Carbon Footprint: Exploring the UK's Contribution to Climate Change

Total Page:16

File Type:pdf, Size:1020Kb

Carbon Footprint: Exploring the UK's Contribution to Climate Change WWF is an independent conservation organisation, with over 5 million supporters and a global network active in over 100 countries. WWF's mission is to stop the degradation of the Earth's natural environment and to build a future in which humans live in harmony with nature, by conserving the world's biological diversity, ensuring that the use of renewable natural resources is sustainable, and promoting the reduction of pollution and wasteful consumption. WWF-UK The Living Planet Centre Rufford House, Brewery Rd, Woking GU21 4LL, United Kingdom Sustainability Research Institute, School of Earth and Environment, University of Leeds: Dr Anne Owen, Dr Diana Ivanova, Prof John Barrett WWF: Stephen Cornelius, Angela Francis, Shirley Matheson, Gareth Redmond-King, Lucy Young Design: Jo Curnow / 1tightship.co.za Front cover photo: © Germund Sellgren / WWF-Sweden Copyright Credit © Global Warming Images / WWF Back cover photo: © NicoElNino / Shutterstock CARBON FOOTPRINT: EXPLORING THE UK’S CONTRIBUTION TO CLIMATE CHANGE | MARCH 2020 EXECUTIVE SUMMARY Copyright Credit © Global Warming Images / WWF III In this report we examine the UK greenhouse gas (GHG) emissions between 1990 and 2016 using a new 15 trade-region global multi-regional input output (MRIO) model database (“WWF-UKMRIO”) developed by researchers from the University of Leeds. We examine the territorial-, production- and consumption-based GHG emissions in the UK and their development between 1990 and 2016. This report aims to contribute to a body of literature exploring the trade-linked UK carbon footprint1. The new WWF model outputs compare well with those from the four trade-region MIRO database used to produce the 1997-2016 carbon footprint for the UK Government2. As our dataset runs from 1990 to 2016, comparisons between the UK carbon footprint and the reported UK territorial emissions decline can now be made. The finer disaggregation of world regions in the WWF- UKMIRO model allows for new insights into the origin of the UK’s carbon footprint. MAIN RESULTS Between 1990 and 2016 the UK reported a 41% reduction in greenhouse gas emissions within the UK’s national borders.3 While this measures progress towards the UK’s domestic and international climate targets it does not reflect the full contribution of UK-based consumption to climate change. Between 1990 and 2016 the UK’s consumption-based emissions (carbon footprint) declined by 15%.4 The marked difference to the territorial figure is due to the large share of emissions relating to goods and services imported from overseas. The difference, therefore, implies that while the UK has made progress to reduce its contribution to climate change, it is not as substantial as claimed (fig ES1). Figure ES1: UK consumption, and production emissions (in million tonnes of carbon dioxide equivalent) calculated using the WWF- UKMRIO database and UK territorial emissions 1990-2016 1 Your carbon footprint is the total amount of greenhouse gas released in the production and consumption of all the goods and services you use, wherever in the world they are produced. The UK carbon footprint sums up the consumption demands of everyone living in the UK. 2 https://www.gov.uk/government/statistics/uks-carbon-footprint 3 National GHG inventories monitor territorial emissions, considering emission embedded in imports is outside this metric. 4 Consumption-based accounting of GHG emissions reassigns global emissions to the point of consumption rather than production. The consumption-based GHG account for the UK is the sum of the emissions emitted to meet final demand consumption by UK households and government. CARBON FOOTPRINT: EXPLORING THE UK’S CONTRIBUTION TO CLIMATE CHANGE | MARCH 2020 In 2016, 54% of the UK’s carbon footprint was domestically sourced with the remaining 46% coming from emissions released overseas to satisfy UK consumption. The overseas proportion of the UK’s carbon footprint increased substantially – from just 14% in 1990 – thus reducing the scope of UK climate policy to affect emissions associated with consumption. UK-based consumption drives emissions across the globe (fig ES2). The biggest six regions/countries with their percentage of the overall UK carbon footprint are: the EU (9.9%), China (7.3%), Africa (5.3%)5, the Middle East (5.3%), the USA (3.6%), and Russia (3.1%). Imported emissions are mostly associated with manufactured goods such as processed food, clothes and electronics. Figure ES2: UK emissions from territorial, production and consumption in 2016. Measured in MtCO₂e. Numbers may not add due to rounding to nearest million tonnes. In 2016, six sectors contributed to almost half (46%) of the UK’s carbon footprint – these emissions are a combination of those arising domestically and from emissions released overseas to satisfy UK consumption. The biggest six sectors and their contribution to the UK carbon footprint are: heating homes (9.7%), car fuel (8.6%), electricity (8%), construction (6.7%), agriculture (6.6%) and air travel (5.9%)6. The largest three of these are associated with sectors which are expected to fully decarbonise domestically by 2050 under the UK Committee on Climate Change’s pathway to decarbonisation. A greater understanding of impacts of UK decarbonisation on these and other sectors will better inform both national and international sustainability policies. Air travel saw the greatest percentage increase in carbon footprint between 1990 and 2016 – up 245%, from 19 to 47 million tonnes of carbon dioxide equivalent (MtCO₂e). At present these carbon dioxide emissions are monitored by airlines as part of a UN aviation scheme which aims to ensure any rise in aviation is offset elsewhere. International aviation does not form part of UK net-zero targets under the Climate Change Act. This means the UK government has not formally recognised that we need to take responsibility for our aviation footprint. 5 The Africa figure is a summation of the WWF-UKMRIO model regions “South Africa” and “Rest of Africa”. 6 The six sectors with identifier in the underlying database are: (107) Direct home heating, (108) Direct transport fuel, (52) Electricity, transmission and distribution, (58) Construction, (1) Products of agriculture, hunting and related services, and (65) Air transport services. V The carbon footprint from construction increased from 49 to 54 MtCO₂e between 1990 and 2016. Over that period emissions originating in the UK decreased from 36 MtCO₂e (74% of the total) to 28 MtCO₂e (52%) suggesting a trend of significant and increasing offshoring of emissions. IMPLICATIONS AND RECOMMENDATIONS OFFSHORING The UK has expressed a commitment to end its contribution to climate change through the territorial net-zero emissions target in the Climate Change Act. However, the UK has been deindustrialising and increasing the proportion of food it imports which have offshored the production and associated emissions for many goods we rely on. This new work unpacks the dynamics of such offshoring and shows that nearly half of the UK’s carbon footprint is from emissions released overseas and so are not covered by national emission reporting and are not targeted by domestic climate policy. Better understanding the implications of UK decarbonisation to offshoring production and associated emissions will help identify additional policies and partnerships the Government should pursue to ensure domestic efforts do indeed help end the UK’s contribution to climate change. CARBON FOOTPRINT Consumption-based accounting – or carbon footprint – can help connect UK national policy actions to global emission reduction and not only reductions within our national borders. Integrating carbon footprint accounting into national climate policy provides a stronger link to climate science and global mitigation efforts. Carbon footprint is complementary to the existing framing of territorial emissions which follow agreed guidance from the Intergovernmental Panel on Climate Change (IPCC). It is important that Government strategies account for the UK carbon footprint to ensure that measures to reduce territorial emissions do not lead to an increase in global emissions. Benefits of accountability of the UK carbon footprint include: • Identifying additional strategies and policies needed to address risks of offshoring rather than reducing emissions reaching the atmosphere. For example, footprint could be addressed in policies targeting consumption patterns and more efficient use of resources, and trade. • Providing businesses and consumers with the tools to understand risks of offshoring emissions and how this relates to wider environmental footprint. Focusing policy solely at