Impact of Moose Browsing on Forest Regeneration in Northeast Vermont

Total Page:16

File Type:pdf, Size:1020Kb

Impact of Moose Browsing on Forest Regeneration in Northeast Vermont IMPACT OF MOOSE BROWSING ON FOREST REGENERATION IN NORTHEAST VERMONT Haley A. Andreozzi1, Peter J. Pekins1, and Matt L. Langlais2 1Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire 03824, USA; 2Department of Forests, Parks & Recreation, St. Johnsbury, VT 05819, USA ABSTRACT: Moose (Alces alces) play an important role in the ecological and economic resources of northern New England, a landscape dominated by commercial forests. This study measured the impact of moose browsing on forest regeneration in Wildlife Management Unit E1 in northeastern Vermont where moose density was considered high in the 1990–2000s. We surveyed 37 clearcuts categorized into 4 age classes (3–5, 6–10, 11–15, and 16–20 years old). The stocking rate (stems/plot) of commer- cial species ranged from 74–76% in the 3–5, 6–10, and 11–15 year age classes, increasing to 86% in the 16–20 year age class. The proportion of plots containing a commercial tree without severe damage was above the accepted threshold stocking level of 40–60% in all age classes. The proportion of plots containing a commercial hardwood stem declined with increasing age class; the opposite occurred with softwood stems indicating a possible shift from hardwood- to softwood-dominated stands from selec- tive browsing pressure. Height of 11–20 year old stems was less than in New Hampshire, indicating that growth was possibly suppressed in Vermont due to higher moose density. Overall, browsing was not considered a major problem based upon stocking rates. Further study is warranted to evaluate whether compensatory growth occurs in response to reduced browsing as forests age and/or moose population density declines. ALCES VOL. 50: 67–79 (2014) Key words: Alces alces, browsing, clearcut, damage, moose, New England, regeneration, stocking. Moose (Alces alces) populations have management aimed at sustainable forest pro- experienced a regional increase in northern duction is critical for the long-term stability New England over the last several decades, of both Vermont's economy and moose making them an increasingly valuable wild- population. life resource. They play an important role With adult moose weighing 300–600 kg, ecologically and economically in Vermont, substantial browse is required to maintain with 78% of the state open to regulated such large body size (Bubenik 1997), esti- moose hunting and 406 hunting permits mated at daily dry matter intake of 2.8 kg/ issued statewide in 2011 (VTFW 2008, moose/day in January (Pruss and Pekins 2011). With forests also covering 78% of 1992). Moose have the ability to substan- Vermont's landscape, the state generates tially alter plant communities and are cap- over $1.5 billion annually from forest-based able of damaging woody plants (Renecker manufacturing and forest-related recreation and Schwartz 1997); repeated browsing can and tourism (NEFA 2007). The majority suppress height growth and recruitment of of forestland, 4 million acres, is owned saplings into the canopy (Risenhoover and privately or by timber investment manage- Maass 1987). Moose browsing has the cap- ment organizations; local, state, and fed‐ ability to affect the structure and dynamics eral government owns ∼19% (919,440 of forest ecosystems over the long-term acres) (NEFA 2007). Forest and wildlife (McInnes et al. 1992), which has important 67 BROWSING AND FOREST REGENERATION – ANDREOZZI ET AL. ALCES VOL. 50 implications for the management of forests population density (0.26–0.83 moose/km2). where moose populations are regulated. While regeneration of commercial trees was Moose show preference for forage in clear- not considered a regional problem at any cut and early-successional habitat that is density, specific clearcut sites with low typical of the commercially managed forests regeneration were found adjacent to tradi- of the northeast (Thompson et al. 1995, Scar- tional moose wintering areas. It was pre- pitti et al. 2005). For example, productive dicted that such sites could change from moose habitat in New Hampshire was linked hardwood to softwood dominance over directly to the early successional forage cre- time (Bergeron et al. 2011). ated by commercial forest harvesting and By the early 2000s, there was anecdotal early-successional browse is a dietary com- evidence that the moose population in north- ponent year-round (Scarpitti et al. 2005, eastern Vermont, specifically wildlife man- Scarpitti 2006). Clearcuts 5–20 years old agement unit (WMU) E, was causing provide suitable early winter habitat, as measurable damage to forest regeneration; regenerating hardwood and softwood species moose densities in WMU E were thought to provide both browse and cover for moose be well over 1.5 moose/km2 (4 moose/ (Thompson and Stewart 1997). While the