Draft Surface Water Resources Report

Total Page:16

File Type:pdf, Size:1020Kb

Draft Surface Water Resources Report Lake Powell Pipeline Draft Study Report 18 Surface Water Resources March 2011 Lake Powell Pipeline 3/10/11 Draft Surface Water Resources Study Report Utah Board of Water Resources Table of Contents Page Executive Summary ES-1 Introduction ...................................................................................................................... ES-1 ES-2 Methodology .................................................................................................................... ES-1 ES-3 Key Results of the Wetlands and Riparian Resources Impact Analyses ......................... ES-1 Chapter 1 – Introduction 1.1 Introduction ............................................................................................................................ 1-1 1.2 Summary Description of Alignment Alternatives.................................................................. 1-1 1.2.1 South Alternative ................................................................................................ 1-1 1.2.2 Existing Highway Alternative ............................................................................ 1-8 1.2.3 Southeast Corner Alternative .............................................................................. 1-8 1.2.4 Transmission Line Alternatives ........................................................................ 1-10 1.3 Summary Description of No Lake Powell Water Alternative ............................................. 1-17 1.3.1 WCWCD No Lake Powell Water Alternative .................................................. 1-17 1.3.2 CICWCD No Lake Powell Water Alternative .................................................. 1-18 1.3.3 KCWCD No Lake Powell Water Alternative ................................................... 1-18 1.4 Summary Description of the No Action Alternative............................................................ 1-18 1.4.1 WCWCD No Action Alternative ...................................................................... 1-19 1.4.2 CICWCD No Action Alternative ...................................................................... 1-19 1.4.3 KCWCD No Action Alternative ....................................................................... 1-19 1.5 Impact Topics....................................................................................................................... 1-20 Chapter 2 – Methodology 2.1 Study Area ............................................................................................................................. 2-1 2.2 Streams ................................................................................................................................... 2-3 2.2.1 Existing Conditions............................................................................................. 2-3 2.2.2 Direct Effects ...................................................................................................... 2-3 2.2.2.1 Virgin River Daily Simulation Model ................................................ 2-3 2.2.2.1.1 Virgin River Daily Simulation Model Scenarios ............... 2-4 2.2.2.2 Lower Colorado River and Lake Powell Model ................................. 2-5 2.3 Reservoirs .............................................................................................................................. 2-6 2.4 Peak Flows ............................................................................................................................. 2-6 2.5 Geomorphology ..................................................................................................................... 2-7 2.6 Cumulative Effects................................................................................................................. 2-7 2.7 Study Period ........................................................................................................................... 2-7 Chapter 3 – Affected Environment 3.1 Water Regulation ................................................................................................................... 3-1 3.2 Streams ................................................................................................................................... 3-1 3.2.1 Colorado River .................................................................................................... 3-1 3.2.2 Virgin River Drainages ....................................................................................... 3-8 3.2.2.1 Virgin River at Virgin, UT ............................................................... 3-12 3.2.2.2 Virgin River Near St. George, UT ................................................... 3-15 3.2.2.3 Virgin River at Littlefield, AZ .......................................................... 3-19 3.2.2.4 Santa Clara River at St. George ........................................................ 3-22 3.2.2.5 Ash Creek ......................................................................................... 3-25 Lake Powell Pipeline TOC-i 3/10/11 Draft Surface Water Resources Study Report Utah Board of Water Resources Table of Contents (continued) Figure Number Figure Title Page 3.2.2.6 LaVerkin Creek ................................................................................ 3-26 3.2.2.7 Other Potential Affected Streams ..................................................... 3-26 3.2.3 Kane, Mohave and Coconino County Drainages .............................................. 3-26 3.2.3.1 Kanab Creek ..................................................................................... 3-28 3.2.3.2 Paria River ........................................................................................ 