Wind-Wave-Current System in Coastal Ocean

Total Page:16

File Type:pdf, Size:1020Kb

Wind-Wave-Current System in Coastal Ocean Transactions on the Built Environment vol 70, © 2003 WIT Press, www.witpress.com, ISSN 1743-3509 Wind-wave-current system in coastal ocean T. Yamashita, S. Kato & Y. Baba Disaster Prevention Research Institute, Kyoto University, Japan Abstract Observational discoveries of coastal current structure in Ogata Coast, Japan, were summarized with respect to characteristics of wind and waves in the wave-shoaling region. The observations of flow structure under the storm condition (strong wind & high wave) showed that (1) the coastal longshore current that has a vertically uniform flow profile, was developed in the wide area of coastal zone including the surf zone, and (2) strong shear flow with undertow (offshore-going near-bottom current) was developed in the surf zone. As a generation mechanism of such flow structures, it was designated that sea surface stress was emphasized under storm condition with the energy transfer from wind to waves through whitecap dissipation of shoalkg waves. A mathematical model of whitecaps dissipation stress,z,, ,was proposed as an energy transfer interface between atmosphere and coastal ocean. Using this interface model, numerical Wind-Wave-Current System (WWC System) was established, in which the relation between wind stresses (wind field), whitecap breaker stresses (wave field) and bottom stresses (current field) were integrated. Enhancing effects of whitecap dissipation stress due to wave shoaling was also taken into consideration in the system. 1. Introduction One of the most important problems in coastal management is the prediction of changes in coastal morphology, which is equivalent to prediction of winds, waves, currents and sediment transport in the coastal zone. So much research has been carried out to make clear the mechanism of beach erosion, to develop its Transactions on the Built Environment vol 70, © 2003 WIT Press, www.witpress.com, ISSN 1743-3509 64 Coastal Engineering V1 control measures, and to create a desirable coastal environment. In these researches, very few mathematical models consider the effect of wind-induced currents under the storm condition, such as hurricane and typhoon. Too much attention has been given to the wave action in the surf zone as a major external force for morphological and dynamical changes in coastal environment. We should give attention to the material movement and sediment transport, which are driven by both wind-induced and wave-induced currents in wide areas of the coastal sea. The point of the beach management in the Japan Sea is that wind and wave-induced coastal current systems (coastal current in the coastal zone under the strong wind condition) are the driving forces of sediment transport in the wide coastal zone (from the shore to 20-30m deep sea-area). Recent observations of currents and waves in the Central Japan sea coasts show that winter monsoon winds develop high waves, together with strong wind-induced currents in the wide area of the nearshore zone (Yamashita et al., 1998)[1]. The wind-induced currents combine with nearshore currents generated by depth-limited breaking waves to generate surf zone currents. A new wind-wave-current system in the shoaling region was proposed in this study. The current enhancing effect due to whitecap dissipation of wind waves is considered in the system in terms of the whitecap shearing stress,.tb, , which is an additional sea-surface shear stress for fluid motions caused by wave breaking. The idea is that the rate of work of the surface roller of whitecap breaker (=shearing stress times wave celerity) balances against the energy dissipation rate of wind waves. These effects are enhanced in the shoaling water by increasing wave steepness. Comprehensive consideration of theses effects was taken in the storm surge prediction system. 2. Coastal current system: observational discoveries Investigation of coastal current induced by both wind and wave in the Japan Sea is important to predict beach changes. The Disaster Prevention Research Institute (DPRI), Kyoto University has condueted Eeld observations of coastal currents, waves and wind under the winter monsoon condition, every winter since 1997 in the Ogata Coast (see Fig. I). From the observational results, we obtained (Yamashita et al., 1998[1]; Kato and Yamashita 2000[2]) that: (1) strong offshore-going currents are generated by strong wind and high waves inside the surf zone; (2) outside the surf zone, the longshore component of coastal currents is mostly generated by strong wind; (3) longshore currents in the offshore region are strong enough to transport sediment alongshore. Besides, we found that these wind effects for the coastal currents are remarkable outside the surf zone, over a region of 10 to 15 m depth. Therefore, in planning large-scale coastal structures, such as harbor breakwaters and offshore reclamations, the estimation of wind and wave-induced currents in the coastal region is of great importance. In this study, a