national-level decarbonisation cannot end the UK’s contribution to climate change. To do this we must also consider the carbon footprint due to UK-based consumption in policy making. CARBON FOOTPRINT: EXPLORING THE UK’S CONTRIBUTION TO CLIMATE CHANGE | MARCH 2020 Your carbon footprint is the total amount of greenhouse gas released in the production and consumption of all the goods and services you use, wherever in the world they are produced. UK CARBON FOOTPRINT The UK carbon footprint sums up the consumption demands of everyone living in the UK. CONTRIBUTION OF TOP REGIONS TO THE UK CARBON FOOTPRINT SIX SECTORS 1990 TO 2016 CONTRIBUTE AROUND HALF OF 9.9% 7.3% 1200 AFRICA THE UK CARBON FOOTPRINT EU CHINA e) 5.3% 801 9.7% 8.6% 800 HEATING HOMES CAR FUEL MIDDLE 473 EAST 3.6% 5.3% USA 8.0% 6.7% 400 ELECTRICITY CONSTRUCTION Greenhouse gas emissions (MtCO 0 RUSSIA missions
Recommended publications
  • Default Emissions from Biofuels
    Definition of input data to assess GHG default emissions from biofuels in EU legislation Version 1c - July 2017 Edwards, R. Padella, M. Giuntoli, J. Koeble, R. O’Connell, A. Bulgheroni, C. Marelli, L. 2017 EUR 28349 EN This publication is a Science for Policy report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. JRC Science Hub https://ec.europa.eu/jrc JRC104483 EUR 28349 EN PDF ISBN 978-92-79-64617-1 ISSN 1831-9424 doi:10.2790/658143 Print ISBN 978-92-79-64616-4 ISSN 1018-5593 doi:10.2790/22354 Luxembourg: Publications Office of the European Union, 2017 © European Union, 2017 The reuse of the document is authorised, provided the source is acknowledged and the original meaning or message of the texts are not distorted. The European Commission shall not be held liable for any consequences stemming from the reuse. How to cite this report: Edwards, R., Padella, M., Giuntoli, J., Koeble, R., O’Connell, A., Bulgheroni, C., Marelli, L., Definition of input data to assess GHG default emissions from biofuels in EU legislation, Version 1c – July 2017 , EUR28349 EN, doi: 10.2790/658143 All images © European Union 2017 Title Definition of input data to assess GHG default emissions from biofuels in EU legislation, Version 1c – July 2017 Abstract The Renewable Energy Directive (RED) (2009/28/EC) and the Fuel Quality Directive (FQD) (2009/30/EC), amended in 2015 by Directive (EU) 2015/1513 (so called ‘ILUC Directive’), fix a minimum requirement for greenhouse gas (GHG) savings for biofuels and bioliquids for the period until 2020, and set the rules for calculating the greenhouse impact of biofuels, bioliquids and their fossil fuels comparators.
    [Show full text]
  • IFC Carbon Neutrality Committment Factsheet
    Carbon Neutral Commitment for IFC’s Own Operations IFC, along with the World Bank, are committed to making our internal business operations carbon neutral by: IFC’s Carbon Neutrality 1. Calculating greenhouse gas (GHG) emissions from our operations Commitment is an integral 2. Reducing carbon emissions through both familiar and innovative conservation measures part of IFC's corporate 3. Purchasing carbon offsets to balance our remaining internal carbon footprint after our reduction efforts response to climate change. IFC’s carbon neutrality commitment encourages continual improvement towards more efficient business operations that help mitigate climate change. It is also consistent with IFC’s strategy of guiding our investment work to address climate change and ensure environmental and social sustainability of projects that IFC finances. This factsheet focuses on the carbon footprint of our internal operations rather than the footprint of IFC’s portfolio. IFC uses the ‘operational control approach’ for setting its CALCULATING OUR GHG EMISSIONS organizational boundaries for its GHG inventory. Emissions are included from all locations for which IFC has direct control over IFC has calculated the annual GHG emissions for its internal business operations, and where it can influence decisions that impact GHG operations for headquarters in Washington, D.C. since 2006, and for emissions. IFC’s global operations since 2008 including global business travel. IFC’s annual GHG inventory includes the following sources of The methodology IFC formally used is based on the Greenhouse Gas GHG emissions from IFC’s leased and owned facilities and air Protocol Initiative (GHG Protocol), an internationally recognized GHG travel: accounting and reporting standard.
