Generation of a Lineage II Powassan Virus (Deer Tick Virus) Cdna Clone: Assessment of Flaviviral Genetic Determinants of Tick and Mosquito Vector Competence
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Flavivirus: from Structure to Therapeutics Development
life Review Flavivirus: From Structure to Therapeutics Development Rong Zhao 1,2,†, Meiyue Wang 1,2,†, Jing Cao 1,2, Jing Shen 1,2, Xin Zhou 3, Deping Wang 1,2,* and Jimin Cao 1,2,* 1 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; [email protected] (R.Z.); [email protected] (M.W.); [email protected] (J.C.); [email protected] (J.S.) 2 Department of Physiology, Shanxi Medical University, Taiyuan 030001, China 3 Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China; [email protected] * Correspondence: [email protected] (D.W.); [email protected] (J.C.) † These authors contributed equally to this work. Abstract: Flaviviruses are still a hidden threat to global human safety, as we are reminded by recent reports of dengue virus infections in Singapore and African-lineage-like Zika virus infections in Brazil. Therapeutic drugs or vaccines for flavivirus infections are in urgent need but are not well developed. The Flaviviridae family comprises a large group of enveloped viruses with a single-strand RNA genome of positive polarity. The genome of flavivirus encodes ten proteins, and each of them plays a different and important role in viral infection. In this review, we briefly summarized the major information of flavivirus and further introduced some strategies for the design and development of vaccines and anti-flavivirus compound drugs based on the structure of the viral proteins. There is no doubt that in the past few years, studies of antiviral drugs have achieved solid progress based on better understanding of the flavivirus biology. -
Tick-Transmitted Diseases
Deer tick-transmitted infections zoonotic in the eastern U.S. •Lyme disease (Borrelia burgdorferi sensu lato): erythema migrans rash, fever, chills, muscle aches; can progress to arthritis or neurologic signs – 200-500 cases/100,000/year •Babesiosis (Babesia microti): malaria like, fever, chills, muscle aches, fatigue, hemolysis/anemia– 100-200 cases/100,000/year •Human granulocytic ehrlichiosis/anaplasmosis (Anaplasma phagocytophilum): fever, chills, muscle aches, headache—50-100 cases/100,000/year •Borrelia miyamotoi disease (BMD): fever, chills, muscle aches, headache – 50-100 cases/100,000/year •Deer tick virus fever/encephalitis: fever, headache, confusion, seizures– 1-5 cases/100,000/ year Erythema migrans: not just a “bulls-eye” Courtesy of Tim Lepore MD, Nantucket Cottage Hospital Life cycle of deer ticks…critical to develop interventions 40%-70% infection rate 10%-30% infection rate Grace period: Adaptations to extended life cycle Borrelia burgdorferi: 24-48 hours (upregulation of OspC, migration from gut to salivary glands) Babesia microti: 48-62 hours (sporogony from undifferentiated salivary sporoblast) Anaplasma phagocytophilum: 24-36 hours (acquisition of “slime layer”?) Tickborne encephalitis virus: none “Restore the risk landscape to what it was before 1980” The main drivers for emergence of the Lyme disease epidemic: 1905 Pout’s Pond, Deforestation, reforestation: Nantucket dominance of successional habitat Increased development and recreational use in reforested sites Burgeoning deer herds 1986 http://www.ct.gov/caes/lib/caes/documents/publications/bulletins/b1010.pdf -
Transmission and Evolution of Tick-Borne Viruses
Available online at www.sciencedirect.com ScienceDirect Transmission and evolution of tick-borne viruses Doug E Brackney and Philip M Armstrong Ticks transmit a diverse array of viruses such as tick-borne Bourbon viruses in the U.S. [6,7]. These trends are driven encephalitis virus, Powassan virus, and Crimean-Congo by the proliferation of ticks in many regions of the world hemorrhagic fever virus that are reemerging in many parts of and by human encroachment into tick-infested habitats. the world. Most tick-borne viruses (TBVs) are RNA viruses that In addition, most TBVs are RNA viruses that mutate replicate using error-prone polymerases and produce faster than DNA-based organisms and replicate to high genetically diverse viral populations that facilitate their