mile2) (C. Alexander, VTFW wildlife biolo- impact of moose browsing on forest regen- gist, pers. comm.). To achieve the desired eration has received substantial attention population level, hunting permit numbers elsewhere, little attention has been paid to were dramatically increased by the Vermont the potential and actual effects in northern Department of Fish and Wildlife (VTFW) New England (Pruss and Pekins 1992, from 440 to 833 permits in 2004, when it Scarpitti 2006, Bergeron et al. 2011). was believed moose had approached their In order to manage moose and forest biological carrying capacity (VTFW 2008). resources with respect to moose density and The number of hunting permits rose to damage to regeneration, it is important to 1046 in 2005 and continued to increase have extensive ecological knowledge of the until 2009, when 1223 permits were issued relationships among moose, the ecosystems statewide in an effort to accelerate popula- they inhabit, the plants they use as forage tion reductions to protect forest habitat. (Edenius et al. 2002), and the associated By 2008, the population density was impacts on forest production such as timber approaching the goal set by the 10-year quality impairment. As moose populations moose management plan (0.7 moose/km2 have increased in northern New England, [1.75 moose/mile2]) and the number of land managers have implied that a relation- permits was reduced to 765 in 2010 and ship exists between high population density 405 in 2011. In response, this study was and reduced forest regeneration in clearcuts. designed to evaluate the impact of moose On Isle Royale, McInnes et al. (1992) found browsing on the regeneration of commer- that moose browsing affected the structure cial tree species in WMU E1 in northeast and dynamics of forest ecosystems on a Vermont by conducting qualitative assess- long-term scale; however, in larger land- ments of damage in clearcuts between scapes such impacts are usually more loca- 3–20 years of age. lized and often relate to high seasonal density. In northern New Hampshire, Bergeron METHODS et al. (2011) evaluated the impact of brows- Study Area ing on the regeneration of commercial tree The study area was located in north‐ species in 3 regions with different moose east Vermont and encompassed all of 68 ALCES VOL. 50 ANDREOZZI ET AL. – BROWSING AND FOREST REGENERATION VTFW WMU E1, covering an area of Field Measurements 682 km2 bordered by New Hampshire and Regeneration surveys were performed in Quebec (Fig. 1). Elevation ranges from June 2012 to measure the impact of moose ∼250–1,130 m, and it is dominated by browsing on forest regeneration in clear- maple (Acer saccharum, A. pensylvanicum, cuts 3–20 years old (Leak 2007, Bergeron A. rubrum) and birch (Betula alleghaniensis, et al. 2011). Clear-cuts were separated into B. papyrifera) hardwoods, and coniferous 4 age classes (3–5, 6–10, 11–15 and 16–20 stands of balsam fir (Abies balsamea) and years old) in order to assess temporal red spruce (Picea rubens.) While heavily changes during both the period of typical – forested, timber harvesting is common browsing (0 10 years) and at least 10 years – throughout as the majority of the land is pri- post-browsing (11 20 years). In each age class, 8–11 clear-cuts were located using aer- vately owned and commercially harvested ial photography; each was a minimum of (NEFA 2007). The 2011 moose density was 4.1 ha (10 acres) and a maximum of estimated at 0.77 moose/km2 (1.96 moose/ 16.2 ha (40 acres) in size to reflect the typical mi2) based on a rolling 3-year average of range in size of clear-cuts in the region moose sightings by early winter (November) (M. Langlais, Vermont Department of For- deer hunters, and was previously estimated ests, Parks & Recreation County Forester, 2 in 2010 as 0.93 moose/km (2.41 moose/ pers. comm.). In certain cases, clear-cuts 2 mile ) based on aerial surveys (Millette et al. >16.2 ha were used to achieve appropriate 2011). sample sizes within an age class; a section ≤16.2 ha was surveyed. Small plot surveys (milacre, ∼2.3 m dia- meter circle) were evenly spaced on equidi- stant transects throughout each clear-cut (Fig. 2). In each milacre plot, the dominant stem (tallest tree) was recorded as a commer- cial or non-commercial tree species. If the dominant stem was non-commercial, the plot was searched for the presence of com- mercial species; commercial species included yellow and white birch, sugar and red maple, American beech (Fagus grandifo- lia), aspen (Populus spp.), black cherry (Pru- nus serotina), balsam fir, red and black spruce (Picea mariana), and tamarack (Larix laricina). Stem damage was assessed on a qualitative basis as fork, broom, or crook (Fig. 3). The height of the damage above or below breast height (approximately 1.4 m) was recorded, as well as the number of forks and crooks, and the severity of crooks based ≤ Fig. 1. The location of the study area in Vermont on angle.