simple formulation of the cross-shore profile of wind and wave-induced longshore currents is derived based on the results from observations and numerical simulation. Transactions on the Built Environment vol 70, © 2003 WIT Press, www.witpress.com, ISSN 1743-3509 Coastal Engineering V1 65 Field observation in Ogata Coast velocity profile wave property EM: electromagnetic current meter ADCP: Acoustic Doppler Current Profiler Naoetsu o 1.0 Ogata" Kakizaki lkbor U Fishing Port Fishing Port 0 Wave Hunter EM H ADCP Fig. 1 Observation stations (St.1- St.13) Figure 2 shows the results of the joint observation, in which the significant wave height at 15m depth, the wind speed on TOP, the cross-shore and longshore currents at the points of 20m, 15m, 8m and 5m-depth are shown. Observation stations at 8m and 5m-depth are inside the surf zone in the storm condition, in which strong offshore-going currents are observed intermittently and the occurrence of these currents coincides with high wave conditions. The intensity of offshore-going currents is extremely strong at tke depth of 5m. The offshore-going current intensities outside the surf zone (stations of 15m and 20m-depth) are less than 10 crnts, however, onshore-going currents are predominant. It is important that the occurrence of strong offshore-going currents is limited near the surf zone and this current may cause offshore-going sediment transport in the nearshore zone. On the other hand, the variational tendency of longshore current is similar to that of wind speed as shown by thick line in Fig. 2. The overlaid thick line is the smoothed observational data of wind speed. The relation between longshore current near the bottom and wind speed is quite clear outside the surf zone. Therefore, longshore currents induced by winds are widely generated in the coastal region. Moreover, the intensity of longshore currents is enough to transport sediment. Strong longshore currents are much bigger than cross-shore currents outside the surf zone. Transactions on the Built Environment vol 70, © 2003 WIT Press, www.witpress.com, ISSN 1743-3509 66 Coastal Engineering VI 0 0. f 0. G 0. e -0. B q -0. 0 0. 0. 4 -0. Time (day) Time (day) Fig. 2 Coastal currents observed in Ogata Coast in winter. 2.1 Wind and wave-induced longshore currents The cross-shore profiles of the near bottom component of longshore coastal currents induced by wind are simulated by a quasi-31) model (Kato and Yamashita. 2000[2]). An idealized computational domain, with a uniform bottom slope, 1/100, in the cross-shore direction and constant in the longshore direction, is used for the simulation(Fig. 3). The maximum depth in this domain is 100 m. These profiles were approxhated by fhe log-normal distribution function with water depth h as proposed by Kato et d. (1999)[3] where, a, b, c are fitting parameters. Using this formulation, an equation for the depth-dependent bottom friction coefficient, based on observations and numerical simulations, is obtained as (ln h - b)' f(h) = 27WaC~a2 pc2 where a, b and c are parameters that can be determined by adjusting cross-shore profile of coastal currents. In this study, wave-effects on coastal currents are considered with the surface shear stress enhanced by whitecap dissipation and the wave breaking in the surf zone. Wind generates currents directly by the wind Transactions on the Built Environment vol 70, © 2003 WIT Press, www.witpress.com, ISSN 1743-3509 Coastal Engineering V1 67 shear stress at the sea surface, and indirectly through whitecap in the wide area of coastal regions. In the shoaling region, waves are deformed by sea bottom topography and waves become steeper in the shallow region. Then whitecaps occur. Wave energy dissipates via whitecaps (whitecap dissipation) and the surface shear stress is enhanced by whitecap dissipation. Therefore, wind shear stress and shear stress enhanced by whitecap dissipation are separated to explicitly consider the wave shoaling effect. The surface shear stress is assumed as follows q = Pa~D~2+ pABgH sin cx (3) 1 A = -C,,H,~~Ks -KS,MIN, 8g tanh kh where, B is the ratio of wave steepness (H,/L,), H is the local wave height, is the local wave direction, k is the local wave number, Ksand are the a shoreline Fig. 3 Schematized computational domain for wind-induced current simulation using quasi-3D model CO shoaling coefficient and its minimum value, is the angular frequency of waves, Cdisis a constant, and subscript ""0" stands for "offsfiore". For calculation of the longshore component of nearshore currents by wave breaking in the surf zone, the following typical formulation by Longuet-Higgins (1970)[4] is employed. Ubr(y/yb)is the cross-shore profile of longshore currents, y is the cross-shore distance from the shoreline, yb is the breaking point (distance) from the shoreline, uo is the Iongshore currents at the breaking point, y is a constant, f, is the bottom friction coefficient due to wave motion, hb is the breaking water depth, s is the bottom slope, aband cb are the wave direction and wave velocity at the breaking point respectively.