3-31 3.2.4 Iron County Drainages ...................................................................................... 3-33 3.2.4.1 Coal Creek Near Cedar City ............................................................. 3-35 3.3 Return Flows ........................................................................................................................ 3-38 3.4 Reservoirs ............................................................................................................................ 3-40 3.4.1 Lake Powell ...................................................................................................... 3-40 3.4.2 Quail Creek Reservoir ...................................................................................... 3-42 3.4.3 Sand Hollow Reservoir ..................................................................................... 3-44 3.4.4 Rush Lake and Quichapa Lake ......................................................................... 3-45 3.5 Peak Flows ........................................................................................................................... 3-45 3.6 Geomorphic conditions ........................................................................................................ 3-47 3.6.1 Colorado River .................................................................................................. 3-47 3.6.2 Remaining Study Area Streams ........................................................................ 3-47 3.6.2.1 Virgin River Stability........................................................................................ 3-48 3.6.2.2 Santa Clara River Stability ............................................................................... 3-48 Chapter 4 – Environmental Consequences 4.1 Significance Criteria .............................................................................................................. 4-1 4.2 Potential Impacts Eliminated From Further Analysis ............................................................ 4-1 4.3 Streams and Return Flows ..................................................................................................... 4-1 4.3.1 Colorado River .................................................................................................... 4-1 4.3.1.1 Final Planning Study (FPS) ................................................................ 4-2 4.3.1.1.1 Direct Natural Flow (DNF), ISM Results .......................... 4-4 4.3.1.1.2 Nonparametric Paleo-Conditioned (NPC) Results ............. 4-5 4.3.1.2 No Additional Depletions ................................................................... 4-5 4.3.1.2.1 Direct Natural Flow (DNF), ISM Results .......................... 4-7 4.3.1.2.2 Nonparametric Paleo-Conditioned (NPC) Results ............. 4-8 4.3.2 Virgin River Drainages ....................................................................................... 4-8 4.3.2.1 Stream Crossings .............................................................................. 4-16 4.3.3 Kane, Mohave, and Coconino County Drainages ............................................. 4-16 4.3.3.1 Return Flows .................................................................................... 4-16 4.3.3.2 Stream Crossings .............................................................................. 4-17 4.3.4 Iron County Drainages ...................................................................................... 4-18 4.4 Reservoirs ............................................................................................................................ 4-19 4.4.1 Lake Powell ...................................................................................................... 4-19 4.4.1.1 Final Planning Study (FPS) .............................................................. 4-19 4.4.1.1.1
Recommended publications
  • Relation of Sediment Load and Flood-Plain Formation to Climatic Variability, Paria River Drainage Basin, Utah and Arizona
    Relation of sediment load and flood-plain formation to climatic variability, Paria River drainage basin, Utah and Arizona JULIA B. GRAF U.S. Geological Survey, Water Resources Division, 375 S. Euclid, Tucson, Arizona 85719 ROBERT H. WEBB U.S. Geological Survey, 1675 W. Anklam Road, Tucson, Arizona 85745 RICHARD HEREFORD U.S. Geological Survey, Geologic Division, 2255 North Gemini Drive, Flagstaff, Arizona 86001 ABSTRACT sediment load for a given discharge declined fill that rises 1-5 m above the modern channel abruptly in the early 1940s in the Colorado bed. Flood-plain deposits are present in all Suspended-sediment load, flow volume, River at Grand Canyon (Daines, 1949; Howard, major tributaries of the Paria River. The area of and flood characteristics of the Paria River 1960; Thomas and others, 1960; Hereford, flood plains is slightly greater than 20 km2, and were analyzed to determine their relation to 1987a). The decline in suspended-sediment sediment volume is estimated to be about 40 climate and flood-plain alluviation between loads has been attributed to improved land use million m3 (Hereford, 1987c). Typically, flood 1923 and 1986. Flood-plain alluviation began and conservation measures initiated in the 1930s plains are not present in first-order drainage ba- about 1940 at a time of decreasing magnitude (Hadley, 1977). A change in sediment-sampler sins but are present in basins of second and and frequency of floods in winter, summer, type and in methods of analysis have been higher order where the stream channel is uncon- and fall. No floods with stages high enough to discounted as causes for the observed decrease fined and crosses nonresistant bedrock forma- inundate the flood plain have occurred since (Daines, 1949; Thomas and others, 1960).