Recommended publications
  • Despite Introgressive Hybridization, North American Birches (Betula Spp.) Maintain Strong Differentiation at Nuclear Microsatellite Loci
    Tree Genetics & Genomes (2015) 11:101 DOI 10.1007/s11295-015-0922-6 ORIGINAL ARTICLE Despite introgressive hybridization, North American birches (Betula spp.) maintain strong differentiation at nuclear microsatellite loci Ashley M. Thomson1,2,3 & Christopher W. Dick3 & Ana L. Pascoini4 & Selvadurai Dayanandan1,2 Received: 20 March 2015 /Revised: 27 June 2015 /Accepted: 28 August 2015 # Springer-Verlag Berlin Heidelberg 2015 Abstract Extensive chloroplast introgression has been docu- between B. alleghaniensis and B. papyrifera increased signif- mented in polyploid Betula species of eastern North America. icantly moving northward into the sympatric zone, suggesting However, the extent to which the nuclear genomes of these the occurrence of hybridization in previously glaciated habi- species are differentiated is unknown. Therefore, we evaluated tats. In contrast, admixture proportions of B. papyrifera and genetic differentiation among largely sympatric Betula B. alleghaniensis did not show a significant geographic trend, papyrifera, B. alleghaniensis,andB. lenta using nuclear mi- which points to recent ancestry as the likely cause of allele crosatellite markers. Principal components analysis (PCA) sharing between these two species. We suggest that allele and analysis of molecular variation (AMOVA) were used to sharing of B. papyrifera and B. alleghaniensis results from a evaluate genetic differentiation. Bayesian model-based clus- combination of ongoing gene flow and historic introgression tering was used to identify putatively admixed individuals. via pollen swamping during northward colonization into post- Despite a high incidence of allele sharing, all of the species glacial environments. were significantly differentiated even within zones of sympat- ry. A number of individuals were identified as possibly Keywords Allele sharing .
    [Show full text]
  • Betula Alleghaniensis Britton Yellow Birch Betu Laceae Birch Family G
    Betula alleghaniensis Britton Yellow Birch Betu laceae Birch family G. G. Erdmann Yellow birch (Bet&a alleghaniensis) is the most precipitation may be snow. Snowfall ranges from 152 valuable of the native birches. It is easily recognized to 356 cm (60 to 140 in) and averages 229 cm (90 in) by the yellowish-bronze exfoliating bark for which it in the north. The growing season ranges from 60 to is named. The inner bark is aromatic and has a 150 days and averages about 120 days. flavor of winter-green. Other names are gray birch, silver birch, and swamp birch. This slow-growing Soils and Topography long-lived tree is found with other hardwoods and conifers on moist well-drained soils of the uplands Yellow birch grows over a large area with diverse and mountain ravines. It is an important source of hardwood lumber and a good browse plant for deer geology, topography, and soil and moisture condi- and moose. Other wildlife feed on the buds and tions. In Michigan and Wisconsin it is found on gla- cial tills, outwash sands, lacustrine deposits, shallow seeds. loess deposits, and residual soils derived from sandstone, limestone, and igneous and metamorphic Habitat rock (95). Soils are also derived from granites, schists, and shales in other parts of its range. Native Range Growth of yellow birch is affected by soil texture, drainage, rooting depth, stone content in the rooting Yellow birch (fig. 1) ranges from Newfoundland, zone, elevation, aspect, and fertility. Yellow birch Nova Scotia, New Brunswick, and Anticosti Island grows best on well-drained, fertile loams and west through southern Ontario to extreme moderately well-drained sandy loams within the soil southeastern Manitoba; south to Minnesota and orders Spodosols and Inceptisols and on flats and northeastern Iowa; east to northern Illinois, Ohio, lower slopes (45).