Recommended publications
  • Observations of Nearshore Infragravity Waves: Seaward and Shoreward Propagating Components A
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. C8, 3095, 10.1029/2001JC000970, 2002 Observations of nearshore infragravity waves: Seaward and shoreward propagating components A. Sheremet,1 R. T. Guza,2 S. Elgar,3 and T. H. C. Herbers4 Received 14 May 2001; revised 5 December 2001; accepted 20 December 2001; published 6 August 2002. [1] The variation of seaward and shoreward infragravity energy fluxes across the shoaling and surf zones of a gently sloping sandy beach is estimated from field observations and related to forcing by groups of sea and swell, dissipation, and shoreline reflection. Data from collocated pressure and velocity sensors deployed between 1 and 6 m water depth are combined, using the assumption of cross-shore propagation, to decompose the infragravity wave field into shoreward and seaward propagating components. Seaward of the surf zone, shoreward propagating infragravity waves are amplified by nonlinear interactions with groups of sea and swell, and the shoreward infragravity energy flux increases in the onshore direction. In the surf zone, nonlinear phase coupling between infragravity waves and groups of sea and swell decreases, as does the shoreward infragravity energy flux, consistent with the cessation of nonlinear forcing and the increased importance of infragravity wave dissipation. Seaward propagating infragravity waves are not phase coupled to incident wave groups, and their energy levels suggest strong infragravity wave reflection near the shoreline. The cross-shore variation of the seaward energy flux is weaker than that of the shoreward flux, resulting in cross-shore variation of the squared infragravity reflection coefficient (ratio of seaward to shoreward energy flux) between about 0.4 and 1.5.
    [Show full text]
  • A Near-Shore Linear Wave Model with the Mixed Finite Volume and Finite Difference Unstructured Mesh Method
    fluids Article A Near-Shore Linear Wave Model with the Mixed Finite Volume and Finite Difference Unstructured Mesh Method Yong G. Lai 1,* and Han Sang Kim 2 1 Technical Service Center, U.S. Bureau of Reclamation, Denver, CO 80225, USA 2 Bay-Delta Office, California Department of Water Resources, Sacramento, CA 95814, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-303-445-2560 Received: 5 October 2020; Accepted: 1 November 2020; Published: 5 November 2020 Abstract: The near-shore and estuary environment is characterized by complex natural processes. A prominent feature is the wind-generated waves, which transfer energy and lead to various phenomena not observed where the hydrodynamics is dictated only by currents. Over the past several decades, numerical models have been developed to predict the wave and current state and their interactions. Most models, however, have relied on the two-model approach in which the wave model is developed independently of the current model and the two are coupled together through a separate steering module. In this study, a new wave model is developed and embedded in an existing two-dimensional (2D) depth-integrated current model, SRH-2D. The work leads to a new wave–current model based on the one-model approach. The physical processes of the new wave model are based on the latest third-generation formulation in which the spectral wave action balance equation is solved so that the spectrum shape is not pre-imposed and the non-linear effects are not parameterized. New contributions of the present study lie primarily in the numerical method adopted, which include: (a) a new operator-splitting method that allows an implicit solution of the wave action equation in the geographical space; (b) mixed finite volume and finite difference method; (c) unstructured polygonal mesh in the geographical space; and (d) a single mesh for both the wave and current models that paves the way for the use of the one-model approach.