    [Show full text]
  • Carbon Emission Reduction—Carbon Tax, Carbon Trading, and Carbon Offset
    energies Editorial Carbon Emission Reduction—Carbon Tax, Carbon Trading, and Carbon Offset Wen-Hsien Tsai Department of Business Administration, National Central University, Jhongli, Taoyuan 32001, Taiwan; [email protected]; Tel.: +886-3-426-7247 Received: 29 October 2020; Accepted: 19 November 2020; Published: 23 November 2020 1. Introduction The Paris Agreement was signed by 195 nations in December 2015 to strengthen the global response to the threat of climate change following the 1992 United Nations Framework Convention on Climate Change (UNFCC) and the 1997 Kyoto Protocol. In Article 2 of the Paris Agreement, the increase in the global average temperature is anticipated to be held to well below 2 ◦C above pre-industrial levels, and efforts are being employed to limit the temperature increase to 1.5 ◦C. The United States Environmental Protection Agency (EPA) provides information on emissions of the main greenhouse gases. It shows that about 81% of the totally emitted greenhouse gases were carbon dioxide (CO2), 10% methane, and 7% nitrous oxide in 2018. Therefore, carbon dioxide (CO2) emissions (or carbon emissions) are the most important cause of global warming. The United Nations has made efforts to reduce greenhouse gas emissions or mitigate their effect. In Article 6 of the Paris Agreement, three cooperative approaches that countries can take in attaining the goal of their carbon emission reduction are described, including direct bilateral cooperation, new sustainable development mechanisms, and non-market-based approaches. The World Bank stated that there are some incentives that have been created to encourage carbon emission reduction, such as the removal of fossil fuels subsidies, the introduction of carbon pricing, the increase of energy efficiency standards, and the implementation of auctions for the lowest-cost renewable energy.
    [Show full text]
  • The Carbon Footprint of Global Trade Tackling Emissions from International Freight Transport
    The Carbon Footprint of Global Trade Tackling Emissions from International Freight Transport 1 International Transport Forum: Global dialogue for better transport Growing concern Projected increase of CO2 emissions from trade-related international freight CO2 emissions om eight = 30% 7% of all transport-related of global CO2 emissions from fuel CO2 emissions combustion The issue CO2 emissions from global freight transport are set to increase fourfold Growth in international trade has been more empty runs and increased demand for rapid, characterised by globalisation and the associated energy-intensive transport such as air freight. As geographical fragmentation of international freight transport — whether by air, land or sea — production processes. Supply chains have become relies heavily on fossil fuel for propulsion and is longer and more complex, as logistics networks link still a long way from being able to switch to cleaner more and more economic centres across oceans energy sources, it is one of the hardest sectors to and continents. Changing consumer preferences decarbonise. and new manufacturing requirements also affect international trade and thus shape freight patterns. The long-term impact of global trade on carbon This has led to more frequent and smaller freight dioxide (CO2) emissions has been largely ignored. shipments and, as a result, to less full containers, International trade contributes to global CO2 2 8132 Mt CO2 emissions 2108 Mt om eight = 30% 7% of all transport-related of global CO2 emissions from fuel CO2 emissions combustion Freight Freight 2010 2050 The issue CO2 emissions from global freight transport are set to increase fourfold emissions mainly through freight transport.