rapid population sizes within individual hosts to form a hetero- evolution and adaptation to novel environments. This article geneous population of closely related viral variants reviews the mechanisms of virus transmission by tick vectors, termed a mutant swarm or quasispecies [8]. This popula- the molecular evolution of TBVs circulating in nature, and the tion structure allows RNA viruses to rapidly evolve and processes shaping viral diversity within hosts to better adapt into new ecological niches, and to develop new understand how these viruses may become public health biological properties that can lead to changes in disease threats. In addition, remaining questions and future directions patterns and virulence [9]. The purpose of this paper is to for research are discussed. review the mechanisms of virus transmission among Address vector ticks and vertebrate hosts and to examine the Department of Environmental Sciences, Center for Vector Biology & diversity and molecular evolution of TBVs circulating Zoonotic Diseases, The Connecticut Agricultural Experiment Station, in nature. -
Generic Amplification and Next Generation Sequencing Reveal
Dinçer et al. Parasites & Vectors (2017) 10:335 DOI 10.1186/s13071-017-2279-1 RESEARCH Open Access Generic amplification and next generation sequencing reveal Crimean-Congo hemorrhagic fever virus AP92-like strain and distinct tick phleboviruses in Anatolia, Turkey Ender Dinçer1†, Annika Brinkmann2†, Olcay Hekimoğlu3, Sabri Hacıoğlu4, Katalin Földes4, Zeynep Karapınar5, Pelin Fatoş Polat6, Bekir Oğuz5, Özlem Orunç Kılınç7, Peter Hagedorn2, Nurdan Özer3, Aykut Özkul4, Andreas Nitsche2 and Koray Ergünay2,8* Abstract Background: Ticks are involved with the transmission of several viruses with significant health impact. As incidences of tick-borne viral infections are rising, several novel and divergent tick- associated viruses have recently been documented to exist and circulate worldwide. This study was performed as a cross-sectional screening for all major tick-borne viruses in several regions in Turkey. Next generation sequencing (NGS) was employed for virus genome characterization. Ticks were collected at 43 locations in 14 provinces across the Aegean, Thrace, Mediterranean, Black Sea, central, southern and eastern regions of Anatolia during 2014–2016. Following morphological identification, ticks were pooled and analysed via generic nucleic acid amplification of the viruses belonging to the genera Flavivirus, Nairovirus and Phlebovirus of the families Flaviviridae and Bunyaviridae, followed by sequencing and NGS in selected specimens. Results: A total of 814 specimens, comprising 13 tick species, were collected and evaluated in 187 pools. Nairovirus and phlebovirus assays were positive in 6 (3.2%) and 48 (25.6%) pools. All nairovirus sequences were closely-related to the Crimean-Congo hemorrhagic fever virus (CCHFV) strain AP92 and formed a phylogenetically distinct cluster among related strains. -
The Molecular Characterization and the Generation of a Reverse Genetics System for Kyasanur Forest Disease Virus by Bradley
The Molecular Characterization and the Generation of a Reverse Genetics System for Kyasanur Forest Disease Virus by Bradley William Michael Cook A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfilment of the requirements of the degree of Master of Science Department of Microbiology University of Manitoba Winnipeg, Manitoba, Canada Copyright © 2010 by Bradley William Michael Cook 1 List of Abbreviations: AHFV - Alkhurma Hemorrhagic Fever Virus Amp – ampicillin APOIV - Apoi Virus ATP – adenosine tri-phosphate BAC – bacterial artificial chromosome BHK – Baby Hamster Kidney BSA – bovine serum albumin C1 – C-terminus fragment 1 C2 – C-terminus fragment 2 C - Capsid protein cDNA – comlementary Deoxyribonucleic acid CL – Containment Level CO2 – carbon dioxide cHP - capsid hairpin CNS - Central Nervous System CPE – cytopathic effect CS - complementary sequences DENV1-4 - Dengue Virus DIC - Disseminated Intravascular Coagulation (DIC) DNA – Deoxyribonucleic acid DTV - Deer Tick Virus 2 E - Envelope protein EDTA - ethylenediaminetetraacetic acid EM - Electron Microscopy EMCV – Encephalomyocarditis Virus ER - endoplasmic reticulum FBS – fetal bovine serum FP - fusion peptide GGEV - Greek Goat Encephalitis Virus GGYV - Gadgets Gully Virus GMP - Guanosine mono-phosphate GTP - Guanosine tri-phosphate HBV- Hepatitis B Virus HDV – Hepatitis Delta Virus HIV - Human Immunodeficiency Virus IFN – interferon IRES – internal ribosome entry sequence JEV - Japanese Encephalitis Virus KADV - Kadam Virus kDa - -
