RESEARCH ARTICLE Hexagonal Connectivity Maps for Digital Earth

Total Page:16

File Type:pdf, Size:1020Kb

RESEARCH ARTICLE Hexagonal Connectivity Maps for Digital Earth May 21, 2014 International Journal of Digital Earth tJDEguide International Journal of Digital Earth Vol. 00, No. 00, Month 201X, 1{18 RESEARCH ARTICLE Hexagonal Connectivity Maps for Digital Earth Ali Mahdavi Amiria∗, Erika Harrison a, Faramarz Samavati a aDepartment of Computer Science, University of Calgary ; (v1.0 released October 2012) Geospatial data is gathered through a variety of different methods. The integration and handling of such data-sets within a Digital Earth framework are very important in many aspects of science and engineering. One means of addressing these tasks is to use a Discrete Global Grid System and map points of the Earth's surface to cells. An indexing mechanism is needed to access the data and handle data queries within these cells.. In this paper, we present a general hierarchical indexing mechanism for hexagonal cells resulting from the refinement of triangular spherical polyhedra representing the Earth. In this work, we establish a 2D hexagonal coordinate system and diamond-based hierarchies for hexagonal cells that enables efficient determination of hierarchical relationships for various hexagonal refinements, and demonstrate its usefulness in Digital Earth frameworks. Keywords: Digital Earth Framework, Hexagonal Subdivision, Indexing, Triangulation, Hierarchy, Multiresolution. 1. Introduction Digital Earth is a framework for the management and manipulation of geospatial data, spanning a multitude of scientific disciplines (Goodchild 2000). In this frame- work, data is assigned to locations and may be analyzed at multiple resolutions. Each resolution of this framework provides data with a specific level of detail. This multiresolution property is beneficial for efficient vector-data and coverage based data (Wartell et al. 2003). For practical purposes, the finest resolution is usually high enough such that cells with area in square millimeters can be supported. One approach in assigning data to the Earth's positions is to discretize the globe into regions called cells. Cells then represent areas containing geospatial informa- tion associated with a point of interest. Several methods exist to partition the Earth. Latitude/longitude lines or Voronoi cells can be used to partition the Earth into regions of irregular size or shape (Chen et al. 2004, Faust et al. 2000). How- ever, regular cells are often more desirable for a Digital Earth framework as they support efficient algorithms for handling important queries such as containment (which cell includes a point), neighborhood finding, and determining hierarchical relationships between cells (Sahr et al. 2003). Discrete Global Grid Systems (DGGS) provide a representation of the Earth with mostly regular cells (Goodchild 2000, Sahr et al. 2003). The cells of DGGS may be triangular, quadrilateral (squares or diamonds) or hexagonal. Hexagonal ∗Corresponding author. Email: [email protected] 1 May 21, 2014 International Journal of Digital Earth tJDEguide Figure 1.: Icosahedral Snyder Equal Area Aperture 3 Hexagonal Grid (ISEA3H) (PYXIS Innovation 2014). cells are particularly desirable due to their unique characteristics, including uniform definition for adjacency and reduced quantization error (Sahr 2011, Snyder et al. 1999). Figure 1 illustrates the Earth partitioned using hexagonal cells. Six types of hexagonal refinement are mostly used throughout the literature: 1-to-3, 1-to-4, and 1-to-7 refinement in both their centroid-aligned and vertex- aligned variants (Figure 2). Centroid-aligned refinements (c-refinements) produce refined cells sharing centroids with coarse cells while vertex-aligned refinements (v- refinements) generate refined cells with vertices that are shared with the centroid of coarse cells. To generate multiple resolutions with regular spherical cells, a poly- hedron is refined and its resulting faces are projected to the sphere by a spherical projection. Area preserving projections such as Snyder projections are especially preferable as they simplify data analysis on the Earth (Snyder 1992). (a) (b) (c) (d) (e) (f) Figure 2.: The c-refinements and v-refinements (shown in orange and red, respec- tively) for 1-to-3 refinement ((a), (b)), 1-to-4 refinement ((c),(d)), and 1-to-7 re- finement ((e), (f)). To associate information with cells at different levels of refinement, a data struc- ture is required. Quadtrees (Samet 2005, Tobler and Chen 1986) are commonly used to support spatial queries for quad cells; but require many pointers to establish con- nectivity between nodes, which reduces efficiency in high resolution applications with a large data load. To overcome this issue, several indexing methods have been developed for quadtrees. However, quadtrees and their indexing methods cannot be directly applied in the hexagonal case, due to the lack of congruency of hexagons. As a result, an indexing specifically designed for hexagonal cells or an adapting mechanism to benefit from simple congruent shape of quads is required that can efficiently support essential queries. Existing hexagonal indexing methods primarily