    [Show full text]
  • Mapping Turbidity Currents Using Seismic Oceanography Title Page Abstract Introduction 1 2 E
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Ocean Sci. Discuss., 8, 1803–1818, 2011 www.ocean-sci-discuss.net/8/1803/2011/ Ocean Science doi:10.5194/osd-8-1803-2011 Discussions OSD © Author(s) 2011. CC Attribution 3.0 License. 8, 1803–1818, 2011 This discussion paper is/has been under review for the journal Ocean Science (OS). Mapping turbidity Please refer to the corresponding final paper in OS if available. currents using seismic E. A. Vsemirnova and R. W. Hobbs Mapping turbidity currents using seismic oceanography Title Page Abstract Introduction 1 2 E. A. Vsemirnova and R. W. Hobbs Conclusions References 1Geospatial Research Ltd, Department of Earth Sciences, Tables Figures Durham University, Durham DH1 3LE, UK 2Department of Earth Sciences, Durham University, Durham DH1 3LE, UK J I Received: 25 May 2011 – Accepted: 12 August 2011 – Published: 18 August 2011 J I Correspondence to: R. W. Hobbs ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion 1803 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract OSD Using a combination of seismic oceanographic and physical oceanographic data ac- quired across the Faroe-Shetland Channel we present evidence of a turbidity current 8, 1803–1818, 2011 that transports suspended sediment along the western boundary of the Channel. We 5 focus on reflections observed on seismic data close to the sea-bed on the Faroese Mapping turbidity side of the Channel below 900m. Forward modelling based on independent physi- currents using cal oceanographic data show that thermohaline structure does not explain these near seismic sea-bed reflections but they are consistent with optical backscatter data, dry matter concentrations from water samples and from seabed sediment traps.
    [Show full text]
  • Infragravity Wave Energy Partitioning in the Surf Zone in Response to Wind-Sea and Swell Forcing
    Journal of Marine Science and Engineering Article Infragravity Wave Energy Partitioning in the Surf Zone in Response to Wind-Sea and Swell Forcing Stephanie Contardo 1,*, Graham Symonds 2, Laura E. Segura 3, Ryan J. Lowe 4 and Jeff E. Hansen 2 1 CSIRO Oceans and Atmosphere, Crawley 6009, Australia 2 Faculty of Science, School of Earth Sciences, The University of Western Australia, Crawley 6009, Australia; [email protected] (G.S.); jeff[email protected] (J.E.H.) 3 Departamento de Física, Universidad Nacional, Heredia 3000, Costa Rica; [email protected] 4 Faculty of Engineering and Mathematical Sciences, Oceans Graduate School, The University of Western Australia, Crawley 6009, Australia; [email protected] * Correspondence: [email protected] Received: 18 September 2019; Accepted: 23 October 2019; Published: 28 October 2019 Abstract: An alongshore array of pressure sensors and a cross-shore array of current velocity and pressure sensors were deployed on a barred beach in southwestern Australia to estimate the relative response of edge waves and leaky waves to variable incident wind wave conditions. The strong sea 1 breeze cycle at the study site (wind speeds frequently > 10 m s− ) produced diurnal variations in the peak frequency of the incident waves, with wind sea conditions (periods 2 to 8 s) dominating during the peak of the sea breeze and swell (periods 8 to 20 s) dominating during times of low wind. We observed that edge wave modes and their frequency distribution varied with the frequency of the short-wave forcing (swell or wind-sea) and edge waves were more energetic than leaky waves for the duration of the 10-day experiment.
    [Show full text]
  • Climate Change Report for Gulf of the Farallones and Cordell
    Chapter 6 Responses in Marine Habitats Sea Level Rise: Intertidal organisms will respond to sea level rise by shifting their distributions to keep pace with rising sea level. It has been suggested that all but the slowest growing organisms will be able to keep pace with rising sea level (Harley et al. 2006) but few studies have thoroughly examined this phenomenon. As in soft sediment systems, the ability of intertidal organisms to migrate will depend on available upland habitat. If these communities are adjacent to steep coastal bluffs it is unclear if they will be able to colonize this habitat. Further, increased erosion and sedimentation may impede their ability to move. Waves: Greater wave activity (see 3.3.2 Waves) suggests that intertidal and subtidal organisms may experience greater physical forces. A number of studies indicate that the strength of organisms does not always scale with their size (Denny et al. 1985; Carrington 1990; Gaylord et al. 1994; Denny and Kitzes 2005; Gaylord et al. 2008), which can lead to selective removal of larger organisms, influencing size structure and species interactions that depend on size. However, the relationship between offshore significant wave height and hydrodynamic force is not simple. Although local wave height inside the surf zone is a good predictor of wave velocity and force (Gaylord 1999, 2000), the relationship between offshore Hs and intertidal force cannot be expressed via a simple linear relationship (Helmuth and Denny 2003). In many cases (89% of sites examined), elevated offshore wave activity increased force up to a point (Hs > 2-2.5 m), after which force did not increase with wave height.
