Monoamine Oxidase Inhibitors Revisited

Total Page:16

File Type:pdf, Size:1020Kb

Monoamine Oxidase Inhibitors Revisited 64 Review Article Monoamine oxidase Douglas G. Wells FrA~ACS, Andrew R. Bjorksten nsc inhibitors revisited The monoamine oxidase inhibitors (MAOI'S) were de- History veloped during the late 1950's as the first effective Isoniazid and its close relative iproniazid were introduced antidepressant agents. With the development of the for the treatment of tuberculosis in 1951.3 Zeller et al. 4 tricyclic antidepressants, their use was superseded by demonstrated enzyme inhibition of MAO by iproniazid, drugs which appeared to be generally more effective and and in 1957 it was first used for the treatment of lacked the dangerous side effect of hypertensive crises. depression: Iproniazid was withdrawn from the United Recently there has been a resurgence of interest in their States' market in 1960 because of instances of severe and use, prominently for atypical depressions but also for sometimes fatal hepatotoxicity, s Those agents in current anxiety states, obsessive-compulsive disorders, eating use (tranylcypromine, phenelzine, isocarboxazid and disorders, chronic pain syndromes and migraine. 1.2 pargyline, which in the U.S. is approved in the treatment Because of widespread belief among anaesthetists of hypertension only) are the result of efforts to synthesise concerning the likelihood of life-threatening cardiovascu- MAOI's having the benefits of ipronazid without its lar instability and central nervous system (CNS) dysfunc- adverse effects. An often quoted figure is that tranylcy- tion during anaesthesia and surgery when these agents are promine and phenelzine account for over 90 per cent of all present, usual recommendations have been to withdraw the MAOI's currently prescribed. ''7 Because these data them two to three weeks before surgery. A growing were collected in the 1960's, 8'9 they may not accurately awareness of the relative safety of these agents has led to reflect contemporary usage. A host of second generation questioning of this policy. The true incidence of those relatively type-selective MAOI's may soon be introduced. previously reported adverse drug effects was and is unknown, but certainly they occur in a very small minority of patients. The MAO enzyme system Although firm epidemiologic data of recent years are MAC) is a flavin-containing enzyme found principally on lacking, anaesthetists may encounter increasing numbers outer mitochondrial membranes. The active form is a dimer consisting of two subunits, each having a molecular of patients receiving MAOI's. The purpose of this review is to present the modem understanding of the MAO weight of approximately 60,000 daltons. It functions via system, its drug inhibitors and relevant drug interactions oxidative deamination to inactivate over 15 monoamines in order that rational clinical decisions can be taken formed in the body, some of which serve important roles concerning these agents and the anaesthetic problems as synaptic neumtransmitters or neuromodulators, e.g., which can arise in their presence. dopamine, 5 hydroxytryptamine (5 HT), norepinephrine and epinephrine. ~o MAO is present in most tissues of all vertebrate species.~t Monoamine oxidase has been divid- ed into two subtypes (MAO-A and MAO-B) on the basis Key words of the different substrate specificities of the two forms. ~2 INTERACTIONS(DRUG): monoamine oxidase inhibitors, There is now growing immunochemical evidence that the sympathomimetic amines, meperidine, barbiturates; two forms are distinct isoenzymes of different molecular PHARMACOLOGY: monamine oxidase inhibitors. weight (63,000-67,000 for MAO-A vs 60,000-63,000 for MAO-B) as they yield different peptide fragments in mapping studies and have different electrophoretic behav- From the Departmentof Anaesthesia, Amalgamated Melbourne iour. ,3:4 Even more recently, a monoclonal antibody has and Essendon Hospitals, Melbourne, Victoria, Australia. been raised to human platelet MAO-B which cross-reacts Address correspondence to: Dr. Douglas G. Wells, with human liver MAO-B but not with liver or placental Department of Anaesthesia, C/O Post Office, The Royal MAO-A. is Melbourne Hospital, Victoria. 3050, Australia. Substrates for MAO can be divided into three broad CAN J ANAESTH 1989 / 36: I / pp64-74 Wells and Bjorksten: MONOAMINE OXIDASE INHIBITORS 65 TABLE Substratesand inhibitorsof MAO MAO-A Mixed MAO-B Subsuates epinephrine m,p-tyramine ~-phenylethylamine norepinephrine dopamine phenylethanolamine metanephrine octopamine o-tyramine serotinin(5-HT) synephrine benzylamine tryptamine N-methyltryptamine N,N-melhyltryptamine Irreversibleinhihitors clorgyline phenelzine (-)deprenyl Lilly 51641 tranylcypromine Lilly 54781 isocarboxazid MDL 72145 pargyline(more B) AGN 1133 AFN 1135 Reversibleinhlbitars harma|ine amiflamine cimoxatone moclobemide brofaramine(CGP 11305A) Ro 11-1163 MD 780515 FLA. 336(+) categories on the basis of the affinity of the two ing on the tissues considered. The target function of the isoenzymes for