operate on a complicated fractal- like coverage hierarchy that makes the operations difficult to handle. They are also defined only for a specific type of refinement or polyhedron. In this paper, we introduce a general scheme for indexing hexagonal cells based on modifications of hexagonal coordinate systems. This indexing maintains the hierarchical rela- tionships between successive resolutions. The proposed scheme is general and not 2 May 21, 2014 International Journal of Digital Earth tJDEguide dependent on a specific type of polyhedron or refinement, handling essential queries such as hierarchical traversal between cells and neighborhood finding in constant time. Instead of using fractal coverage hierarchies, we define two simple diamond- based hierarchical coverage for hexagons and demonstrate their usefulness for a Digital Earth framework through several example results. As part of our method evaluation, we compare our indexing with PYXIS indexing (Peterson 2006, Vince and Zheng 2009). PYXIS indexing is from the same category of a set of hierarchical indexing methods designed for hexagonal cells that use a fractal hierarchical coverage (Sahr et al. 2003, Gibson and Lucas 1982). We organize the paper as follows: Related work is presented in Section 2. The terminology of the paper is established in Section 3. Section 4 describes our com- prehensive indexing method. Hierarchy is formally defined in Section 5, and two variations of hexagonal hierarchy as well as their benefits are also presented. In Section 6, we provide comparison and results. We describe a common hierarchical indexing method called PYXIS indexing and compare results with our method. We finally conclude in Section 7. 2. Related Work One way to represent the Earth is to use DGGS. These systems differ from each other based on the underlying polyhedron, type of cells, refinement, projection and data structure employed. In the following, we provide some work related to each of these elements. For a complete survey, please refer to Goodchild (2000) and references therein. Underlying Polyhedra: Numerous polyhedra have been used to approximate the Earth. For instance, an octahedron can be projected to the sphere in such a way that each face corresponds to an octant of the latitude/longitude spherical coordinate system (White 2000). The tetrahedron has been used to represent the Earth in 3D engines that render a virtual globe due to its simplicity (Cozzi and Ring 2011). The truncated icosahedron better approximates the sphere (White et al. 1992). Note that the truncated icosahedron can be constructed by refining the regular icosahedron which itself is widely used as it induces less distortion as compared with other platonic solids (White et al. 1992). Therefore, the truncated icosahedron is also widely used for approximating the Earth (Fekete and Treinish 1990, Sahr 2008, White 2000, PYXIS Innovation 2014, Vince and Zheng 2009). The cube is also an interesting polyhedron for spherical representation due to its adaptability to Cartesian coordinates, hardware devices and existing data struc- tures such as quadtrees (Alborzi and Samet 2000, Mahdavi-Amiri et al. 2013). The dodecahedron, which has 12 pentagonal faces, has been also used for Earth repre- sentation (Wickman et al. 1974). However, since pentagon-to-pentagon refinement has not been defined, they are not a popular choice for hierarchical representation of the Earth. Type of Cells: Different shapes - such as hexagons, quads or triangles - can be used as cells for GDGGS. For instance, Alborzi and Samet (2000) use quadri- lateral faces of a refined cube while Dutton (1999) uses the triangular faces of an octahedron. In this paper, we consider hexagonal cells. As discussed by Sahr (2011), this type of cell is preferred in many applications due to their uniform adjacency, regularity, and support for efficient sampling and smooth subdivision schemes (He and Jia 2005, Kamgar-Parsi et al. 1989, Claes et al. 2002). Although hexagonal cells may be the best choice for sampling the surface of the Earth, they need to be addressed 3 May 21, 2014 International Journal of Digital Earth tJDEguide and rendered efficiently. We use diamonds (unit squares in hexagonal coordinate systems) to efficiently address hexagons and show how to triangulate them for efficient rendering (White 2000). Type of Refinement: Refinements are used to make finer cells based on initial coarse cells. Refinements are widely used in subdivision surfaces to make smooth objects (see Cashman 2012, and references therein). They can also be used to con- struct more cells on the sphere by refining polyhedral faces. To show the generality of our approach, we use six types of hexagonal refinement: 1-to-3, 1-to-4, and 1- to-7 c-refinements and v-refinements (Figure 2). Each of these refinements features some benefits over the others. 1-to-3 refinement increases the number of faces at a lower rate compared to the other two. Under this refinement, more resolutions are produced under a fixed maximum number of faces and, therefore, enables a smoother transition between resolutions. For example, Sahr (2008) uses hexagonal 1-to-3 c-refinement on an icosahedron while Vince (2006) uses the same refinement on the octahedron.