    [Show full text]
  • I. Wind-Driven Coastal Dynamics II. Estuarine Processes
    I. Wind-driven Coastal Dynamics Emily Shroyer, Oregon State University II. Estuarine Processes Andrew Lucas, Scripps Institution of Oceanography Variability in the Ocean Sea Surface Temperature from NASA’s Aqua Satellite (AMSR-E) 10000 km 100 km 1000 km 100 km www.visibleearth.nasa.Gov Variability in the Ocean Sea Surface Temperature (MODIS) <10 km 50 km 500 km Variability in the Ocean Sea Surface Temperature (Field Infrared Imagery) 150 m 150 m ~30 m Relevant spatial scales range many orders of magnitude from ~10000 km to submeter and smaller Plant DischarGe, Ocean ImaginG LanGmuir and Internal Waves, NRL > 1000 yrs ©Dudley Chelton < 1 sec < 1 mm > 10000 km What does a physical oceanographer want to know in order to understand ocean processes? From Merriam-Webster Fluid (noun) : a substance (as a liquid or gas) tending to flow or conform to the outline of its container need to describe both the mass and volume when dealing with fluids Enterà density (ρ) = mass per unit volume = M/V Salinity, Temperature, & Pressure Surface Salinity: Precipitation & Evaporation JPL/NASA Where precipitation exceeds evaporation and river input is low, salinity is increased and vice versa. Note: coastal variations are not evident on this coarse scale map. Surface Temperature- Net warming at low latitudes and cooling at high latitudes. à Need Transport Sea Surface Temperature from NASA’s Aqua Satellite (AMSR-E) www.visibleearth.nasa.Gov Perpetual Ocean hWp://svs.Gsfc.nasa.Gov/cGi-bin/details.cGi?aid=3827 Es_manG the Circulaon and Climate of the Ocean- Dimitris Menemenlis What happens when the wind blows on Coastal Circulaon the surface of the ocean??? 1.
    [Show full text]
  • Download Presentation
    WaveWave drivendriven sea-levelsea-level anomalyanomaly atat MidwayMidway AtollAtoll RonRon HoekeHoeke CSIROCSIRO SeaSea LevelLevel andand CoastsCoasts JeromeJerome AucanAucan LaboratoireLaboratoire d'Etudesd'Etudes enen GéophysiqueGéophysique etet OcéanographieOcéanographie SpatialeSpatiale (LEGOS),(LEGOS), IRDIRD MarkMark MerrifieldMerrifield SOESTSOEST –– UniversityUniversity ofof HawaiiHawaii Funding:Funding: ••NOAANOAA CRCPCRCP ••JIMARJIMAR –– UniversityUniversity ofof HawaiiHawaii ••AustralianAustralian InstituteInstitute ofof MarineMarine ScienceScience (AIMS)(AIMS) ••CSIROCSIRO SeaSea LevelLevel andand CoastsCoasts ((AusAID)AusAID) photo: Scott Smithers WaveWave set-upset-up atat PacificPacific atollsatolls andand islandsislands “..the power of the breaking waves is utilized to maintain a water level just inside the surf zone about 1.5 ft above sea level.” Munk and Sargent (1948) Adjustment of Bikini Atoll to waves, Transactions, Am. Geo. Union, 29(6), 855-860. Wave set-up may be “as much as 20% of the incident wave height.” Tait, R. J. (1972) Wave Set-Up on Coral Reefs, J. Geophys. Res., 77(12). WaveWave set-upset-up atat PacificPacific atollsatolls andand islandsislands Steep-sloped Continental Shelf: islands/atolls: Wave dissipation Wave dissipation close farther offshore to shore/reef edge Smaller waves Larger waves Larger storm surge Smaller storm surge Graber et al. (2006) Coastal forecasts and storm surge predictions for tropical cyclones: A timely partnership program, Oceanography, 19(1), 130–141. PacificPacific wavewave climateclimate Hoeke et al. (2011) J. Geophys. Res., 116(C4), C04018. WaveWave set-upset-up inundationinundation eventsevents Nov. 28, 1979 Pohnpei Majuro Dec. 8, 2008 Fiji T imes,May 21, 2011 Takuu Dec. 10, 2008 Caldwell,Vitousek, Aucan (2009), Frequency and Duration of Coinciding High Surf and Tides along the North Shore of Oahu, Hawaii, 1981-2007, J.