The Ecology of New Constituents of the Tick Virome and Their Relevance to Public Health
viruses Review The Ecology of New Constituents of the Tick Virome and Their Relevance to Public Health Kurt J. Vandegrift 1 and Amit Kapoor 2,3,* 1 The Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; [email protected] 2 Center for Vaccines and Immunity, Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA 3 Department of Pediatrics, Ohio State University, Columbus, OH 43205, USA * Correspondence: [email protected] Received: 21 March 2019; Accepted: 29 May 2019; Published: 7 June 2019 Abstract: Ticks are vectors of several pathogens that can be transmitted to humans and their geographic ranges are expanding. The exposure of ticks to new hosts in a rapidly changing environment is likely to further increase the prevalence and diversity of tick-borne diseases. Although ticks are known to transmit bacteria and viruses, most studies of tick-borne disease have focused upon Lyme disease, which is caused by infection with Borrelia burgdorferi. Until recently, ticks were considered as the vectors of a few viruses that can infect humans and animals, such as Powassan, Tick-Borne Encephalitis and Crimean–Congo hemorrhagic fever viruses. Interestingly, however, several new studies undertaken to reveal the etiology of unknown human febrile illnesses, or to describe the virome of ticks collected in different countries, have uncovered a plethora of novel viruses in ticks. Here, we compared the virome compositions of ticks from different countries and our analysis indicates that the global tick virome is dominated by RNA viruses. Comparative phylogenetic analyses of tick viruses from these different countries reveals distinct geographical clustering of the new tick viruses. -
Powassan Virus and Deer Tick Virus Most Tick-Borne Diseases, Such As Lyme, Are Caused by Bacteria
Powassan Virus and Deer Tick Virus Most tick-borne diseases, such as Lyme, are caused by bacteria. However, with a recent case in New Jersey and discovery in Connecticut blacklegged (deer) ticks, Powassan virus (POWV) has recently come to public attention. Approximately 75 cases of Powassan virus disease were reported in the United States over the past 12 years (103 since 1958) mostly from the Northeast and Great Lakes regions and incidence appears to be increasing. 23 human cases of illness occurred in NY from 1971 to 2016, primarily from the lower Hudson Valley area. Although some people infected with POW do not develop symptoms, it can cause encephalitis (inflammation of the brain) and meningitis (inflammation of the membranes that surround the brain and spinal cord). Other symptoms can include fever, headache, vomiting, weakness, confusion, drowsiness, lethargy, some paralysis, disorientation, loss of coordination, speech difficulties, seizures and memory loss. Long-term neurologic problems may occur and about 10% of cases are fatal. There is no specific treatment, but people with severe POW virus illnesses often need to be hospitalized to receive respiratory support, intravenous fluids, or medications to reduce swelling in the brain. Powassan virus was first identified in 1958 from a young boy in Powassan, Ontario who eventually died from the disease. Related to the West Nile Virus, in North America studies so far suggest POWV is a complex of viruses with two genetic ‘lineages’ including the initial (1958) LB strain and others found in Canada and New York State (POWV, Lineage I), and a second sometimes referred to as ‘deer tick virus’ (DTV, Lineage II), found in animals in the eastern and upper mid-west US and in humans. -
Powassan Virus Infection Disease Fact Sheet Series
