Sooty Mangabey Monkeys (Cercocebus Atys) (Cross-Neutralization/Serologic Relationship/Acquired Immunodeflciency Syndrome) PATRICIA N

Total Page:16

File Type:pdf, Size:1020Kb

Sooty Mangabey Monkeys (Cercocebus Atys) (Cross-Neutralization/Serologic Relationship/Acquired Immunodeflciency Syndrome) PATRICIA N Proc. Nati. Acad. Sci. USA Vol. 83, pp. 5286-5290, July 1986 Medical Sciences Isolation of a T-lymphotropic retrovirus from naturally infected sooty mangabey monkeys (Cercocebus atys) (cross-neutralization/serologic relationship/acquired immunodeflciency syndrome) PATRICIA N. FULTZ*t, HAROLD M. MCCLUREt, DANIEL C. ANDERSONt, R. BRENT SWENSON*, RITA ANAND*, AND A. SRINIVASAN* *AIDS Program, Center for Infectious Diseases, Centers for Disease Control, Atlanta, GA 30333; and Divisions of tPathobiology and Immunobiology, and tClinical Medicine, Yerkes Regional Primate Research Center, Emory University, Atlanta, GA 30322 Communicated by Eliot Stellar, March 10, 1986 ABSTRACT Healthy mangabey monkeys in a colony at the ings, a virus resembling both STLV-III and HIV was isolated Yerkes Regional Primate Research Center were found to be from African green monkeys and was designated STLV- infected with a retrovirus related to human immunodeficiency IIIAGM (9). virus (HIV). Virus was isolated from peripheral blood cells of We have isolated a virus related to STLV-Il and HIV from 14 of 15 randomly selected mangabeys. All virus-positive healthy sooty mangabey monkeys (Cercocebus atys) which, animals had antibodies to the mangabey virus at the time of like African green monkeys, are indigenous to central and virus isolation and, in a retrospective study, 82% of mangabey western Africa. Because the mangabey isolate appears to be serum samples obtained in 1981 had antibodies to the virus. similar to the prototype simian virus, STLV-III, and in The newly isolated retrovirus is (Al morphologically identical to accordance with proposed nomenclature (21), we will refer to HIV by electron microscopy; (ii) serologically related to the the mangabey isolate as SIV/SMM (simian immunodeficien- human virus by enzyme immunoassay, immunoblotting exper- cy virus/sooty mangabey monkey). iments, radioimmunoprecipitation, and neutralization; and (Mi) cytopathic for human OKT41 cells. The mangabey virus MATERIALS AND METHODS also shares these properties with the simian T-lymphotropic virus type m (STLV-III) recently isolated from diseased Animals. The Yerkes Regional Primate Research Center macaques and from healthy African green monkeys (STLV- maintains a colony of approximately 88 colony-born or MAGM). However, the mangabey virus, like STLV-IIAGM, wild-caught mangabey monkeys that are used primarily for differs from both HIV and STLV-HI in that it apparently does reproductive and behavioral studies. Mangabeys also are not cause clinical immunodeflciency or disease following nat- used for experimental leprosy infection because of their ural infection of the host from which it was isolated. Compar- unique susceptibility to Mycobacterium leprae (10, 11). The ison of the virus-host interactions of these isolates may be 15 animals used in this study were selected at random from valuable in defining determinants of pathogenicity for among mangabey monkeys that are housed together in an cytopathic retroviruses. indoor/outdoor facility. The mangabeys selected from the colony were between 4 and 22 years old, and all were Acquired immunodeficiency syndrome (AIDS) is caused by colony-born except for nos. 2 and 8 (see Table 1). Blood was a retrovirus, human T-lymphotropic virus type III/ collected to obtain peripheral blood mononuclear cells lymphadenopathy-associated virus/AIDS-associated retro- (PBMC) and serum. None of the animals was neutropenic or virus (HTLV-III/LAV/ARV) or human immunodeficiency lymphopenic, and all were clinically normal at the time of virus (HIV), (1-4), that replicates in and is cytopathic for blood collection. helper T lymphocytes (OKT4' cells) (5). Recently, a related Virus Strains. LAV was the gift of L. Montagnier, J. C. virus was isolated by Daniel et al. (6) from rhesus macaques Chermann, and F. Barre-Sinoussi, and ARV-2 was obtained (Macaca mulatta) that had either immunodeficiency disease from Jay Levy. or a transmissible lymphoma. The simian isolate, termed Isolation of Virus. Virus was isolated from PBMC of simian T-lymphotropic virus type III (STLV-III), has many mangabeys by coculturing PBMC with phytohemagglutinin of the characteristics of human HIV. These common char- P-stimulated adult human leukocytes (PHA-AWBC). Cell- include a for cells with con- free supernatants from cocultures were monitored for Mg2"- acteristics (i) tropism OKT4' dependent reverse transcriptase activity as described previ- comitant cytopathology, (il) a virion morphology