulation is more closely related to the end than to the onset of estrus. -
F I N a L CS1 31012007.Indd
MADAGASCAR CONSERVATION & DEVELOPMENT VOLUME 1 | ISSUE 1 — DECEMBER 2006 PAGE 4 FLAGSHIPSPECIES Lemurs - Ambassadors for Madagascar Urs Thalmann I, II Anthropological Institute University Zurich-Irchel Winterthurerstrasse 190 CH–8057 Zurich, Switzerland Phone: +41 44 6354192 Fax: +41-44-635 68 04 E-mail: [email protected] ABSTRACT animal order in Madagascar (8.1 genera/order) than on other In this short article on lemurs I give a concise introduction for continents. One order of Malagasy mammals, Bibymalagasia, is non-specialists to these conspicuous and unique animals on entirely restricted to Madagascar and went extinct only relative the island of Madagascar. recently (MacPhee 1994) along with artiodactyle pygmy hippos and other large vertebrates (Burney 2004). Within Malagasy INTRODUCTION mammals, the mammal order primates clearly stands out with Madagascar has long been known for its exquisite wildlife. It the endemic lemurs. The lemurs are the most diverse mammal has been identified as a Megadiversity country and “Hottest group on the generic level, and Madagascar is the only place Hotspot” for biodiversity conservation (Meyers et al. 2000 where primates genera are the dominant group overall. On a Mittermeier et al. 2005) due to the combination of extraordinary global scale primates rank 5th behind rodents, bats, carnivores, high diversity and extreme degree of threat. Lemurs, a natural and even - toed hoofed mammals. group of primates endemic to Madagascar, are possibly the most conspicuous and most widely known wildlife of Madagascar. In MADAGASCAR: A HOTSPOT FOR CONSERVATION this article, written for a non-specialist audience, I try to situ- A biodiversity hotspot is a region that contains at least 0.5 % ate these mammals in a wider context to shed light on (i) their (or 1,500) of the world’s 300,000 plant species as endemics and biological position and diversity, (ii) some biological pecularities, has lost 70 % or more of its primary vegetation. -
Chapter One: Introduction
Nocturnal Adventures Curriculum Manual 2013 Updated by Kimberly Mosgrove 3/28/2013 1 TABLE OF CONTENTS CHAPTER 1: INTRODUCTION……………………………………….……….…………………… pp. 3-4 CHAPTER 2: THE NUTS AND BOLTS………………………………………….……………….pp. 5-10 CHAPTER 3: POLICIES…………………………………………………………………………………….p. 11 CHAPTER 4: EMERGENCY PROCEDURES……………..……………………….………….pp. 12-13 CHAPTER 5: GENERAL PROGRAM INFORMATION………………………….………..pp.14-17 CHAPTER 6: OVERNIGHT TOURS I - Animal Adaptations………………………….pp. 18-50 CHAPTER 7: OVERNIGHT TOURS II - Sleep with the Manatees………..………pp. 51-81 CHAPTER 8: OVERNIGHT TOURS III - Wolf Woods…………….………….….….pp. 82-127 CHAPTER 9: MORNING TOURS…………………………………………………………….pp.128-130 Updated by Kimberly Mosgrove 3/28/2013 2 CHAPTER ONE: INTRODUCTION What is the Nocturnal Adventures program? The Cincinnati Zoo and Botanical Garden’s Education Department offers a unique look at our zoo—the zoo at night. We offer three sequential overnight programs designed to build upon students’ understanding of the natural world. Within these programs, we strive to combine learning with curiosity, passion with dedication, and advocacy with perspective. By sharing our knowledge of, and excitement about, environmental education, we hope to create quality experiences that foster a sense of wonder, share knowledge, and advocate active involvement with wildlife and wild places. Overnight experiences offer a deeper and more profound look at what a zoo really is. The children involved have time to process what they experience, while encountering firsthand the wonderful relationships people can have with wild animals and wild places. The program offers three special adventures: Animal Adaptations, Wolf Woods, and Sleep with the Manatees, including several specialty programs. Activities range from a guided tour of zoo buildings and grounds (including a peek behind-the-scenes), to educational games, animal demonstrations, late night hikes, and presentations of bio-facts. -
Primate Group Size and Interpreting Socioecological Models: Do Folivores Really Play by Different Rules?