WISCONSIN DEPARTMENT OF HEALTH SERVICES P- 00355 (06/12) Division of Public Health Page 1 of 2 Powassan virus infection Disease Fact Sheet Series What is Powassan virus infection? Powassan virus (POWV) infection is a rare tickborne viral infection occurring in Wisconsin and other northern regions of North America. POWV infection is caused by an arbovirus (similar to the mosquito-borne West Nile virus) but it is transmitted to humans by the bite of an infected tick instead of a mosquito bite. The virus is named for Powassan, Ontario where it was first discovered. Eleven reported cases of POWV infection have been detected among Wisconsin residents during 2003 to 2011. At least 50 cases have been detected in the United States and Canada since 1958. How is Powassan virus spread? In Wisconsin, Ixodes scapularis (known as the blacklegged tick or deer tick) is capable of transmitting Powassan virus. In addition, several other tick species in North America can carry POWV, including other Ixodes species and Dermacentor andersoni. Where does Powassan virus infection occur? Powassan virus infection occurs mostly in northeastern and upper Midwestern states. In Wisconsin, cases have been detected in areas where there is a high risk of exposure to ticks. Who gets Powassan virus infection? Everyone is susceptible to Powassan virus, but people who spend time outdoors in tick-infested environments are at an increased risk of exposure. In the upper Midwest, the risk of tick exposure is highest from late spring through autumn. What are the symptoms of Powassan virus infection? Symptoms usually begin 7-14 days (range 8-34 days) following infection. -
Powassan Virus Experimental Infections in Three Wild Mammal Species
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USDA National Wildlife Research Center - Staff U.S. Department of Agriculture: Animal and Publications Plant Health Inspection Service 2021 Powassan Virus Experimental Infections in Three Wild Mammal Species Nicole M. Nemeth Colorado State University, [email protected] J. Jeffrey Root USDA APHIS Wildlife Services Airn E. Hartwig Colorado State University Richard A. Bowen Colorado State University Angela M. Bosco-Lauth Colorado State University Follow this and additional works at: https://digitalcommons.unl.edu/icwdm_usdanwrc Part of the Natural Resources and Conservation Commons, Natural Resources Management and Policy Commons, Other Environmental Sciences Commons, Other Veterinary Medicine Commons, Population Biology Commons, Terrestrial and Aquatic Ecology Commons, Veterinary Infectious Diseases Commons, Veterinary Microbiology and Immunobiology Commons, Veterinary Preventive Medicine, Epidemiology, and Public Health Commons, and the Zoology Commons Nemeth, Nicole M.; Root, J. Jeffrey; Hartwig, Airn E.; Bowen, Richard A.; and Bosco-Lauth, Angela M., "Powassan Virus Experimental Infections in Three Wild Mammal Species" (2021). USDA National Wildlife Research Center - Staff Publications. 2444. https://digitalcommons.unl.edu/icwdm_usdanwrc/2444 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Animal and Plant Health Inspection Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USDA National Wildlife Research Center - Staff Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Am. J. Trop. Med. Hyg., 104(3), 2021, pp. 1048–1054 doi:10.4269/ajtmh.20-0105 Copyright © 2021 by The American Society of Tropical Medicine and Hygiene Powassan Virus Experimental Infections in Three Wild Mammal Species Nicole M. -
By Virus Screening in DNA Samples
Figure S1. Research of endogeneous viral element (EVE) by virus screening in DNA samples: comparison of Cp values results obtained when detecting the viruses in DNA samples (Light gray) versus Cp values results obtained in the corresponding RNA samples (Dark gray). *: significative difference with p-value < 0.05 (T-test). The S segment of the LTV were found in only one DNA sample and in the corresponding RNA sample. KTV has been detected in one DNA sample but not in the corresponding RNA sample. Figure S2. Luciferase activity (in LU/mL) distribution of measures after LIPS performed in tick/cattle interface for the screening of antibodies specific to Lihan tick virus (LTV), Karukera tick virus (KTV) and Wuhan tick virus 2 (WhTV2). Positivity threshold is indicated for each antigen construct with a dashed line. Table S1. List of tick-borne viruses targeted by the microfluidic PCR system (Gondard et al., 2018) Family Genus Species Asfarviridae Asfivirus African swine fever virus (ASFV) Orthomyxoviridae Thogotovirus Thogoto