    [Show full text]
  • The Carbon Footprint of Domestic Water Use in the Huron River Watershed
    The Carbon Footprint of Domestic Water Use in the Huron River Watershed Introduction A significant amount of energy enables our daily use of water. Whenever water is moved uphill, treated, heated, cooled, or pressurized, energy is needed. Most energy production emits carbon dioxide (CO2), which contributes to global warming. Therefore, water use is another, often overlooked, contributor to our individual and collective carbon footprint. Better decisions related to water treatment and use can help reduce the amount of energy used throughout the water use cycle. By focusing on water conservation, efficiency, and reuse, we can minimize energy use, reduce the associated carbon footprint, and protect our freshwater resources. The Huron River Watershed As more people move to cities, the demand on municipal water supplies will grow. In some cities the cost of energy The watershed of the Huron River encompasses over to pump, treat, and deliver water to consumers already 900 square miles of Southeast Michigan. The river itself is around 60% of a city’s energy bill.v Fifty percent of the flows more than 125 miles from its source near Big Lake in total energy consumed by the City of Ann Arbor goes to Springfield Township, to its outlet at Pointe Mouillee in Lake drinking water and wastewater treatment. Both the costs Erie. The watershed contains all or parts of seven counties: Oakland, Livingston, Ingham, Jackson, Washtenaw, Wayne, and and energy required to provide clean and reliable water Monroe, and is home to more than a half million residents. will continue to increase as demand grows. Also, higher The communities of the watershed have access to an abun- regulatory standards are expected for both drinking water dance of freshwater.
    [Show full text]
  • C H a P T E R Iv
    CHAPTER IV Moving forward: youth taking action and making a difference The combined acumen and involvement of all individuals, from regular citizens to scientific experts, will be needed as the world moves forward in implementing climate change miti- gation and adaptation measures and promot- ing sustainable development. Young people must be prepared to play a key role within this context, as they are the ones who will live to R IV experience the long-term impact of today’s crucial decisions. TE The present chapter focuses on the partici- pation of young people in addressing climate change. It begins with a review of the various mechanisms for youth involvement in environ- HAP mental advocacy within the United Nations C system. A framework comprising progressive levels of participation is then presented, and concrete examples are provided of youth in- volvement in climate change efforts around the globe at each of these levels. The role of youth organizations and obstacles to partici- pation are also examined. PROMOTING YOUTH ture. In addition to their intellectual contribution and their ability to mobilize support, they bring parTICipaTION WITHIN unique perspectives that need to be taken into account” (United Nations, 1995, para. 104). THE UNITED NATIONS The United Nations has long recognized the Box IV.1 importance of youth participation in decision- making and global policy development. Envi- The World Programme of ronmental issues have been assigned priority in Action for Youth on the recent decades, and a number of mechanisms importance of participation have been established within the system that The World Programme of Action for enables youth representatives to contribute to Youth recognizes that the active en- climate change deliberations.
    [Show full text]
  • Climate Change: a Real Threat to Our Future
    Appendix 1 Climate Change: a real threat to our future MEDWAY YOUTH COUNCIL ANNUAL YOUTH CONFERENCE REPORT 2019 TEL: 01634 338748 WEB: medwayyouthcouncil.co.uk MAY 22 TWITTER: @MYC_Medway FACEBOOK: Medway Youth Council COMPANY NAME INSTAGRAM: Authored by: Your Name medway_youth_council YOU MAY NOT HAVE THE VOTE, BUT YOU DO HAVE A VOICE Appendix 1 This report aims to outline the findings and recommendations of Medway Youth Council’s Annual Conference 2019 ‘Climate Change: A Real Threat to Our Future’ Opening from Anna McGovern Medway Youth Council Chair. Climate change is one of the most pressing issues we face as a global populace, with this particularly being more profound to young people being the future generation of adults in society. This was what ignited the inspiration behind our Annual Conference for 2019. Young people from across Medway, representing their schools, were invited to attend our Annual Conference, which ran from 9:00 to 15:00 at MidKent College, Gillingham. The day was segmented into three workshops, each tackling an issue within climate change on a local and national scale, followed by a Q&A panel delivered by climate change professionals in the afternoon. The aim of the Conference was to educate young people on the key topics within climate change, and to show them how even small changes in their everyday lifestyle could make a massive difference towards this cause. Following the Conference, myself and our Workshop Leads have developed this Conference report which is to highlight the key findings of our Conference, to publicise young people’s views towards climate change, and to set out our action points based on the findings on our Conference for us to deliver upon.