    [Show full text]
  • Executive Summary U.S
    Glen Canyon Dam Long-Term Experimental and Management Plan Environmental Impact Statement PUBLIC DRAFT Executive Summary U.S. Department of the Interior Bureau of Reclamation, Upper Colorado Region National Park Service, Intermountain Region December 2015 Cover photo credits: Title bar: Grand Canyon National Park Grand Canyon: Grand Canyon National Park Glen Canyon Dam: T.R. Reeve High-flow experimental release: T.R. Reeve Fisherman: T. Gunn Humpback chub: Arizona Game and Fish Department Rafters: Grand Canyon National Park Glen Canyon Dam Long-Term Experimental and Management Plan December 2015 Draft Environmental Impact Statement 1 CONTENTS 2 3 4 ACRONYMS AND ABBREVIATIONS .................................................................................. vii 5 6 ES.1 Introduction ............................................................................................................ 1 7 ES.2 Proposed Federal Action ........................................................................................ 2 8 ES.2.1 Purpose of and Need for Action .............................................................. 2 9 ES.2.2 Objectives and Resource Goals of the LTEMP ....................................... 3 10 ES.3 Scope of the DEIS .................................................................................................. 6 11 ES.3.1 Affected Region and Resources .............................................................. 6 12 ES.3.2 Impact Topics Selected for Detailed Analysis ........................................ 6 13 ES.4
    [Show full text]
  • Quantifying the Base Flow of the Colorado River: Its Importance in Sustaining Perennial Flow in Northern Arizona And
    1 * This paper is under review for publication in Hydrogeology Journal as well as a chapter in my soon to be published 2 master’s thesis. 3 4 Quantifying the base flow of the Colorado River: its importance in sustaining perennial flow in northern Arizona and 5 southern Utah 6 7 Riley K. Swanson1* 8 Abraham E. Springer1 9 David K. Kreamer2 10 Benjamin W. Tobin3 11 Denielle M. Perry1 12 13 1. School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ 86011, US 14 email: [email protected] 15 2. Department of Geoscience, University of Nevada, Las Vegas, NV 89154, US 16 3. Kentucky Geological Survey, University of Kentucky, Lexington, KY 40506, US 17 *corresponding author 18 19 Abstract 20 Water in the Colorado River is known to be a highly over-allocated resource, yet decision makers fail to consider, in 21 their management efforts, one of the most important contributions to the existing water in the river, groundwater. This 22 failure may result from the contrasting results of base flow studies conducted on the amount of streamflow into the 23 Colorado River sourced from groundwater. Some studies rule out the significance of groundwater contribution, while 24 other studies show groundwater contributing the majority flow to the river. This study uses new and extant 1 25 instrumented data (not indirect methods) to quantify the base flow contribution to surface flow and highlight the 26 overlooked, substantial portion of groundwater. Ten remote sub-basins of the Colorado Plateau in southern Utah and 27 northern Arizona were examined in detail.
    [Show full text]
  • The Colorado River a NATURAL MENACE BECOMES a NATIONAL RESOURCE ' '
    The Colorado River A NATURAL MENACE BECOMES A NATIONAL RESOURCE ' ' I Comprehensive Report on the Development of ze Water Resources of the Colorado River Basin for rrigation, Power Production, and Other Beneficial Ises in Arizona, California, Colorado, Nevada, New Mexico, Utah, and Wyoming By THE UNITED STATES DEPARTMENT OF THE INTERIOR J . A . Krug, Secretary SPONSORED BY AND PREPARED UNDER THE GENERAL SUPERVISION OF THE BUREAU OF RECLAMATION Michael W. Straus, Commissioner E. A. Morit-, Director, Region 3 ; E. O. Larson, Director, Region 4 MARCH 1 946 1P 'A m 4„ M 1i'leming Library Grand Canyon Colleg P . )x 11097 Contents Page PROPOSED REPORT OF THE SECRETARY OF THE Explorations 46 INTERIOR Settlement 48 Page Population 49 Letter of June 6,1946, from the Acting Commissioner, Chapter III . DIVIDING THE WATER 53 3 Bureau of Reclamation Virgin Conditions 55 REGIONAL DIRECTORS' REPORT Early Development of the River 56 Summary of Conditions in the Early 1920's . 59 Map of Colorado River Basin Facing 9 Between the Upper and Lower Basins 59 Scope and Purpose 9 Between United States and Mexico . 66 Authority for the Report 9 DEVELOPING THE BASIN Cooperation and Acknowledgments 9 Chapter IV. 69 Description of Area 10 Upper Basin 72 Problems of the Basin 11 Labor Force 72 Water Supply 12 Land Ownership and Use 73 Division of Water 13 Soils 73 Future Development of Water Resources 13 Agriculture 73 Table I, Present and Potential Stream Depletions in Minerals and Mining 80 the Colorado River Basin 14 Lumbering 85 Potential Projects 14 Manufacturing 86 Table II, Potential Projects in the Colorado River Transportation and Markets .