    [Show full text]
  • Identifying Organisms Answer the Following Questions Using Information from the Textbook
    NAME DATE CLASS Chapter 15 Use with Section 3 REINFORCEMENT Identifying Organisms Answer the following questions using information from the textbook. 1. Why don’t scientists use common names to identify organisms?____________________________ 2. Why are scientific names important? Give four functions for scientific names. a. b. c. d. 3. The system of ______________________________ gives each organism a unique scientific name. Use the key to species of birch trees below to answer the questions that follow. 1a. bark dark, reddish-brown, yellowish-brown to black . go to 2 1b. bark creamy white, pinkish, or gray . go to 6 2a. bark and twigs with wintergreen fragrance when cut . go to 3 2b. bark and twigs without a fragrance when cut . go to 5 3a. leaves with 8–12 pairs of veins . go to 4 3b. leaves with 4–6 pairs of veins . Betula uber 4a. bark dark red to almost black; scales smooth, 6–12 mm long . Betula lenta 4b. bark reddish-brown, peeling in loose, ragged sheets, scales hairy, 5–7 mm . Betula alleghaniensis 5a. branchlets covered near tip with many small glands, Rocky Mountains or Western Canada . Betula occidentalis 5b. branchlets smooth, shiny, no glands present, eastern U.S. Betula nigra 6a. leaves hairy on lower surface . go to 7 6b. leaves smooth, hairless underside . go to 8 7a. leaves 5–13 cm long, pointed tip . Betula papyrifer 7b. leaves 3–7 cm long, pointed tip, winter buds shiny . Betula pendula 8a. bark dull gray to grayish-white, smooth and not peeling . Betula populifolia 8b. bark white to pinkish-white, peeling .
    [Show full text]
  • YELLOW BIRCH Relatively Light Shade, and It Has Showy Bark and Fall
    Plant Guide local nurseries. It is a good lawn tree, providing YELLOW BIRCH relatively light shade, and it has showy bark and fall Betula alleghaniensis Britt. foliage colors. It also is a good edge tree for Plant Symbol = BEAL2 naturalized areas. Although yellow birch grows best in full sun, cherry birch is better suited to hotter or Contributed By: USDA NRCS National Plant Data drier sites. Center & Biota of North America Program Status Please consult the PLANTS Web site and your State Department of Natural Resources for this plant’s current status, such as, state noxious status and wetland indicator values. Description General: Birch Family (Betulaceae). These are native trees mostly 15-20(-30) m tall, with straight trunks and variable crowns; mature bark smooth and shiny, usually separating into thin layers, giving a shaggy appearance; lenticels dark, horizontally; twigs with odor and taste of wintergreen, usually with small R. Mohlenbrock resinous glands. Leaves are deciduous, alternate, USDA, NRCS, Wetland Science Institute @ PLANTS simple, narrowly ovate to broadly oblong, 6-10 cm long, base rounded to cuneate or cordate, margins Alternate common names sharply doubly toothed, apex acuminate, usually Gray birch, silver birch, swamp birch softly hairy beneath along major veins and in vein axils, often with scattered, minute, resinous glands. Uses Male (pollen) and female (seed) flowers are in The wood of yellow birch is heavy, strong, close- catkins, borne separately, but on the same tree. Seed grained, even-textured, and shows a wide color catkins are erect, ovoid, 1.5-3 cm long, generally variation, from reddish brown to creamy white.
    [Show full text]
  • July 30, 2008 Ms. Barbara Douglas Endangered Species Biologist U.S
    3940 GLENBROOK DRIVE PO BOX 1066 HAILEY, ID 83333 PHONE 208-788-3456 FAX 208-788-2082 July 30, 2008 Ms. Barbara Douglas Endangered Species Biologist U.S. Fish & Wildlife Service West Virginia Field Office 694 Beverly Pike Elkins, WV 26241 Subject: 113733 TrAILCo Cheat Mountain Salamander (Plethodon nettingi) Biological Assessment for the Trans- Allegheny Interstate Line (TrAIL) 500 kV Transmission Line In West Virginia. Dear Ms. Douglas: POWER Engineers, Inc. (POWER) is providing this letter report documenting the results of Dr. Thomas Pauley’s Cheat Mountain Salamander (Plethodon nettingi) investigations conducted in November 2007 and January 2008 along potentially suitable sections of the proposed Trans-Allegheny Interstate Line (TrAIL) 500 kV transmission line corridor. You had requested that POWER conduct a study of the status of this federally threatened species within the project area, and POWER contracted with Dr. Pauley to evaluate the status and potential for occurrence of this species based on his extensive research background and qualifications. The results of Dr. Pauley’s investigations are provided below following a brief project background. Please note that Dr. Pauley’s study areas covered both Segments 1 and 2 of the proposed TrAIL corridor. Project Background and Methodology Within West Virginia the proposed TrAIL project consists of a new 500 kV transmission line, to be located within a 200ft-wide right-of-way crossing portions of Monongalia, Marion, Taylor, Preston, Tucker, Grant, Hardy, and Hampshire Counties. This cleared right-of-way will be located within a 2,200 foot wide corridor for which TrAILCo, a subsidiary of Allegheny Energy, Inc., submitted its application for a Certificate of Public Convenience and Necessity (CPCN) to the West Virginia Public Service Commission (WV PSC) in the fall of 2007.