them, namely MAO-A specific, MAO-B use of MAO inhibitors in depression is the regulation of specific and mixed substrates for which the two enzyme monoamine content within the nervous system. Here forms have approximately equal affinity (Table). How- MAO metabolises neurotmnsmitters and transmitter syn- ever, it must be remembered that the substrate specificity thesis byproducts both intraneurally and in combination is only relative as it is highly concentration depen- with catechol-o-methyl transferase (COMT) extraneural- dent.16' 17 As the substrate concentration is increased the ly. Due to its location in the outer mitocbondrial mem- specificity becomes less apparent and it is now obvious brane, 2t MAO in neurons is only capable of deaminating that both forms of MAO are capable of metabolising all substrates that are free within the cytoplasm, being unable substrates if presented at an appropriate concentration, t6 to gain access to substrates once they are bound within MAO inhibitors may also be divided into three catego- storage vesicles. As a result the cytoplasmic concentra- ries on the basis of their specificity for the two enzyme tion of monoamines is maintained at a very low level. subtypes (Table), but like the substrate specificity, the MAO-A may have a higher affinity for synthesis by- specificity of the selective inhibitors is also dose-dependent products, such as tryptamine and octopamine, than for the and disappears at higher doses.IS transmitters noradrenaline and dopamine, maintaining the The picture is further complicated by differences in purity of neurotransmitters by preventing the build-up of localisation of the MAO isoenzymes. In humans (there these compounds in the storage vesicles, t] In addition are considerable species differences) platelets contain intraneuronal MAO-A probably forms the last line of exclusively MAO-B, placenta exclusively MAO-A, j4 defence against circulating indirectly acting sympathomi- liver has slightly more MAO-A activity than MAO-B metic amines which, without MAO, would be free to while intestine slightly less. ~9 About 60 per cent of human enter the cytoplasm of nerve terminals and ultimately brain MAO activity is of the A subtype, t9 Monoaminergic displace the normal transmitters from their storage vesicles. neurons appear to contain mostly MAO-A, with the Other tissues with high MAO content include liver, exception of serotonergic neurons which appear to con- kidney and lung ~9 where the enzyme performs a defensive tain a considerable amount of MAO-B. 2~ Extraneuronal function inactivating circulating monoamines. 22 In par- cells contain mostly MAO-B.2~ Although it appears likely ticular, they appear to form the first line of defence against that such a large degree of compartmentalism is likely to monoamines absorbed from foods, such as tyramine and produce functional consequences they are far from clear at [3-phenyl ethanolaraine, which would otherwise produce present. 2~ an indirect sympathomimetic response resulting in the Monoamine oxidase has two major functions depend- precipitous rise in blood pressure known as the "cheese 66 CANADIAN JOURNAL OF ANAESTHESIA effect." MAn is also associated with the blood-brain and Tyrosine gut-blood barrier where it probably performs a similar /~/o: ~17:2~7,.;. (~ function. 22 pa L-. -(b) MAn inhibitors Inhibition of neuronal MAn (i.e., MAn-A) produces a ,, -- ..... (o) demonstrable increase in both the monoamine content of brain and the cytoplasmic concentration of MAn sub- strates within a few hours.2a While the therapeutic action was originally believed to be due to this amine accumula- tion, 2'* recent evidence has cast considerable doubt on this view. There are several secondary adaptive responses to the .(f) increased amine levels. A reduction of amine synthesis by end-product inhibition of tyrosine hydroxylase has been clearly demonstrated within the noradrenergic system25 and also for serotonergic neurons26 after treatment with FIGURE Neuronal consequences of chronic MAn inhibition in an MAn inhibitors. adrenergic neuron. NE = norepinephrine, E = epinephrine, DA = The increased cytoplasmic levels of synthesis byprod- dopamine, T = tyramine, O = octopamine. (a) end-product inhibition UCtS, which may increase up to 30 times their normal of transmittersynthesis enzymes; (b) accumulationof false concentration in contrast to norepinephrine and dopamine transmitters in storage vesicles; (c) increased cytoplasmic amine which only increase about two-fold,2a begin to enter concentration; (d) slimulation of inhibitory pre-synaptie receptors
Recommended publications
  • Studies on Mammalian Histidine Decarboxylase by N