    [Show full text]
  • Stratospheric Transport
    Journal of the Meteorological Society of Japan, Vol. 80, No. 4B, pp. 793--809, 2002 793 Stratospheric Transport R. Alan PLUMB Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA (Manuscript received 3 July 2001, in revised form 15 February 2002) Abstract Improvements in our understanding of transport processes in the stratosphere have progressed hand in hand with advances in understanding of stratospheric dynamics and with accumulating remote and in situ observations of the distributions of, and relationships between, stratospheric tracers. It is conve- nient to regard the stratosphere as being separated into four regions: the summer hemisphere, the tropics, the wintertime midlatitude ‘‘surf zone’’, and the winter polar vortex. Stratospheric transport is dominated by mean diabatic advection (upwelling in the tropics, downwelling in the surf zone and the vortex) and, especially, by rapid isentropic stirring within the surf zone. These characteristics determine the global-scale distributions of tracers, and their mutual relationships. Despite our much-improved understanding of these processes, many chemical transport models still appear to exhibit significant shortcomings in simulating stratospheric transport, as is evidenced by their tendency to underestimate the age of stratospheric air. 1. Introduction have opposite large-scale gradients (HF has a stratospheric source and tropospheric sink, It has long been recognized that strato- CH a tropospheric source and stratospheric spheric trace gases with sufficiently weak 4 sink); nevertheless, the shapes of their iso- chemical sources and sinks have similar global pleths are very similar, with isopleths bulging distributions, in the sense that their isopleths upward in the tropics and poleward/downward (surfaces of constant mixing ratio) have similar slopes in the extratropics.
    [Show full text]
  • Turbulence in the Swash and Surf Zones: a Review
    Coastal Engineering 45 (2002) 129–147 www.elsevier.com/locate/coastaleng Turbulence in the swash and surf zones: a review Sandro Longo a,*, Marco Petti b,1, Inigo J. Losada c,2 aDepartment of Civil Engineering, University of Parma, Parco Area delle Scienze, 181/A, 43100 Parma, Italy bDipartimento di Georisorse e Territorio, Faculty of Engineering, University of Udine, Via del Cotonificio, 114, 33100 Udine, Italy cOcean and Coastal Research Group, Universidad de Cantabria, E.T.S.I.C.C. y P. Av. de los Castros s/n, 39005 Santander, Spain Abstract This paper reviews mainly conceptual models and experimental work, in the field and in the laboratory, dedicated during the last decades to studying turbulence of breaking waves and bores moving in very shallow water and in the swash zone. The phenomena associated with vorticity and turbulence structures measured are summarised, including the measurement techniques and the laboratory generation of breaking waves or of flow fields sharing several characteristics with breaking waves. The effect of air entrapment during breaking is discussed. The limits of the present knowledge, especially in modelling a two- or three-phase system, with air and sediment entrapped at high turbulence level, and perspectives of future research are discussed. D 2002 Elsevier Science B.V. All rights reserved. Keywords: Swash zone; Surf zone; Breaking waves; Turbulence; Length scales; Coastal hydrodynamics 1. Introduction short and long waves, currents, turbulence and vorti- ces may be present. Therefore, the hydrodynamics to The swash zone is defined as the part of the beach be found in the swash zone is largely determined by between the minimum and maximum water levels the boundary conditions imposed by the beach face during wave runup and rundown.
    [Show full text]
  • Wind-Induced Waves and Currents in a Nearshore Zone
    CHAPTER 260 Wind-Induced Waves and Currents in a Nearshore Zone Nobuhiro Matsunaga1, Misao Hashida2 and Hiroshi Kawakami3 Abstract Characteristics of waves and currents induced when a strong wind blows shoreward in a nearshore zone have been investigated experimentally. The drag coefficient of wavy surface has been related to the ratio u*a/cP, where u*a is the air friction velocity on the water surface and cP the phase velocity of the predominant wind waves. Though the relation between the frequencies of the predominant waves and fetch is very similar to that for deep water, the fetch-relation of the wave energy is a little complicated because of the wave shoaling and the wave breaking. The dependence of the energy spectra on the frequency /changes from /-5 to/"3 in the high frequency region with increase of the wind velocity. A strong onshore drift current forms along a thin layer near the water surface and the compensating offshore current is induced under this layer. As the wind velocity increases, the offshore current velocity increases and becomes much larger than the wave-induced mass transport velocity which is calculated from Longuet- Higgins' theoretical solution. 1. Introduction When a nearshore zone is under swell weather conditions, the 1 Associate Professor, Department of Earth System Science and Technology, Kyushu University, Kasuga 816, Japan. 2 Professor, Department of Civil Engineering, Nippon Bunri University, Oita 870-03, Japan. 3 Graduate student, Department of Earth System Science and Technology, Kyushu University, Kasuga 816, Japan. 3363 3364 COASTAL ENGINEERING 1996 wind Fig.l Sketch of sediment transport process in a nearshore zone under a storm.