    [Show full text]
  • Betulaceae Birch Family
    Betulaceae Birch Family Betulaceae is a family of trees and shrubs included in six genera; four of which contain species native to Page | 317 Nova Scotia. Mostly ranging throughout the northern hemisphere, 120 species are found worldwide, generally in temperate climates. Flowers are unisexual; species are monoecious. Staminate catkins are pendulous; pistillate catkins are erect or pendulous, usually firm and often woody. Petals are lacking; sepals tend to be tiny. Fruit is a samara or a nut with a single seed. Leaves are simple, alternate and mostly serrate. Venation is straight and pinnate. Key to species A. Bark of older twigs and trunk without lenticels; fruit not winged, enclosed in an B involucre. B. Shrub, wiry with creeping stems; mature fruits 1–2 nuts, 1cm thick, Corylus the involucre long-beaked, bristly when immature; leaves with 5–8 pairs of veins, doubly serrate; winter buds velutinous, ovate. bb. Small tree; nutlets enclosed in a loose sac; leaves with 9 or more Ostrya pairs of veins, merely serrate; winter buds dark brown. aa. Bark of twigs with elongated lenticels; fruit small, exposed in the axils of the C scales, winged. C. Scales of pistillate catkins, thin and papery, deciduous, usually 3 Betula lobed; bark of mature specimens white to yellowish, often peeling; stamens 2; fruit a tiny samara, with thin wings. cc. Scales of pistillate catkins woody, 3–5 lobed at the tip, persistent; Alnus bark not white nor yellowish, never peeling; stamens 4;tiny nuts with thick wings. Alnus Miller alder Three of 30 species of alders are found in NS.
    [Show full text]
  • Wild Vegetation of West Virginia Upland Red Spruce
    Wild Vegetation of West Virginia Revised 1 December 2015 Comments and Questions? Contact [email protected] Upland Red Spruce Forests and Woodlands Early explorers and lumbermen found vast acreages of virgin red spruce forests in the Allegheny Mountains that are now part of West Virginia. During the late 1800s and early 1900s these forests were decimated by logging and fire, but today they are expanding again into parts of their previous niche. Upland red spruce forests are emblematic of West Virginia’s high Allegheny Mountains and are home to a unique assemblage of wild, native plants and animals. Ecological Description: These are upland, mixed evergreen-deciduous forests and woodlands dominated or codominated by red spruce (Picea rubens). Soils are usually cold, rocky, highly acidic, and often have deep organic horizons at the surface. Associated trees include eastern hemlock (Tsuga canadensis), yellow birch (Betula alleghaniensis), red maple (Acer rubrum), American beech (Fagus grandifolia), mountain ash (Sorbus americana), and black cherry (Prunus serotina). Common shrubs include mountain holly (Ilex montana), great laurel (Rhododendron maximum), striped maple (Acer pensylvanicum), highbush cranberry (Vaccinium erythrocarpum), and mountain laurel (Kalmia latifolia). The herb layer is characterized by species adapted to short, cool growing seasons, including intermediate woodfern (Dryopteris intermedia), mountain woodfern (Dryopteris campyloptera), mountain wood sorrel (Oxalis montana), Canada mayflower (Maianthemum canadense), and painted wakerobin (Trillium undulatum). Mosses and liverworts often have heavy cover over the rocky ground. Subterranean fungi called truffles grow in the deep organic soils. Animals that need these habitats: Spruce Knob Threetooth (snail), Atlantis Fritillary (butterfly), Green Comma (butterfly), Bicolored Moth, Cheat Mountain Salamander, Northern Goshawk, Pine Siskin, Swainson’s Thrush, Olive-sided Flycatcher, Red Crossbill, Snowshoe Hare, West Virginia Northern Flying Squirrel.