    Brit. J. Pharmacol. (1956), 11, 119. STUDIES ON MAMMALIAN HISTIDINE DECARBOXYLASE BY N. G. WATON* From the Department ofPharmacology, University ofEdinburgh (RECEIVED SEPTEMBER 12, 1955) Histamine is present in most mammalian tissues, occurrence of an enzyme capable of decarboxylating but its mode of formation is still not clear. Accord- histidine in all mammals, as the experiments were ing to Blaschko (1945) there are two main theories: confined to a limited range of mammalian species. (1) Histamine is a vitamin, formed outside the The properties and the distribution in laboratory body by bacterial decarboxylation of dietary animals of mammalian histidine decarboxylase, histidine in the alimentary tract. (2) Histamine is a together with the distribution of histaminase and metabolite, formed from circulating histidine by histamine, have been reinvestigated in the hope of the histidine decarboxylase present in some tissues clarifying our knowledge of the role of histamine in of the body. the organism. That bacteria form histamine by decarboxylation METHODS of histidine is well known (Ackermann, 1910, 1911; Formation of Histamine from Histidine by Mammalian Berthelot and Bertrand, 1912; Mellanby and Twort, Tissues 1912; Kendall and Gebauer, 1930; Matsuda, 1933; Rabbit kidneys, which are a rich source of histidine Gale, 1940; Epps, 1945). Gale (1953) showed that decarboxylase, were placed in 0.9% w/v NaCl, freed the bacterial enzyme had several important differen- from all extraneous tissue, cut small and minced in a ces from the other amino acid decarboxylases which Latapie mincing machine. Where a tissue extract was had been studied. required, the minced kidney was ground for 10 min.
    [Show full text]
  • Neurotransmitter Resource Guide
    NEUROTRANSMITTER RESOURCE GUIDE Science + Insight doctorsdata.com Doctor’s Data, Inc. Neurotransmitter RESOURCE GUIDE Table of Contents Sample Report Sample Report ........................................................................................................................................................................... 1 Analyte Considerations Phenylethylamine (B-phenylethylamine or PEA) ................................................................................................. 1 Tyrosine .......................................................................................................................................................................................... 3 Tyramine ........................................................................................................................................................................................4 Dopamine .....................................................................................................................................................................................6 3, 4-Dihydroxyphenylacetic Acid (DOPAC) ............................................................................................................... 7 3-Methoxytyramine (3-MT) ............................................................................................................................................... 9 Norepinephrine ........................................................................................................................................................................
    [Show full text]
  • Review Paper Monoamine Oxidase Inhibitors: a Review Concerning Dietary Tyramine and Drug Interactions
    PsychoTropical Commentaries (2016) 1:1 – 90 © Fernwell Publications Review Paper Monoamine Oxidase Inhibitors: a Review Concerning Dietary Tyramine and Drug Interactions PK Gillman PsychoTropical Research, Bucasia, Queensland, Australia Abstract This comprehensive monograph surveys original data on the subject of both dietary tyramine and drug interactions relevant to Monoamine Oxidase Inhibitors (MAOIs), about which there is much outdated, incorrect and incomplete information in the medical literature and elsewhere. Fewer foods than previously supposed have problematically high tyramine levels because international food hygiene regulations have improved both production and handling. Cheese is the only food that has, in the past, been associated with documented fatalities from hypertension, and now almost all ‘supermarket’ cheeses are perfectly safe in healthy-sized portions. The variability of sensitivity to tyramine between individuals, and the sometimes unpredictable amount of tyramine content in foods, means a little knowledge and care are still advised. The interactions between MAOIs and other drugs are now well understood, are quite straightforward, and are briefly summarized here (by a recognised expert). MAOIs have no apparently clinically relevant pharmaco-kinetic interactions, and the only significant pharmaco-dynamic interaction, other than the ‘cheese reaction’ (caused by indirect sympatho-mimetic activity [ISA], is serotonin toxicity ST (aka serotonin syndrome) which is now well defined and straightforward to avoid by not co-administering any drug with serotonin re-uptake inhibitor (SRI) potency. There are no therapeutically used drugs, other than SRIs, that are capable of inducing serious ST with MAOIs. Anaesthesia is not contra- indicated if a patient is taking MAOIs. Most of the previously held concerns about MAOIs turn out to be mythical: they are either incorrect, or over-rated in importance, or stem from apprehensions born out of insufficient knowledge.