    [Show full text]
  • Clear-Water Tributaries of the Colorado River in the Grand Canyon, Arizona: Stream Ecology and the Potential Impacts of Managed Flow by René E
    Clear-water tributaries of the Colorado River in the Grand Canyon, Arizona: stream ecology and the potential impacts of managed flow by René E. Henery ABSTRACT Heightened attention to the sediment budget for the Colorado River systerm in Grand Canyon Arizona, and the importance of the turbid tributaries for delivering sediment has resulted in the clear-water tributaries being overlooked by scientists and managers alike. Existing research suggests that clear-water tributaries are remnant ecosystems, offering unique biotic communities and natural flow patterns. These highly productive environments provide important spawning, rearing and foraging habitat for native fishes. Additionally, clear water tributaries provide both fish and birds with refuge from high flows and turbid conditions in the Colorado River. Current flow management in the Grand Canyon including beach building managed floods and daily flow oscillations targeting the trout population and invasive vegetation has created intense disturbance in the Colorado mainstem. This unprecedented level of disturbance in the mainstem has the potential to disrupt tributary ecology and increase pressures on native fishes. Among the most likely and potentially devastating of these pressures is the colonization of tributaries by predatory non-native species. Through focused conservation and management tributaries could play an important role in the protection of the Grand Canyon’s native fishes. INTRODUCTION More than 490 ephemeral and 40 perennial tributaries join the Colorado River in the 425 km stretch between Glen Canyon Dam and Lake Mead. Of the perennial tributaries in the Grand Canyon, only a small number including the Paria River, the Little Colorado River and Kanab Creek drain large watersheds and deliver large quantities of sediment to the Colorado River mainstem (Oberlin et al.
    [Show full text]
  • Bacteria in the Grand Canyon
    White-water Researchers Check Bacteria in the Grand Canyon Item Type Article Authors Tunnicliff, Brock; Brickler, Stan; Webster, Guy Publisher College of Agriculture, University of Arizona (Tucson, AZ) Journal Progressive Agriculture in Arizona Rights Copyright © Arizona Board of Regents. The University of Arizona. Download date 27/09/2021 20:42:41 Link to Item http://hdl.handle.net/10150/296209 White -water Researchers Check Bacteria in the Grand Canyon Using river rafts equipped as mobile laboratories is the best way to By Dr. Brock Tunnicliff test water quality in the Colorado River of the Grand Canyon. The and Dr. Stan Brickler, School sharply increased number of boat trips through the canyon since the of Renewable Natural 1960s is the main reason that testing the water there has become impor- Resources, and Guy Webster, tant. Agricultural Communications Based on two years of testing, UA School of Renewable Natural Resources researchers have made recommendations for safer use of river water by boaters. Boaters should treat water from the river and its trib- utaries before drinking it. Drinking straight from the river has been common in past seasons. Boaters also should avoid stirring up bottom sediments. The sediments contain much more bacterial contamination than does the surface water. Stirring up sediments, especially in side- stream pools, can raise the fecal bacteria count in water above the stan- dard maximum for body- contact water use. Photograph: Recreational rafts The UA researchers have explained these recommendations to navigate a stretch of the Colorado River in the lower half of the boatmen from 22 licensed commercial outfitters during National Park Grand Canyon.