Evolutionary Anthropology 16:94–106 (2007) ARTICLES Primate Group Size and Interpreting Socioecological Models: Do Folivores Really Play by Different Rules? TAMAINI V. SNAITH AND COLIN A. CHAPMAN Because primates display such remarkable diversity, they are an ideal taxon tion and group size. We conclude by within which to examine the evolutionary significance of group living and the ec- suggesting future refinements of both ological factors responsible for variation in social organization. However, as with empirical inquiry and theoretical any social vertebrate, the ecological determinants of primate social variability models that we hope will improve are not easily identified. Interspecific variation in group size and social organiza- our ability to adequately characterize tion results from the compromises required to accommodate the associative and the competitive regime and social or- dissociative forces of many factors, including predation,1–3 conspecific harass- ganization of folivorous primates. ment and infanticide,4–6 foraging competition1,7 and cooperation,8 dominance interactions,9 reproductive strategies, and socialization.10–12 Causative explana- tions have emerged primarily through the construction of theoretical models that EXPLANATORY MODELS OF organize the observed variation in primate social organization and group size rel- PRIMATE SOCIAL ORGANIZATION ative to measurable ecological variation.1,2,13–16 Early assessments of primate soci- oecology relied primarily on correla- In the first portion of this paper, tional analyses to examine the rela- Tamaini Snaith is a Ph.D. candidate in we take a historical perspective, Biology and Anthropology at McGill Uni- tionships between ecological and versity in Montreal. Her research has reviewing the development of exist- social variation, and generally cate- dealt with the behavior, ecology, and con- ing models of primate socioecology. -
Architecture Végétative Et Structures Inflorescentielles Chez Les Didiereaceae De Madagascar
Beitr. Biol. Pflanzen 61, 381 - 400 Architecture végétative et structures inflorescentielles chez les Didiereaceae de Madagascar Par GEORGESCREMERS * et YVES SELL* * (Avec 7 figures) Reçu le 21 Novembre 1985 Zusammenf assuiig Der vegetative Aufbau der Didiereaceen erscheint als sehr mannigfaltig, da sich die 8 untersuchten Arten, 4 Modellen (denen von CORNER,von LEEUWENBERG,von KORmA, und von CHAMPAGNAT)zuordnen lassen, während die komplexe Organisation zweier weiterer Arten nicht einem der zur Zeit beschriebenen Modelle zugeordnet werden konnte. Andererseits ist bei den durch Kurztriebe hervorgebrachten Infloreszenzstrukturen der Thyrsus die fundamentale Blüheinheit. Dieser ist geschlossen (monotel, 4 Arten) oder offen (polytel oder trunkat-monotel? 2 Arten); seine Aggregation in eine dolden- artige, mehr oder weniger bliitenarme Infloreszenz wird bei 5 Arten beobachtet. Das sukzessive Aufblühen, von den ruhenden, ganz an der Basis der Kurztriebe gelegenen Knospen bedingt, wurde bei 7 Arten festgestellt. Abstract The vegetative organization of Didiereaceae seems highly diverse, since of the 8 species studied, 4 models (those of CORNER,LEEUWENBERG, KORIBA and CHAMPAGNAT) were identified, but the complex organization of 2 did not correspond to any of the models so far described. As regards the inflorescence structures established by the short shoots, thyrse is the main flowering unit. It can be either definite (monotelic, 4 species) or indefinite (polytelic or truncate-monotelic?, 2 species), and in 5 species it forms an ombel-like cluster more or less poor in flowers. Gradual flowering, due to rest buds at the very bases of the short shoots, is encountered in 7 species. * Centre ORSTOM, BP 165, 93 323 Cayenne; Guyane Francaise. ** Institut de Botanique, 28 rue Goethe, 67 O00 Strasbourg.