    [Show full text]
  • S41598-021-90243-1.Pdf
    www.nature.com/scientificreports OPEN Metabolomics and computational analysis of the role of monoamine oxidase activity in delirium and SARS‑COV‑2 infection Miroslava Cuperlovic‑Culf1,2*, Emma L. Cunningham3, Hossen Teimoorinia4, Anuradha Surendra1, Xiaobei Pan5, Stefany A. L. Bennett2,6, Mijin Jung5, Bernadette McGuiness3, Anthony Peter Passmore3, David Beverland7 & Brian D. Green5* Delirium is an acute change in attention and cognition occurring in ~ 65% of severe SARS‑CoV‑2 cases. It is also common following surgery and an indicator of brain vulnerability and risk for the development of dementia. In this work we analyzed the underlying role of metabolism in delirium‑ susceptibility in the postoperative setting using metabolomic profling of cerebrospinal fuid and blood taken from the same patients prior to planned orthopaedic surgery. Distance correlation analysis and Random Forest (RF) feature selection were used to determine changes in metabolic networks. We found signifcant concentration diferences in several amino acids, acylcarnitines and polyamines linking delirium‑prone patients to known factors in Alzheimer’s disease such as monoamine oxidase B (MAOB) protein. Subsequent computational structural comparison between MAOB and angiotensin converting enzyme 2 as well as protein–protein docking analysis showed that there potentially is strong binding of SARS‑CoV‑2 spike protein to MAOB. The possibility that SARS‑CoV‑2 infuences MAOB activity leading to the observed neurological and platelet‑based complications of SARS‑CoV‑2 infection requires further investigation. COVID-19 is an ongoing major global health emergency caused by severe acute respiratory syndrome coro- navirus SARS-CoV-2. Patients admitted to hospital with COVID-19 show a range of features including fever, anosmia, acute respiratory failure, kidney failure and gastrointestinal issues and the death rate of infected patients is estimated at 2.2%1.
    [Show full text]
  • Efficacy and Tolerability of Quinacrine Monotherapy and Albendazole Plus Chloroquine Combination Therapy in Nitroimidazole-Refractory Giardiasis: a Tropnet Study
    Klinik für Infektiologie & Spitalhygiene Efficacy and tolerability of quinacrine monotherapy and albendazole plus chloroquine combination therapy in nitroimidazole-refractory giardiasis: a TropNet study Andreas Neumayr, Mirjam Schunk, Caroline Theunissen, Marjan Van Esbroeck, Matthieu Mechain, Manuel Jesús Soriano Pérez, Kristine Mørch, Peter Sothmann, Esther Künzli, Camilla Rothe, Emmanuel Bottieau Journal Club 01.03.21 Andreas Neumayr Background on giardia treatment: • 1st-line treatment: 5-nitroimidazoles: metronidazole (1957), tinidazole, ornidazole, secnidazole • cure rate of 5NIs in 1st-line treatment: ~90% • in the last decade, an increase of 5NI-refractory giardia cases has been observed in travel medicine clinics across Europe: Hospital for Tropical Diseases, London: 2008: 15% --> 2013: 40% 70% of 5NI-refractory cases imported from India • 2nd-line treatment: effectiveness of a 2nd round with a 5NI: ~17% alternative drugs: albendazole, mebendazole, nitazoxanide, quinacrine, furazolidone, chloroquine, paromomycin 2012 TropNet member survey: 53 centres use 39 different treatment regimens, consisting of 7 different drugs in mono- or combination-therapy in various dosages and durations JC 01.03.21 Nabarro LE et al. Clin Microbiol Infect. 2015;21:791-6. • by 2013, there were only 13 reports of 2nd-line therapy for giardiasis (8 case series, 5 individual case reports): n=110 Cure rates Albendazole 6/32 18.7% Paromomycin 5/17 29.4% Nitazoxanide 2/5 40.0% Albendazole + 5-NI 42/53 79.2% Quinacrine 19/21 90.5% Quinacrine + 5-NI 14/14 100% Quinacrine + Paromomycin 2/2 100% • 2013: TropNet "GiardiaREF" study kick-off: Study on efficacy and tolerability of two 2nd-line regimens in nitroimidazole-refractory giardiasis: Quinacrine JC 01.03.21 Meltzer E et al.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
    US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig.