    [Show full text]
  • Water Resources of Parowan Valley, Iron County, Utah
    Prepared in cooperation with the Utah Department of Natural Resources Water Resources of Parowan Valley, Iron County, Utah Scientific Investigations Report 2017–5033 U.S. Department of the Interior U.S. Geological Survey Cover photograph: Parowan Valley looking east toward the Red Cliffs. Photograph by Tom Marston, U.S. Geological Survey, November 2013. Water Resources of Parowan Valley, Iron County, Utah By Thomas M. Marston Prepared in cooperation with the Utah Department of Natural Resources Scientific Investigations Report 2017–5033 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior RYAN K. ZINKE, Secretary U.S. Geological Survey William H. Werkheiser, Acting Director U.S. Geological Survey, Reston, Virginia: 2017 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://store.usgs.gov/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Marston, T.M., 2017, Water resources of Parowan Valley, Iron County, Utah: U.S. Geological Survey Scientific
    [Show full text]
  • FISH of the COLORADO RIVER Colorado River and Tributaries Between Glen Canyon Dam and Lake Mead
    FISH OF THE COLORADO RIVER Colorado River and tributaries between Glen Canyon Dam and Lake Mead ON-LINE TRAINING: DRAFT Outline: • Colorado River • Glen Canyon Dam Adaptive Management Program (GCDAMP) • Native Fishes • Common Non-Native Fishes • Rare Non-Native Fishes • Standardized Sampling Protocol Colorado River: • The Colorado River through Grand Canyon historically hosted one of the most distinct fish assemblages in North America (lowest diversity, highest endemism) • Aquatic habitat was variable ▫ Large spring floods ▫ Cold winter temperatures ▫ Warm summer temperatures ▫ Heavy silt load • Today ▫ Stable flow releases ▫ Cooler temperatures ▫ Predation Overview: • The Glen Canyon Dam Adaptive Management Program was established in 1997 to address downstream ecosystem impacts from operation of Glen Canyon Dam and to provide research and monitoring of downstream resources. Area of Interest: from Glen Canyon Dam to Lake Mead Glen Canyon Dam Adaptive Management Program (Fish) Goals: • Maintain or attain viable populations of existing native fish, eliminate risk of extinction from humpback chub and razorback sucker, and prevent adverse modification to their critical habitat. • Maintain a naturally reproducing population of rainbow trout above the Paria River, to the extent practicable and consistent with the maintenance of viable populations of native fish. Course Purpose: • The purpose of this training course “Fish of the Colorado River” is to provide a general overview of fish located within the Colorado River below Glen Canyon Dam downstream to Lake Mead and linked directly to the GCDAMP. • Also included are brief explanations of management concerns related to the native fish species, as well as species locations. Native Fishes: Colorado River and tributaries between Glen Canyon Dam and Lake Mead Bluehead Sucker • Scientific name: Catostomus discobolus • Status: Species of Special Concern (conservation status may be at risk) • Description: Streamlined with small scales.
    [Show full text]
  • Grand Canyon National Park
    To Bryce Canyon National Park, KANAB To St. George, Utah To Hurricane, Cedar City, Cedar Breaks National Monument, To Page, Arizona To Kanab, Utah and St. George, Utah V and Zion National Park Gulch E 89 in r ucksk ive R B 3700 ft R M Lake Powell UTAH 1128 m HILDALE UTAH I L ARIZONA S F COLORADO I ARIZONA F O gin I CITY GLEN CANYON ir L N V C NATIONAL 89 E 4750 ft N C 1448 m RECREATION AREA A L Glen Canyon C FREDONIA I I KAIBAB INDIAN P Dam R F a R F ri U S a PAGE RESERVATION H 15 R i ve ALT r 89 S 98 N PIPE SPRING 3116 ft I NATIONAL Grand Canyon National Park 950 m 389 boundary extends to the A MONUMENT mouth of the Paria River Lees Ferry T N PARIA PLATEAU To Las Vegas, Nevada U O Navajo Bridge M MARBLE CANYON r e N v I UINKARET i S G R F R I PLATEAU F I 89 V E R o V M L I L d I C a O r S o N l F o 7921ft C F 2415 m K I ANTELOPE R L CH JACOB LAKE GUL A C VALLEY ALT P N 89 Camping is summer only E L O K A Y N A S N N A O C I O 89T T H A C HOUSE ROCK N E L E N B N VALLEY YO O R AN C A KAIBAB NATIONAL Y P M U N P M U A 89 J L O C FOREST O K K D O a S U N Grand Canyon National Park- n F T Navajo Nation Reservation boundary F a A I b C 67 follows the east rim of the canyon L A R N C C Y r O G e N e N E YO k AN N C A Road to North Rim and all TH C OU Poverty Knoll I services closed in winter.