    [Show full text]
  • Greenhouse Gas Emissions from Cultivation of Plants Used for Biofuel Production in Poland
    atmosphere Article Greenhouse Gas Emissions from Cultivation of Plants Used for Biofuel Production in Poland Paweł Wi´sniewski* and Mariusz Kistowski Department of Landscape Research and Environmental Management, Faculty of Oceanography and Geography, University of Gdansk, Ba˙zy´nskiego4, 80309 Gda´nsk,Poland; [email protected] * Correspondence: [email protected] Received: 29 February 2020; Accepted: 14 April 2020; Published: 16 April 2020 Abstract: A reduction of greenhouse gas (GHG) emissions as well as an increase in the share of renewable energy are the main objectives of EU energy policy. In Poland, biofuels play an important role in the structure of obtaining energy from renewable sources. In the case of biofuels obtained from agricultural raw materials, one of the significant components of emissions generated in their full life cycle is emissions from the cultivation stage. The aim of the study is to estimate and recognize the structure of GHG emission from biomass production in selected farms in Poland. For this purpose, the methodology that was recommended by the Polish certification system of sustainable biofuels and bioliquids production, as approved by the European Commission, was used. The calculated emission values vary between 41.5 kg CO2eq/t and 147.2 kg CO2eq/t dry matter. The highest average emissions were obtained for wheat (103.6 kg CO2eq/t), followed by maize (100.5 kg CO2eq/t), triticale (95.4 kg CO2eq/t), and rye (72.5 kg CO2eq/t). The greatest impact on the total GHG emissions from biomass production is caused by field emissions of nitrous oxide and emissions from the production and transport of fertilizers and agrochemicals.
    [Show full text]
  • The European Green Deal: Bring Back the New », OFCE Policy Brief 63, January 28
    policy brief 63 28 January 2020 THE EUROPEAN GREEN DEAL Bring back the new Éloi Laurent Sciences Po, OFCE On December 11 2019, the European Commission released a communication outlining a blueprint for a “European Green Deal”. To clarify its scope and limits, this Policy brief offers a critical examination of the main concepts that underpin and frame it: carbon neutrality, decoupling, resource efficiency, inclu- sive growth and just transition. This review leads to five recommendations for European authorities with a view to improving the relevance and consistency of the “Green Deal”: ■ Begin now a review of the complementarity and the adequacy to current objectives of EU's climate mitigation instruments (regulations, EU ETS, carbon taxation), revise them if necessary and then set the new EU climate targets; ■ Aim for a net decoupling (taking greenhouse gas consumption emissions, not production emissions, as a reference) and promote on this basis and other equity criteria a new global collective climate justice strategy – under- stood as the fair distribution of mitigation efforts – with a view to giving substance to the Paris Agreement (2015) when it is revised at COP 26 in Glasgow in November 2020; ■ Aim for a reduction in the consumption of natural resources taking into account the global material footprint of the European Union and begin now a reflection on the compatibility of this reduction in volumes consumed and extracted and the acceleration of the digital transition on the continent; ■ Define as a benchmark for the decoupling
    [Show full text]
  • [Interview] – Political Critique 28/07/16 11:34 Pm
    Reviving the best traditions [Interview] – Political Critique 28/07/16 11:34 pm World Reviving the best traditions [Interview] ADAM ČAJKA 3 days ago Indian activist Ashish Kothari speaks about environmentalism in India and the impact it has both locally and globally. Photo by Shruti Ajit Adam Čajka: What does your work involve? Ashish Kothari: I work with an environmental organisation called Kalpavriksh. It´s a 37-year-old NGO which I helped to start when I was in school. We do a lot of work on environment- development conflicts, supporting communities that are http://politicalcritique.org/world/2016/reviving-the-best-traditions-interview/ Page 1 of 22 Reviving the best traditions [Interview] – Political Critique 28/07/16 11:34 pm struggling against destructive development projects and which are also trying to construct alternative ways of meeting their needs in more sustainable and equitable ways. Broadly, it´s about what we can call “well-being”. Some of us have developed a framework of human well-being called “Radical Ecological Democracy”. It is an evolving framework of governance in which each person and community has access to the decision-making forums of relevance to them, and in which the decisions taken are infused with ecological and cultural sensitivity, and socio-economic equity. ␣ Ashish Kothari I am also associated with Kothari is an Indian several other organisations: I environmental activist. He is one am chairing the board of of the founders of Kalpavriksh, an environmental and social NGO Greenpeace India and used to promoting ecological be on the Greenpeace sustainability and social equity.