Recommended publications
  • Computational Design Framework 3D Graphic Statics
    Computational Design Framework for 3D Graphic Statics 3D Graphic for Computational Design Framework Computational Design Framework for 3D Graphic Statics Juney Lee Juney Lee Juney ETH Zurich • PhD Dissertation No. 25526 Diss. ETH No. 25526 DOI: 10.3929/ethz-b-000331210 Computational Design Framework for 3D Graphic Statics A thesis submitted to attain the degree of Doctor of Sciences of ETH Zurich (Dr. sc. ETH Zurich) presented by Juney Lee 2015 ITA Architecture & Technology Fellow Supervisor Prof. Dr. Philippe Block Technical supervisor Dr. Tom Van Mele Co-advisors Hon. D.Sc. William F. Baker Prof. Allan McRobie PhD defended on October 10th, 2018 Degree confirmed at the Department Conference on December 5th, 2018 Printed in June, 2019 For my parents who made me, for Dahmi who raised me, and for Seung-Jin who completed me. Acknowledgements I am forever indebted to the Block Research Group, which is truly greater than the sum of its diverse and talented individuals. The camaraderie, respect and support that every member of the group has for one another were paramount to the completion of this dissertation. I sincerely thank the current and former members of the group who accompanied me through this journey from close and afar. I will cherish the friendships I have made within the group for the rest of my life. I am tremendously thankful to the two leaders of the Block Research Group, Prof. Dr. Philippe Block and Dr. Tom Van Mele. This dissertation would not have been possible without my advisor Prof. Block and his relentless enthusiasm, creative vision and inspiring mentorship.
    [Show full text]
  • Volumes of Polyhedra in Hyperbolic and Spherical Spaces
    Volumes of polyhedra in hyperbolic and spherical spaces Alexander Mednykh Sobolev Institute of Mathematics Novosibirsk State University Russia Toronto 19 October 2011 Alexander Mednykh (NSU) Volumes of polyhedra 19October2011 1/34 Introduction The calculation of the volume of a polyhedron in 3-dimensional space E 3, H3, or S3 is a very old and difficult problem. The first known result in this direction belongs to Tartaglia (1499-1557) who found a formula for the volume of Euclidean tetrahedron. Now this formula is known as Cayley-Menger determinant. More precisely, let be an Euclidean tetrahedron with edge lengths dij , 1 i < j 4. Then V = Vol(T ) is given by ≤ ≤ 01 1 1 1 2 2 2 1 0 d12 d13 d14 2 2 2 2 288V = 1 d 0 d d . 21 23 24 1 d 2 d 2 0 d 2 31 32 34 1 d 2 d 2 d 2 0 41 42 43 Note that V is a root of quadratic equation whose coefficients are integer polynomials in dij , 1 i < j 4. ≤ ≤ Alexander Mednykh (NSU) Volumes of polyhedra 19October2011 2/34 Introduction Surprisely, but the result can be generalized on any Euclidean polyhedron in the following way. Theorem 1 (I. Kh. Sabitov, 1996) Let P be an Euclidean polyhedron. Then V = Vol(P) is a root of an even degree algebraic equation whose coefficients are integer polynomials in edge lengths of P depending on combinatorial type of P only. Example P1 P2 (All edge lengths are taken to be 1) Polyhedra P1 and P2 are of the same combinatorial type.