    [Show full text]
  • Little Salt Lake (Lake, Iron County) From: Utah Place Names
    Little Salt Lake (lake, Iron County) from: Utah Place Names LITTLE SALT LAKE (Iron County) was a seasonal, small, shallow, brackish sink lying north of Parowan* in Parowan Valley. The lake was named in contrast to the larger and better-known Great Salt Lake located near Salt Lake City*. It was also called Parowan Lake. The Piutes called it "Paragoon," which means "vile water." The adjacent town of Paragonah* takes its name from this Indian word. Parowan also evolved from Paragoons, Marsh People, the name of the Piede band living near the water in earlier days. >R9,10W,T33S,SLM; 5,675' (1,730m). Bibliography: Dalton, Luella Adams. History of Iron County Mission. Parowan, UT: n.p., n.d. Layton, Stanford J. "Fort Rawlins, Utah: A Question of Mission and Means." Utah Historical Quarterly 42 (Winter 1974): 68-83. Pratt, Parley P. Autobiography of Parley P. Pratt. Edited by his son, Parley P. Pratt. Salt Lake City: Deseret Book Co., 1970. Reid, Hyrum Lorenzo. Brigham Young's Dixie of the Desert: Exploration and Settlement. Zion National Park, UT: Zion Natural History Association, 1964. EXPLANATION OF SYMBOLS... 1. An asterisk (*) following a place name indicates past or present inhabitation. 2. When a series of letters and numbers are present towards the end of an entry after the ">" symbol, the first group indicates section/township/range as closely as can be pinpointed (i.e., S12,T3S,R4W,SLM, or USM). A section equals approximately one square mile, reflecting U.S. Geological Survey topographic map sections. Because Utah is not completely mapped, some entries are incomplete.
    [Show full text]
  • TAKE YOUR TIME STAKEHOLDERS GUIDE 2015 Best Ad Campaign WINNER
    TAKE YOUR TIME STAKEHOLDERS GUIDE 2015 Best Ad Campaign WINNER Our award-winning TAKE YOUR TIME ad campaign has brought incredible success to the community. The campaign features TV spots, Bryce Canyon Bryce print ads and PR campaigns all highlighting the value of experiencing CANYONEERING HIKING | MOUNTAIN BIKING | one more day in Garfield County. RED CANYON CAPITOL REEF NATIONAL PARK SLOT CANYONS | BOULDER MOUNTAIN DIXIE NATIONAL FOREST KODACHROME BASIN | SCENIC BYWAY 12 We are now ready to take this campaign to the next level by involving ANASAZI STATE MUSEUM | BryceCanyonCountry.com our local partners and employees through the Take Your Time Initiative. 800.444.6689 This is an internal effort to involve and engage businesses throughout Garfield County. We want everyone in the county to understand how to experience the best of Bryce Canyon Country. The TAKE YOUR TIME Initiative GETTING THE WHOLE COUNTY INVLOVED The TAKE YOUR TIME INITIATIVE will accelerate an already successful campaign to a whole new level through the help and engagement of Garfield County employees. We envision visitors interacting with county employees, discussing different activities around the area, discovering new ideas and adding plans to their itinerary. Maybe they’ll plan another hike, book an extra tour or schedule a scenic drive. No matter what they plan, we want our visitors to start thinking about how they can TAKE THEIR TIME in Garfield County. WELCOME TO GARFIELD COUNTY EXPLORE BRYCE CANYON | SCENIC BYWAY 12 AND 143 | GRAND STAIRCASE | SO MUCH MORE! Mileage From Bryce Canyon GARFIELD COUNTY ACTIVITIES MAP National Park MANY ADVENTURES AWAIT IN GARFIELD COUNTY Anasazi State Park Museum ........
    [Show full text]
  • A Geographic Sketch of Early Utah Settlement
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 1974 A Geographic Sketch of Early Utah Settlement John Thomas Blake Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Geography Commons, and the Mormon Studies Commons BYU ScholarsArchive Citation Blake, John Thomas, "A Geographic Sketch of Early Utah Settlement" (1974). Theses and Dissertations. 4536. https://scholarsarchive.byu.edu/etd/4536 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. A geographic SKETCH OF EARLY UTAH settlement illILI A thesis presented to the department of geography brigham young university in partial fulfillment of the requirements for the degree master of science by john T blake august 1974 this thesis by john T blake is accepted in its present form by the department of geography of brigham young university as satisfying the thesis requirement for the degree of master of science i fpya r caci7y c ar7rr achardrichardcaciaH jackson committeecvchairman X-I bertILrobertilrobertelrobeRo rt laylayfonton committee member u 7 7 date robert L layton depardepartmehtft titrit chairmarChairchairmaiichairmanChairmarmaiimailmafi typed by robert and sondra jones 11 acknowledgementsACKNOWLEDGEMENTS the writer gratefully acknowledges the assistance of the following
    [Show full text]