    [Show full text]
  • United States Patent (10) Patent No.: US 8,969,514 B2 Shailubhai (45) Date of Patent: Mar
    USOO896.9514B2 (12) United States Patent (10) Patent No.: US 8,969,514 B2 Shailubhai (45) Date of Patent: Mar. 3, 2015 (54) AGONISTS OF GUANYLATECYCLASE 5,879.656 A 3, 1999 Waldman USEFUL FOR THE TREATMENT OF 36; A 6. 3: Watts tal HYPERCHOLESTEROLEMIA, 6,060,037- W - A 5, 2000 Waldmlegand et al. ATHEROSCLEROSIS, CORONARY HEART 6,235,782 B1 5/2001 NEW et al. DISEASE, GALLSTONE, OBESITY AND 7,041,786 B2 * 5/2006 Shailubhai et al. ........... 530.317 OTHER CARDOVASCULAR DISEASES 2002fOO78683 A1 6/2002 Katayama et al. 2002/O12817.6 A1 9/2002 Forssmann et al. (75) Inventor: Kunwar Shailubhai, Audubon, PA (US) 2003,2002/0143015 OO73628 A1 10/20024, 2003 ShaubhaiFryburg et al. 2005, OO16244 A1 1/2005 H 11 (73) Assignee: Synergy Pharmaceuticals, Inc., New 2005, OO32684 A1 2/2005 Syer York, NY (US) 2005/0267.197 A1 12/2005 Berlin 2006, OO86653 A1 4, 2006 St. Germain (*) Notice: Subject to any disclaimer, the term of this 299;s: A. 299; NS et al. patent is extended or adjusted under 35 2008/0137318 A1 6/2008 Rangarajetal.O U.S.C. 154(b) by 742 days. 2008. O151257 A1 6/2008 Yasuda et al. 2012/O196797 A1 8, 2012 Currie et al. (21) Appl. No.: 12/630,654 FOREIGN PATENT DOCUMENTS (22) Filed: Dec. 3, 2009 DE 19744O27 4f1999 (65) Prior Publication Data WO WO-8805306 T 1988 WO WO99,26567 A1 6, 1999 US 2010/O152118A1 Jun. 17, 2010 WO WO-0 125266 A1 4, 2001 WO WO-02062369 A2 8, 2002 Related U.S.
    [Show full text]
  • Jos Journal 2
    POST-OPERATIVE AUDIT OF G6PD-DEFICIENT MALE CHILDREN WITH OBSTRUCTIVE ADENOTONSILLAR ENLARGEMENT AT UNIVERSITY COLLEGE HOSPITAL, IBADAN, NIGERIA. John EN1, Totyen EL1, Jacob N2, Nwaorgu OGB1 1 .Department of ENT/Head and Neck Surgery, University College Hospital, Ibadan, Nigeria 2. Department of paediatrics, University College Hospital, Ibadan, Nigeria All correspondences and request for reprint to Dr John EN, Department of ENT/Head and Neck Surgery, University College Hospital, Ibadan, Nigeria Email: [email protected] Telephone: +2348036240109 Abstract Background: G6PD deficiency ranks among the commonest hereditary enzyme deficiency worldwide and notable as a predisposing condition to haemolyticcrises. The fear of possible untoward effects is often expressed by parents of G6PD deficient male children scheduled for surgery after obtaining an informed and understood consent. The parental perception of obstructive adenotonsillar enlargement in this condition was also appraised. Methods: A retrospective chart review of all G6PD deficient male children between ages 1 to 7years who had adenotonsillectomy over a 3year period at University college Hospital, Ibadan, Nigeria. Results: The patients comprised of 22 G6PD deficient male children diagnosed shortly after birth upon development of neonatal jaundice. Fifteen(68.2%) and 6(27.3%) of the patients subsequently developed episodes of drug- induced haemolysis and non-haemolytic drug reactions prior to undergoing adenotonsillectomy by the otolaryngologists. None of the patients was observed to develop haemolytic crises up to 2weeks post-adenotonsillectomy. From the parental perception and responses in the follow-up period,all 22(100%) patient had resolution of noisy breathing, 20(91%) had improvement of snoring and apnoeic spells. Only 15 (68%) were reported to stop mouth-breathing.