    [Show full text]
  • Ashish Globalisation Brochure CMYK.Indd
    India’s meteoric economic rise in the last two decades has been impressive. There is however a dark side to it, hidden or ignored. Well over half its people have been left behind or negatively impacted; and there have been irreversible blows to the natural environment. Globalised development as it is today is neither ecologically sustainable nor socially equitable, and is leading India to further conflict and suffering. There are, however, a range of alternative approaches and practices, forerunners of a Radical Ecological Democracy that can take us all to higher levels of well- being, while sustaining the earth and creating greater equity. This publication begins with some key facts on the economic, social, and environmental aspects of economic globalisation in India, then provides a more detailed assessment of the environmental impacts and of alternative paths to well-being. Globalisation in India Impacts and Alternatives Contents Economy, Society and Environment in the Era of Globalisation: Some Facts 1 Environmental Impacts 5 Towards Alternatives: Radical Ecological Democracy 11 Economy, Society and Environment in the Era of Globalisation: Some Facts State of the economy 08, the Indian government has had to intervene in the economy in a massive way in order to • The Indian economy recorded the most impressive reduce the impact of the collapse of markets after growth rates in its history during 2003-08, averaging September 2008. In 2008-09, the total fiscal stimulus 8-9% per annum. However, this performance administered to the economy by the government was was adversely affected by the great financial crisis Rs.1200 billion ($27 billion), over 2% of the GDP.7 that began in the West in 2007-08.
    [Show full text]
  • Forest Carbon Trading and Marketing in the United States1
    Forest Carbon Trading and Marketing in the United States1 Steven Ruddell2 Michael J. Walsh, PhD Murali Kanakasabai, PhD October 2006 1. Introduction During the 1992 Earth Summit convened by the United Nations Conference on Environment and Development, a rudimentary framework for a global emission trading system was presented in a “side show” in a tent. Concern over climate change was limited to a few scientists and environmentalists and the idea was received with great skepticism. The concept of emissions trading was but a theoretical chapter in economics textbooks. Fourteen years later, the situation is quite different. Market-based mechanisms such as emissions trading have become widely accepted as a cost-effective method for addressing climate change and other environmental issues. Dealing with environmental issues is quickly moving out of the confines of corporate environmental departments into the realm of corporate financial strategy. The recent results from the emerging carbon markets are encouraging. In May 2006, the World Bank reported on the global market for trading carbon dioxide (CO2 ) emissions stating that in 2005 the overall value of the global aggregated carbon market was 10 times that of 2004. The World Bank reported for the first time that markets are pricing carbon, creating the opportunity for the private sector to efficiently support investments to reduce greenhouse gas (GHG) emissions. Additionally, analysts are now describing CO2 emissions as a financial market rather than the more traditional commodity market (Capoor and Amborsi, 2006). The primary event that dramatically increased 2005 global carbon dioxide trading volume was the emergence of Phase I of the European Union Emissions Trading System3 (EU ETS) that went into affect in January 2005 to address 25 European Union country Kyoto Protocol4 GHG emission reduction targets.
    [Show full text]