    [Show full text]
  • Motions and Stresses of Projected Polyhedra
    Motions and Stresses of Projected Polyhedra by Walter Whiteley* R&urn& Topologie Structuraie #7, 1982 Abstract Structural Topology #7,1982 L’utilisation de mouvements infinitesimaux de structures a panneaux permet Using infinitesimal motions of panel structures, a new proof is given for Clerk d’apporter une nouvelle preuve au theoreme de Clerk Maxwell affirmant que la Maxwell’s theorem that the projection of an oriented polyhedron from 3-space projection d’un polyedre de I’espace a 3 dimensions donne un diagramme plane gives a plane diagram of lines and points which forms a stressed bar and joint de lignes et de points qui forme une charpente contrainte a barres et a joints. framework. The methods extend to prove a simple converse for frameworks Les methodes tendent a prouver une reciproque simple pour les charpentes a with planar graphs - and a general converse for other polyhedra under appropriate graphes planaires - et une reciproque g&&ale pour ,les autres polyedres soumis conditions on the stress. The method of proof also yields a correspondence bet- a des conditions appropriees de contraintes. La methode utilisee pour la preuve ween the form of the stress on a bar (tension/compression) and the form of the pro&it aussi une correspondance entre la forme de la contrainte sur une bar dihedral angle (concave/convex). (tension/compression) et la forme de I’angle diedrique (concave/convexe). Les resultats ont une applicatioin potentielle a la fois sur I’etude des charpentes The results have potential application both to the study of frameworks and to et sur I’analyse de la scene (la reconnaissance d’images de polyedres).
    [Show full text]
  • Arxiv:1403.3190V4 [Gr-Qc] 18 Jun 2014 ‡ † ∗ Stefloig H Oetintr Ftehmloincon Hamiltonian the of [16]
    A curvature operator for LQG E. Alesci,∗ M. Assanioussi,† and J. Lewandowski‡ Institute of Theoretical Physics, University of Warsaw (Instytut Fizyki Teoretycznej, Uniwersytet Warszawski), ul. Ho˙za 69, 00-681 Warszawa, Poland, EU We introduce a new operator in Loop Quantum Gravity - the 3D curvature operator - related to the 3-dimensional scalar curvature. The construction is based on Regge Calculus. We define this operator starting from the classical expression of the Regge curvature, we derive its properties and discuss some explicit checks of the semi-classical limit. I. INTRODUCTION Loop Quantum Gravity [1] is a promising candidate to finally realize a quantum description of General Relativity. The theory presents two complementary descriptions based on the canon- ical and the covariant approach (spinfoams) [2]. The first implements the Dirac quantization procedure [3] for GR in Ashtekar-Barbero variables [4] formulated in terms of the so called holonomy-flux algebra [1]: one considers smooth manifolds and defines a system of paths and dual surfaces over which the connection and the electric field can be smeared. The quantiza- tion of the system leads to the full Hilbert space obtained as the projective limit of the Hilbert space defined on a single graph. The second is instead based on the Plebanski formulation [5] of GR, implemented starting from a simplicial decomposition of the manifold, i.e. restricting to piecewise linear flat geometries. Even if the starting point is different (smooth geometry in the first case, piecewise linear in the second) the two formulations share the same kinematics [6] namely the spin-network basis [7] first introduced by Penrose [8].
    [Show full text]
  • Computer-Aided Design Disjointed Force Polyhedra
    Computer-Aided Design 99 (2018) 11–28 Contents lists available at ScienceDirect Computer-Aided Design journal homepage: www.elsevier.com/locate/cad Disjointed force polyhedraI Juney Lee *, Tom Van Mele, Philippe Block ETH Zurich, Institute of Technology in Architecture, Block Research Group, Stefano-Franscini-Platz 1, HIB E 45, CH-8093 Zurich, Switzerland article info a b s t r a c t Article history: This paper presents a new computational framework for 3D graphic statics based on the concept of Received 3 November 2017 disjointed force polyhedra. At the core of this framework are the Extended Gaussian Image and area- Accepted 10 February 2018 pursuit algorithms, which allow more precise control of the face areas of force polyhedra, and conse- quently of the magnitudes and distributions of the forces within the structure. The explicit control of the Keywords: polyhedral face areas enables designers to implement more quantitative, force-driven constraints and it Three-dimensional graphic statics expands the range of 3D graphic statics applications beyond just shape explorations. The significance and Polyhedral reciprocal diagrams Extended Gaussian image potential of this new computational approach to 3D graphic statics is demonstrated through numerous Polyhedral reconstruction examples, which illustrate how the disjointed force polyhedra enable force-driven design explorations of Spatial equilibrium new structural typologies that were simply not realisable with previous implementations of 3D graphic Constrained form finding statics. ' 2018 Elsevier Ltd. All rights reserved. 1. Introduction such as constant-force trusses [6]. However, in 3D graphic statics using polyhedral reciprocal diagrams, the influence of changing Recent extensions of graphic statics to three dimensions have the geometry of the force polyhedra on the force magnitudes is shown how the static equilibrium of spatial systems of forces not as direct or intuitive.