    [Show full text]
  • Plethodon Nettingi) After 32 Years Whitney A
    Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 1-1-2012 Revisiting the Ecological Status of the Cheat Mountain Salamander (Plethodon nettingi) After 32 Years Whitney A. Kroschel [email protected] Follow this and additional works at: http://mds.marshall.edu/etd Part of the Animal Sciences Commons, and the Forest Sciences Commons Recommended Citation Kroschel, Whitney A., "Revisiting the Ecological Status of the Cheat Mountain Salamander (Plethodon nettingi) After 32 Years" (2012). Theses, Dissertations and Capstones. Paper 335. This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected]. REVISITING THE ECOLOGICAL STATUS OF THE CHEAT MOUNTAIN SALAMANDER (PLETHODON NETTINGI) AFTER 32 YEARS A thesis submitted to the Graduate College of Marshall University In partial fulfillment of the requirements for the degree of Master of Science Biological Sciences By Whitney A. Kroschel Approved by Dr. Thomas K. Pauley Dr. William B. Sutton Dr. Frank S. Gilliam Dr. Dan Evans Marshall University Huntington, West Virginia August, 2012 i Copyright by Whitney A. Kroschel 2012 ii ACKNOWLEDGMENTS I would like to first thank my advisor, Dr. Pauley, for giving me a chance and an opportunity to develop myself further as a student, a researcher, and a person. I grew by leaps and bounds during my two years at Marshall University, and am very grateful for the experiences I had and the friendships I gained within that time. I would like to thank the other members of my committee, Dr.
    [Show full text]
  • Cherry Birch (Betula Lenta) in Canada
    PROPOSED Species at Risk Act Recovery Strategy Series Adopted under Section 44 of SARA Recovery Strategy for the Cherry Birch (Betula lenta) in Canada Cherry Birch 2015 1 Recommended citation: Environment Canada. 2015. Recovery Strategy for the Cherry Birch (Betula lenta) in Canada [Proposed]. Species at Risk Act Recovery Strategy Series. Environment Canada, Ottawa. 18 pp. + Annexes. For copies of the recovery strategy, or for additional information on species at risk, including the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) Status Reports, residence descriptions, action plans, and other related recovery documents, please visit the Species at Risk (SAR) Public Registry1. Cover illustration: © Lynk Media Également disponible en français sous le titre « Programme de rétablissement du bouleau flexible (Betula lenta) au Canada [Proposition] » © Her Majesty the Queen in Right of Canada, represented by the Minister of the Environment, 2015. All rights reserved. ISBN Catalogue no. Content (excluding the illustrations) may be used without permission, with appropriate credit to the source. 1 http://www.registrelep-sararegistry.gc.ca RECOVERY STRATEGY FOR THE CHERRY BIRCH (Betula lenta) IN CANADA 2015 Under the Accord for the Protection of Species at Risk (1996), the federal, provincial, and territorial governments agreed to work together on legislation, programs, and policies to protect wildlife species at risk throughout Canada. In the spirit of cooperation of the Accord, the Government of Ontario has given permission to the Government of Canada to adopt the Recovery Strategy for the Cherry Birch (Betula lenta) in Ontario (Part 2) and the Cherry Birch – Ontario Government Response Statement (Part 3) under Section 44 of the Species at Risk Act (SARA).
    [Show full text]
  • Leaf Morphological Variation Among Paper Birch (Betula Papyrifera Marsh.) Genotypes Across Canada
    Vol.3, No.4, 284-295 (2013) Open Journal of Ecology http://dx.doi.org/10.4236/oje.2013.34033 Leaf morphological variation among paper birch (Betula papyrifera Marsh.) genotypes across Canada Anjala Pyakurel*, Jian R. Wang Faculty of Natural Resources Management, Lakehead University Thunder Bay, Thunder Bay, Canada; *Corresponding Author: [email protected] Received 25 April 2013; revised 31 May 2013; accepted 8 July 2013 Copyright © 2013 Anjala Pyakurel, Jian R. Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT season) had large leaf width and petiole size but low leaf hairs on adaxial surface. Thus, all these Variations in leaf morphological characteristics leaf morphological features provide a basis for have been extensively studied at both inter- and the birch to reduce water loss from leaves and intraspecific levels although not explicitly on pa- balance water use efficiency in reduced precipi- per birch (Betula papyrifera Marsh). Paper birch tation. Furthermore, the leaf characteristics populations might have considerable genotypic measured may also include phenotypic plasti- and leaf morphological variations that have city of the birch as an acclimation to the environ- allowed them to inhabit wide environmental gra- ment as in the greenhouse. dients. In this study, we analyzed variations in leaf morphological characteristics in 23 paper Keywords: Morphological Variation; Leaf Size; Leaf birch populations collected across Canada and Shape; Petiole Size; Leaf Hairiness; Climatic grown in a greenhouse. Furthermore, we exa- Variables; Paper Birch mined whether the variations in leaf morpholo- gical characteristics observed were related to the 1.