    [Show full text]
  • The Effects of Phenelzine and Other Monoamine Oxidase Inhibitor
    British Journal of Phammcology (1995) 114. 837-845 B 1995 Stockton Press All rights reserved 0007-1188/95 $9.00 The effects of phenelzine and other monoamine oxidase inhibitor antidepressants on brain and liver 12 imidazoline-preferring receptors Regina Alemany, Gabriel Olmos & 'Jesu's A. Garcia-Sevilla Laboratory of Neuropharmacology, Department of Fundamental Biology and Health Sciences, University of the Balearic Islands, E-07071 Palma de Mallorca, Spain 1 The binding of [3H]-idazoxan in the presence of 106 M (-)-adrenaline was used to quantitate 12 imidazoline-preferring receptors in the rat brain and liver after chronic treatment with various irre- versible and reversible monoamine oxidase (MAO) inhibitors. 2 Chronic treatment (7-14 days) with the irreversible MAO inhibitors, phenelzine (1-20 mg kg-', i.p.), isocarboxazid (10 mg kg-', i.p.), clorgyline (3 mg kg-', i.p.) and tranylcypromine (10mg kg-', i.p.) markedly decreased (21-71%) the density of 12 imidazoline-preferring receptors in the rat brain and liver. In contrast, chronic treatment (7 days) with the reversible MAO-A inhibitors, moclobemide (1 and 10 mg kg-', i.p.) or chlordimeform (10 mg kg-', i.p.) or with the reversible MAO-B inhibitor Ro 16-6491 (1 and 10 mg kg-', i.p.) did not alter the density of 12 imidazoline-preferring receptors in the rat brain and liver; except for the higher dose of Ro 16-6491 which only decreased the density of these putative receptors in the liver (38%). 3 In vitro, phenelzine, clorgyline, 3-phenylpropargylamine, tranylcypromine and chlordimeform dis- placed the binding of [3H]-idazoxan to brain and liver I2 imidazoline-preferring receptors from two distinct binding sites.
    [Show full text]
  • Treatment for Calcium Channel Blocker Poisoning a Systematic Review
    Clinical Toxicology ISSN: 1556-3650 (Print) 1556-9519 (Online) Journal homepage: http://www.tandfonline.com/loi/ictx20 Treatment for calcium channel blocker poisoning: A systematic review M. St-Onge, P.-A. Dubé, S. Gosselin, C. Guimont, J. Godwin, P. M. Archambault, J.-M. Chauny, A. J. Frenette, M. Darveau, N. Le sage, J. Poitras, J. Provencher, D. N. Juurlink & R. Blais To cite this article: M. St-Onge, P.-A. Dubé, S. Gosselin, C. Guimont, J. Godwin, P. M. Archambault, J.-M. Chauny, A. J. Frenette, M. Darveau, N. Le sage, J. Poitras, J. Provencher, D. N. Juurlink & R. Blais (2014) Treatment for calcium channel blocker poisoning: A systematic review, Clinical Toxicology, 52:9, 926-944, DOI: 10.3109/15563650.2014.965827 To link to this article: http://dx.doi.org/10.3109/15563650.2014.965827 © 2014 The Author(s). Published by Taylor & View supplementary material Francis. Published online: 06 Oct 2014. Submit your article to this journal Article views: 8320 View related articles View Crossmark data Citing articles: 47 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ictx20 Download by: [Bird Lib Ouhsc] Date: 14 November 2017, At: 06:23 Clinical Toxicology (2014), 52, 926–944 Copyright © 2014 Informa Healthcare USA, Inc. ISSN: 1556-3650 print / 1556-9519 online DOI: 10.3109/15563650.2014.965827 REVIEW ARTICLE Treatment for calcium channel blocker poisoning: A systematic review M. ST-ONGE,1,2,3 P.-A. DUBÉ,4,5,6 S. GOSSELIN,7,8,9 C. GUIMONT,10 J.