    [Show full text]
  • A Remark on Spaces of Flat Metrics with Cone Singularities of Constant Sign
    A remark on spaces of flat metrics with cone singularities of constant sign curvatures Fran¸cois Fillastre and Ivan Izmestiev v2 November 12, 2018 Keywords: Flat metrics, convex polyhedra, mixed volumes, Minkowski space, covolume Abstract By a result of W. P. Thurston, the moduli space of flat metrics on the sphere with n cone singularities of prescribed positive curvatures is a complex hyperbolic orbifold of dimension n−3. The Hermitian form comes from the area of the metric. Using geometry of Euclidean polyhedra, we observe that this space has a natural decomposition into 1 real hyperbolic convex polyhedra of dimensions n − 3 and ≤ 2 (n − 1). By a result of W. Veech, the moduli space of flat metrics on a compact surface with cone singularities of prescribed negative curvatures has a foliation whose leaves have a local structure of complex pseudo-spheres. The complex structure comes again from the area of the metric. The form can be degenerate; its signature depends on the curvatures prescribed. Using polyhedral surfaces in Minkowski space, we show that this moduli space has a natural decomposition into spherical convex polyhedra. Contents 1 Flat metrics 1 1.1 Positivecurvatures ................................. 2 1.2 Negativecurvatures ................................ 4 2 Spaces of polygons 5 3 Boundary area of a convex polytope 8 4 Boundary area of convex bodies 11 5 Alternative argument for the signature of the area form 13 arXiv:1702.02114v2 [math.DG] 16 Nov 2017 6 Fuchsian convex polyhedra 13 7 Area form on Fuchsian convex bodies 16 7.1 First argument: mimicking the convex bodies case . ... 16 7.2 Second argument: explicit formula for the area .
    [Show full text]
  • On the Volume of a Spherical Octahedron with Symmetries
    ON THE VOLUME OF A SPHERICAL OCTAHEDRON WITH SYMMETRIES N. V. ABROSIMOV, M. GODOY-MOLINA, A. D. MEDNYKH Dedicated to Ernest Borisovich Vinberg on the occasion of his 70-th anniversary Abstract. In the present paper closed integral formulae for the volumes of spherical octahedron and hexahedron having non-trivial symmetries are established. Trigonometrical identities involving lengths of edges and dihedral angles (Sine-Tangent Rules) are ob- tained. This gives a possibility to express the lengths in terms of angles. Then the Schl¨afli formula is applied to find the volume of polyhedra in terms of dihedral angles explicitly. These results and the canonical duality between octahedron and hexahedron in the spherical space allowed to express the volume in terms of lengths of edges as well. Keywords: spherical polyhedron, volume, Schl¨afli formula, Sine- Tangent Rule, symmetric octahedron, symmetric hexahedron. 1. Introduction and Preliminaries The calculation of volume of polyhedron is very old and difficult problem. Probably, the first result in this direction belongs to Tartaglia (1499–1557) who found the volume of an Euclidean tetrahedron. Nowa- days this formula is more known as Caley-Menger determinant. A few years ago it was shown by I. Kh. Sabitov [Sb] that the volume of any Euclidean polyhedron is a root of algebraic equation whose coefficients are functions depending of combinatorial type and lengths of polyhe- dra. In hyperbolic and spherical spaces the situation is much more com- plicated. Gauss, who is one of creators of hyperbolic geometry, use the word ”die Dschungel” in relation with volume calculation in non- Euclidean geometry.