    [Show full text]
  • Macrohabitat Models of Occurrence for the Threatened Cheat Mountain Salamander, Plethodon Nettingi
    Macrohabitat models of occurrence for the threatened Cheat Mountain salamander, Plethodon nettingi Lester O. Dillard1,2, Kevin R. Russell1,3 and W. Mark Ford4 1 College of Natural Resources, University of Wisconsin-Stevens Point, 800 Reserve Street, Stevens Point, Wisconsin 54481, USA 2 Present address: Department of Biology, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816, USA 3 Corresponding author; email: [email protected] 4 USDA Forest Service, Northern Research Station, P.O. Box 404, Parsons, West Virginia 26287, USA Abstract. The federally threatened Cheat Mountain salamander (Plethodon nettingi; hereafter CMS) is known to occur at approximately 70 small, scattered sites in the Allegheny Mountains of eastern West Virginia. We used a comparative modeling approach to explain the landscape-level distribution and habitat relationships of CMS in relation to a suite of biotic and abiotic habitat variables measured across the species’ range. We collected data on 13 explanatory macrohabitat variables at CMS-occupied (n = 180) and random (n = 180) sites. We then examined CMS-macrohabitat relationships using a priori, logistic regression models with information-theoretic model selection, classification tree modeling, and discriminant function analysis. Among logistic regression models, a model containing the variables elevation, aspect, slope, and lithology received the strongest empirical support, although a model containing these variables and current vegetation type also received limited support. Variable selection within our classification tree and discriminant function modeling was consistent with logistic regression results. Common variables in all three approaches indicated that the probability of finding CMS across the species’ range increased in areas at higher elevations and underlain by sandstone.
    [Show full text]
  • Cherry Birch (Betula Lenta) in Canada
    Species at Risk Act Recovery Strategy Series Adopted under Section 44 of SARA Recovery Strategy for the Cherry Birch (Betula lenta) in Canada Cherry Birch 2016 1 Recommended citation: Environment and Climate Change Canada. 2016. Recovery Strategy for the Cherry Birch (Betula lenta) in Canada. Species at Risk Act Recovery Strategy Series. Environment and Climate Change Canada, Ottawa. 3 parts, 18 pp. + vi + 12 pp. + 4 pp. For copies of the recovery strategy, or for additional information on species at risk, including the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) Status Reports, residence descriptions, action plans, and other related recovery documents, please visit the Species at Risk (SAR) Public Registry1. Cover illustration: © Lynk Media Également disponible en français sous le titre « Programme de rétablissement du bouleau flexible (Betula lenta) au Canada » © Her Majesty the Queen in Right of Canada, represented by the Minister of Environment and Climate Change, 2016. All rights reserved. ISBN 978-0-660-05047-8 Catalogue no. En3-4/241-2016E-PDF Content (excluding the illustrations) may be used without permission, with appropriate credit to the source. 1 http://sararegistry.gc.ca/default.asp?lang=En&n=24F7211B-1 RECOVERY STRATEGY FOR THE CHERRY BIRCH (Betula lenta) IN CANADA 2016 Under the Accord for the Protection of Species at Risk (1996), the federal, provincial, and territorial governments agreed to work together on legislation, programs, and policies to protect wildlife species at risk throughout Canada. In the spirit of cooperation of the Accord, the Government of Ontario has given permission to the Government of Canada to adopt the Recovery Strategy for the Cherry Birch (Betula lenta) in Ontario (Part 2) and the Cherry Birch – Ontario Government Response Statement (Part 3) under Section 44 of the Species at Risk Act (SARA).
    [Show full text]