    [Show full text]
  • Inhibition of Monoamine Oxidase in 5
    Br. J. Pharmac. (1985), 85, 683-690 Inhibition ofmonoamine oxidase in 5- hydroxytryptaminergic neurones by substitutedp- aminophenylalkylamines Anna-Lena Ask, Ingrid Fagervall, L. Florvall, S.B. Ross1 & Susanne Ytterborn Research Laboratories, Astra Likemedel AB, S-151 85 Si3dertilje, Sweden 1 A series ofsubstituted p-aminophenethylamines and some related compounds were examined with regards to the inhibition ofmonoamine oxidase (MAO) in vivo inside and outside 5-hydroxytryptamin- ergic neurones in the rat hypothalamus. This was recorded as the protection against the irreversible inhibition of MAO produced by phenelzine by determining the remaining deaminating activity in the absence and presence ofcitalopram using a low (0.1 yIM) concentration of ['4CJ-5-hydroxytryptamine (5-HT) as substrate. 2 Some ofthe phenethylamines were much more potent inside than outside the 5-hydroxytryptamin- ergic neurones. This neuronal selectivity was antagonized by pretreatment of the rats with norzimeldine, a 5-HT uptake inhibitor, which indicates that these compounds are accumulated in the 5-HT nerve terminals by the 5-HT pump. 3 Selectivity was obtained for compounds with dimethyl, monomethyl or unsubstituted p-amino groups. An isopropyl group appears to substitute for the dimethylamino group but with considerably lower potency. Compounds with 2-substitution showed selectivity for aminergic neurones and this effect decreased with increased size of the substituent. The 2,6-dichloro derivative FLA 365 had, however, no neuronal selective action but was a potent MAO inhibitor. Substitutions in the 3- and 5- positions decreased both potency and selectivity. 4 Prolongation ofthe side chain with one methylene group abolished the preference for the MAO in 5-hydroxytryptaminergic neurones although the MAO inhibitory potency remained.
    [Show full text]
  • Intracavernous Methoxamine in the Treatment of Priapism
    International Journal of Impotence Research (1998) 10, 257±259 ß 1998 Stockton Press All rights reserved 0955-9930/98 $12.00 http://www.stockton-press.co.uk/ijir Case Report Intracavernous methoxamine in the treatment of priapism J Jara, I Moncada, G Bueno and C Hernandez Urology Department, Hospital General Universitario, Madrid, Spain Methoxamine is an alpha-adrenergic drug, its unique pharmacokinetics and mechanism of action on alpha-1 receptors lead to consider it, similarly to phenylephrine, as a ®rst-choice drug for treating drug-induced or veno-occlusive priapism. The experience obtained with its use in the management of three cases of priapism lasting over 7 h and one case of sustained rigid erection caused during anesthetic induction are reported. Keywords: methoxamine; priapism; intracavernous drug therapy Introduction adrenergic agents. In a later phase, cell ischemia and ®brosis takes place, making the smooth muscle irresponsive to pharmacologic agents. Since the introduction of intracavernous injections In this present study we report on the ef®cacy and of vasoactive drugs in clinical practice, the inci- safety of methoxamine, a selective alpha-1 adrener- dence of priapism have enormously increased, from gic agent, in the treatment of drug-induced pri- 1 being an occasional ®nding to be the most common apism. cause of priapism, according to Lue.2 The incidence of this untoward effect of intra- cavernous injections depends on the drug used, the dose administered and the underlying etiology of Case reports impotence. In a review of the literature,3 papaverine induced priapism in 9.5% of 2314 patients, the Case 1 combination of papaverine plus phentolamine in 5.3% of 2914 patients and PGE1 only in 2.4% of the A 44 y old male presented to the urology department 1284 patients revised.
    [Show full text]