    [Show full text]
  • Hierarchical Interlaced Networks of Disclination Lines in Non-Periodic Structures J.-F
    Hierarchical interlaced networks of disclination lines in non-periodic structures J.-F. Sadoc, R. Mosseri To cite this version: J.-F. Sadoc, R. Mosseri. Hierarchical interlaced networks of disclination lines in non-periodic struc- tures. Journal de Physique, 1985, 46 (11), pp.1809-1826. 10.1051/jphys:0198500460110180900. jpa- 00210132 HAL Id: jpa-00210132 https://hal.archives-ouvertes.fr/jpa-00210132 Submitted on 1 Jan 1985 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. J. Physique 46 (1985) 1809-1826 NOVEMBRE 1985,1 1809 Classification Physics Abstracts 61.40D - 02.40 Hierarchical interlaced networks of disclination lines in non-periodic structures J.-F. Sadoc and R. Mosseri (+) Laboratoire de Physique des Solides, Bât. 510, 91405 Orsay, France (+) Laboratoire de Physique des Solides, CNRS, 1, place A. Briand, 92190 Meudon-Bellevue, France (Reçu le 3 mai 1985, accepté le 8 juillet 1985 ) Résumé. 2014 Nous décrivons l’ensemble des défauts dans une structure non cristalline déduite d’un polytope par une méthode itérative de décourbure. Les défauts apparaissent comme un ensemble hiérarchisé de réseaux de disinclinaisons entrelacés qui sont le lieu des sites où l’ordre local s’écarte de l’ordre icosaédrique parfait.
    [Show full text]
  • Platonic Topology and CMB Fluctuations: Homotopy
    Platonic topology and CMB fluctuations: Homotopy, anisotropy, and multipole selection rules. Peter Kramer, Institut f¨ur Theoretische Physik der Universit¨at T¨ubingen, Germany. July 26, 2021 Abstract. The Cosmic Microwave Background CMB originates from an early stage in the history of the universe. Observations show low multipole contributions of CMB fluctuations. A possible explanation is given by a non-trivial topology of the universe and has motivated the search for topological selection rules. Harmonic analysis on a topological manifold must provide basis sets for all functions compatible with a given topology and so is needed to model the CMB fluctuations. We analyze the fundamental groups of Platonic tetrahedral, cubic, and octahedral manifolds using deck transformations. From them we construct the appropriate harmonic analysis and boundary conditions. We provide the algebraic means for modelling the multipole expansion of incoming CMB radiation. From the assumption of randomness we derive selection rules, depending on the point symmetry of the manifold. 1 Introduction. Temperature fluctuations of the incoming Cosmic Microwave Background, originating from an early state of the universe, are being studied with great precision. We refer to [12] for the data. The weakness of the observed amplitudes for low multipole orders, see for example arXiv:0909.2758v5 [astro-ph.CO] 12 Jun 2010 [8], was taken by various authors as a motivation to explore constraints on the multipole amplitudes coming from non-trivial topologies of the universe. The topology of the universe is not fixed by the differential equations of Einstein’s theory of gravitation. It has been suggested that specific topological models lead to the selection and exclusion of certain low multipole moments and might explain the observations.
    [Show full text]
  • Spherephd: Applying Cnns on a Spherical Polyhedron Representation of 360◦ Images
    SpherePHD: Applying CNNs on a Spherical PolyHeDron Representation of 360◦ Images Yeonkun Lee∗, Jaeseok Jeong∗, Jongseob Yun∗, Wonjune Cho∗, Kuk-Jin Yoon Visual Intelligence Laboratory, Department of Mechanical Engineering, KAIST, Korea {dldusrjs, jason.jeong, jseob, wonjune, kjyoon}@kaist.ac.kr Abstract Omni-directional cameras have many advantages over conventional cameras in that they have a much wider field- of-view (FOV). Accordingly, several approaches have been proposed recently to apply convolutional neural networks (CNNs) to omni-directional images for various visual tasks. However, most of them use image representations defined in the Euclidean space after transforming the omni-directional Figure 1. Spatial distortion due to nonuniform spatial resolving views originally formed in the non-Euclidean space. This power in an ERP image. Yellow squares on both sides represent transformation leads to shape distortion due to nonuniform the same surface areas on the sphere. spatial resolving power and the loss of continuity. These effects make existing convolution kernels experience diffi- been widely used for many visual tasks to preserve locality culties in extracting meaningful information. information. They have shown great performance in classi- This paper presents a novel method to resolve such prob- fication, detection, and semantic segmentation problems as lems of applying CNNs to omni-directional images. The in [9][12][13][15][16]. proposed method utilizes a spherical polyhedron to rep- Following this trend, several approaches have been pro- resent omni-directional views. This method minimizes the posed recently to apply CNNs to omni-directional images variance of the spatial resolving power on the sphere sur- to solve classification, detection, and semantic segmenta- face, and includes new convolution and pooling methods tion problems.