virus (THOV) Dhori virus (DHOV) Reoviridae Orbivirus Kemerovo virus (KEMV) Coltivirus Colorado tick fever virus (CTFV) Eyach virus (EYAV) Bunyaviridae Nairovirus Crimean-Congo Hemorrhagic fever virus (CCHF) Dugbe virus (DUGV) Nairobi sheep disease virus (NSDV) Phlebovirus Uukuniemi virus (UUKV) Orthobunyavirus Schmallenberg (SBV) Flaviviridae Flavivirus Tick-borne encephalitis virus European subtype (TBE) Tick-borne encephalitis virus Far-Eastern subtype (TBE) Tick-borne encephalitis virus Siberian subtype (TBE) Louping ill virus (LIV) Langat virus (LGTV) Deer tick virus (DTV) Powassan virus (POWV) West Nile virus (WN) Meaban virus (MEAV) Omsk Hemorrhagic fever virus (OHFV) Kyasanur forest disease virus (KFDV). -
Advances in Developing Therapies to Combat Zika Virus: Current Knowledge and Future Perspectives Ashok Munjal
Old Dominion University ODU Digital Commons Bioelectrics Publications Frank Reidy Research Center for Bioelectrics 8-2017 Advances in Developing Therapies to Combat Zika Virus: Current Knowledge and Future Perspectives Ashok Munjal Rekha Khandia Kuldeep Dharma Swati Sachan Kumaragurubaran Karthik See next page for additional authors Follow this and additional works at: https://digitalcommons.odu.edu/bioelectrics_pubs Part of the Public Health Commons, Virology Commons, and the Virus Diseases Commons Repository Citation Munjal, Ashok; Khandia, Rekha; Dharma, Kuldeep; Sachan, Swati; Karthik, Kumaragurubaran; Tiwari, Ruchi; Malik, Yashpal S.; Kumar, Deepak; Singh, Raj K.; Iqbal, Hafiz M. N.; and Joshi, Sunil K., "Advances in Developing Therapies to Combat Zika Virus: Current Knowledge and Future Perspectives" (2017). Bioelectrics Publications. 132. https://digitalcommons.odu.edu/bioelectrics_pubs/132 Original Publication Citation Munjal, A., Khandia, R., Dhama, K., Sachan, S., Karthik, K., Tiwari, R., . Joshi, S. K. (2017). Advances in developing therapies to combat zika virus: Current knowledge and future perspectives. Frontiers in Microbiology, 8, 1469. doi:10.3389/fmicb.2017.01469 This Article is brought to you for free and open access by the Frank Reidy Research Center for Bioelectrics at ODU Digital Commons. It has been accepted for inclusion in Bioelectrics Publications by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. Authors Ashok Munjal, Rekha Khandia, Kuldeep Dharma, -
Sébastian LEQUIME
UNIVERSITÉ PIERRE ET MARIE CURIE ECOLE DOCTORALE 515 « Complexité du Vivant » Groupe à 5 ans – Interactions Virus-Insectes Interactions flavivirus – moustiques : diversité et transmission ! par Sébastian LEQUIME THÈSE DE DOCTORAT en EVOLUTION VIRALE Présentée et soutenue publiquement le : 21 Juin 2016 Devant un jury composé de : M. Samuel ALIZON, Chargé de Recherche Rapporteur M. Jacob KOELLA, Professeur Rapporteur M. Dominique HIGUET, Professeur Examinateur Mme Anna-Bella FAILLOUX, Directeur de Recherche Examinatrice M. Serafín GUTIERREZ, Chargé de Recherche Examinateur M. Louis LAMBRECHTS, Chargé de Recherche Directeur de thèse « Je sais qu’au point où en est arrivée aujourd’hui la microbiologie, tout nouveau grand pas en avant sera une affaire des plus pénibles et que l’on aura beaucoup de mécomptes et de déceptions. » – Alexandre YERSIN, 28 août 1891. Résumé Les infections humaines dues aux virus du genre Flavivirus constituent depuis longtemps un problème de santé publique majeur à travers le monde, en particulier dans les zones à climat tropical. Ces virus à ARN sont des arbovirus qui infectent alternativement un hôte vertébré et un arthropode « vecteur », dont majoritairement des moustiques de la sous-famille des Culicinae. D’autres flavivirus, en revanche, sont incapables d’infecter les cellules de vertébrés et sont qualifiés de flavivirus spécifiques d’insectes (FSI). L’interaction entre les vecteurs et les flavivirus est centrale dans leur biologie, par l’influence qu’elle a sur leur diversité génétique, leur évolution et leur transmission. Cependant, après plus d’un siècle de recherches scientifiques, certains points de ces aspects fondamentaux restent méconnus, malgré une abondance accrue de données. Les approches basées sur les « mégadonnées » (big data) ont été au cœur du travail de cette thèse, qu’elles aient été générées par des technologies modernes ou par compilation de travaux plus anciens.