    [Show full text]
  • A Coupled Wave-Hydrodynamic Model of an Atoll with High Friction: Mechanisms for flow, Connectivity, and Ecological Implications
    Ocean Modelling 110 (2017) 66–82 Contents lists available at ScienceDirect Ocean Modelling journal homepage: www.elsevier.com/locate/ocemod Virtual Special Issue Coastal ocean modelling A coupled wave-hydrodynamic model of an atoll with high friction: Mechanisms for flow, connectivity, and ecological implications ∗ Justin S. Rogers a, , Stephen G. Monismith a, Oliver B. Fringer a, David A. Koweek b, Robert B. Dunbar b a Environmental Fluid Mechanics Laboratory, Stanford University, 473 Via Ortega, Y2E2 Rm 126, Stanford, CA, 94305, USA b Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA a r t i c l e i n f o a b s t r a c t Article history: We present a hydrodynamic analysis of an atoll system from modeling simulations using a coupled wave Received 18 April 2016 and three-dimensional hydrodynamic model (COAWST) applied to Palmyra Atoll in the Central Pacific. Revised 11 October 2016 This is the first time the vortex force formalism has been applied in a highly frictional reef environ- Accepted 28 December 2016 ment. The model results agree well with field observations considering the model complexity in terms Available online 29 December 2016 of bathymetry, bottom roughness, and forcing (waves, wind, metrological, tides, regional boundary condi- Keywords: tions), and open boundary conditions. At the atoll scale, strong regional flows create flow separation and Coral reefs a well-defined wake, similar to 2D flow past a cylinder. Circulation within the atoll is typically forced by Hydrodynamics waves and tides, with strong waves from the north driving flow from north to south across the atoll, and Surface water waves from east to west through the lagoon system.
    [Show full text]
  • 1D Laboratory Study on Wave-Induced Setup Over A
    1 LES Modeling of Tsunami-like Solitary Wave Processes 2 over Fringing Reefs 3 4 Yu Yao1, 4, Tiancheng He1, Zhengzhi Deng2*, Long Chen1, 3, Huiqun Guo1 5 6 1 School of Hydraulic Engineering, Changsha University of Science and Technology, 7 Changsha, Hunan 410114, China. 8 2 Ocean College, Zhejiang University, Zhoushan, Zhejiang 316021, China. 9 3 Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of 10 Hunan Province, Changsha 410114, China. 11 4Key Laboratory of Coastal Disasters and Defence of Ministry of Education, 12 Nanjing, Jiangsu 210098, China 13 14 15 16 * Corresponding author: Zhengzhi Deng 17 E-mail: [email protected] 18 Tel: +86 15068188376 19 1 20 ABSTRACT 21 Many low-lying tropical and sub-tropical reef-fringed coasts are vulnerable to 22 inundation during tsunami events. Hence accurate prediction of tsunami wave 23 transformation and runup over such reefs is a primary concern in the coastal management 24 of hazard mitigation. To overcome the deficiencies of using depth-integrated models in 25 modeling tsunami-like solitary waves interacting with fringing reefs, a three-dimensional 26 (3D) numerical wave tank based on the Computational Fluid Dynamics (CFD) tool 27 OpenFOAM® is developed in this study. The Navier-Stokes equations for two-phase 28 incompressible flow are solved, using the Large Eddy Simulation (LES) method for 29 turbulence closure and the Volume of Fluid (VOF) method for tracking the free surface. 30 The adopted model is firstly validated by two existing laboratory experiments with 31 various wave conditions and reef configurations. The model is then applied to examine 32 the impacts of varying reef morphologies (fore-reef slope, back-reef slope, lagoon width, 33 reef-crest width) on the solitary wave runup.
    [Show full text]