    [Show full text]
  • Collection Volume I
    Collection volume I PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Thu, 29 Jul 2010 21:47:23 UTC Contents Articles Abstraction 1 Analogy 6 Bricolage 15 Categorization 19 Computational creativity 21 Data mining 30 Deskilling 41 Digital morphogenesis 42 Heuristic 44 Hidden curriculum 49 Information continuum 53 Knowhow 53 Knowledge representation and reasoning 55 Lateral thinking 60 Linnaean taxonomy 62 List of uniform tilings 67 Machine learning 71 Mathematical morphology 76 Mental model 83 Montessori sensorial materials 88 Packing problem 93 Prior knowledge for pattern recognition 100 Quasi-empirical method 102 Semantic similarity 103 Serendipity 104 Similarity (geometry) 113 Simulacrum 117 Squaring the square 120 Structural information theory 123 Task analysis 126 Techne 128 Tessellation 129 Totem 137 Trial and error 140 Unknown unknown 143 References Article Sources and Contributors 146 Image Sources, Licenses and Contributors 149 Article Licenses License 151 Abstraction 1 Abstraction Abstraction is a conceptual process by which higher, more abstract concepts are derived from the usage and classification of literal, "real," or "concrete" concepts. An "abstraction" (noun) is a concept that acts as super-categorical noun for all subordinate concepts, and connects any related concepts as a group, field, or category. Abstractions may be formed by reducing the information content of a concept or an observable phenomenon, typically to retain only information which is relevant for a particular purpose. For example, abstracting a leather soccer ball to the more general idea of a ball retains only the information on general ball attributes and behavior, eliminating the characteristics of that particular ball.
    [Show full text]
  • Loan Cop'y Only
    TOPOLOGICAL STRUCTURES FOR GENERALIZED BOUNDARY REPRESENTATIONS Leonidas Bardis and Nicholas Patrikalakis MITSG 94-22 LOANCOP'Y ONLY SeaGrant College Program Massachusetts Institute of Technology Cambridge,Massachusetts 02139 Grant: NA90AA-D-SG424 Project No: 92-RU-23 RelatedMIT SeaGrant College Program Publications Featureextraction from B-splinemarine propeller representations. Nicholas M, Patrikalakis and Leonidas Bardis. MITSG 93-12J. $2. Cut locusand medialaxis in globalshape interrogation and representation. Franz-Erich Wolter. MITSG93-11, $4, An Automaticcoarse and fine surfacemesh generation scheme based on medial axistransform. Part I, Algorithms.Part II, Implementation.H. Nebi Gursoy and Nicholas M. Patrikalakis. MITSG93-7J, $2. Offsetsof curveson rationalB-spline surfaces and surfaceapproximation with rationalB-splines. L. Bardisand N. M, Patrikalakis.MITSG 91-24J. $4. Surfaceintersections for geometricmodeling. N. M. Patrikalakisand P.V. Prakash, MITSG 91-23J. $2. Pleaseadd $1.50 $3,50foreign! for shipping/handlingand nrail your checkto; MIT SeaGrant College Program, 292 Main Street, E38-300, Cambridge, MA 02139. Topological Structures for Generalized Boundary Representations Leonidas Bardis Nicholas M. Patrikalakis Massachusetts Institute of Technology Cambridge, MA 02139-4307, USA Design Laboratory Memorandum 91-18 Issued: September 7, 1991 Revised: June 4, 1992 Revised: July 2, 1992 Revised: September 24, 1993 Revised: January 12, 1994 Revised: September 13, 1994 Copyright 994 Massachusetts Institute of Technology All rights reserved Dedication To our families. Contents List of Figures nl Preface 1 Introduction 2 Mathematical Background 2.1 Topologica,l Concepts . 2.2 Graph Theoretical Concepts 14 3 Boundary Representation Modeling Systems 3.1 Euler-Based Systems .. 18 3.1.1 The Winged-Edge Structure.... 18 3.1.2 The Geometric Work Bench GWB! 21 3,1,3 The Hierarchical Face Adjacency Hypergraph HFAH! 22 3.1.4 Other Models .
    [Show full text]