typical of ously (4). Culture supernatants with positive reverse retroviruses but unusual in nucleoid morphology, (iii) a transcriptase were tested for their ability to transfer infec- Mg2"-dependent reverse transcriptase enzyme, and (iv) a tivity to fresh PHA-AWBC or to established cell lines; some distinct virion protein profile. Also, serologic cross-reactivity of the initial cocultures were tested by electron microscopy was demonstrated (7, 8) when it was shown that antiserum for the presence of virus. specific for either HIV or STLV-III precipitated proteins of Cellular Tropism. The cellular tropism of SIV/SMM was the other. determined in two ways. First, PHA-AWBC were infected Although STLV-III was isolated from an Asian primate with an isolate of SIV/SMM and, periodically, the number of species, antibodies to STLV-III have also been found in serum samples obtained from a species ofmonkey commonly Abbreviations: HIV, human immunodeficiency virus; SIV, simian found in Africa. Serum samples from 42% of wild-caught immunodeficiency virus; HTLV-III, human T-lymphotropic virus African green monkeys (Cercopithecus aethiops) had anti- type III; LAV, lymphadenopathy-associated virus; ARV, AIDS- bodies to STLV-III proteins (8). Subsequent to these find- associated retrovirus; STLV-III, simian T-lymphotropic virus type III; SMM, sooty mangabey monkey; AGM, African green monkey; PBMC, peripheral blood mononuclear cells; PHA-AWBC, The publication costs of this article were defrayed in part by page charge phytohemagglutinin-stimulated adult human white blood cells; IFA, payment. This article must therefore be hereby marked "advertisement" indirect immunofluorescence assay; EIA, enzyme immunoassay; in accordance with 18 U.S.C. §1734 solely to indicate this fact. RIP, radioimmunoprecipitation. 5286 Downloaded by guest on September 25, 2021 Medical Sciences: FtIltz et al. Proc. Natl. Acad. Sci. USA 83 (1986) 5287 T-helper (T4) and T-cytotoxic/suppressor cells (T8) in the B. Culture supernatants were monitored for extracellular infected culture and in an uninfected control culture were reverse transcriptase activity on days 6, 9, 12, and 16. determined by indirect immunofluorescence assay (IFA) Neutralizing antibody activity was considered to be present if using a T-helper/suppressor ratio test kit (Becton Dickin- there was at least 80%o inhibition of reverse transcriptase son). At least 500 cells were counted for each determination. activity compared to reverse transcriptase activity in control Reverse transcriptase activity in both cultures was also cultures. assayed and, in the infected culture, peaked at >106 cpm per Nucleic Acid Hybridization. Concentrated virus, prepared reaction, while that in the control culture never exceeded from SIV/SMM-infected cell culture supernatants, was 1400 cpm. Second, the ability of isolates of SIV/SMM to lysed, spotted onto nitrocellulose filters, and hybridized to replicate in established cell lines of different lineages was genomic (-9-kilobase) HIV (clone Zr6; A.S., R.A., P. tested. Approximately 10- cpm of SIV/SMM reverse trans- Luciw, unpublished work) as described (14). High molecular criptase activity was used to infect 107 cells. Culture super- weight DNA was isolated from SIV/SMM-infected cells and natants were monitored for reverse transcriptase activity. digested with several restriction enzymes before it was used The cell line HT was provided by R. C. Gallo (National with the Zr6 cDNA clone of HIV in Southern hybridization Institutes ofHealth); HUT78 and 6D5, a subclone of1HUT78, assays (15). by J. Getchell (Centers for Disease Control); and K562, by S. McDougal (Centers for Disease Control). RESULTS Serologic Assays. Mangabey serum samples were tested at a 1:50 dilution by enzyme immunoassay (EIA) using Abbott Incidence of Disease in the Mangabey Colony. Since the Laboratories HTLV-III EIA kit, at a 1:100 dilution by mangabey colony was established at the Yerkes Primate immunoblot using H9/HTLV-III antigen, and at a 1:20 Center, there has been no apparent difference in the inci- dilution for SIV/SMM-specific antibodies by indirect IFA dence of disease in this species when compared with the using acetone-fixed, virus-infected PHA-AWBC. The second incidence of disease in other species of monkeys at the antibody was a fluorescein-labeled goat anti-monkey IgG Yerkes field station. During the past 16 years, 55% (42 (Cooper Biomedical, Malvern, PA). Metabolic labeling, animals) of the deaths in the mangabey colony resulted from immunoprecipitation, NaDodSO4/polyacrylamide gel elec- spontaneous disease problems in animals older than 1 month. trophoresis, and fluorography have been described (12). Neoplastic diseases were not found in any of these animals, Briefly, virus-infected cells were labeled with [35S]methio- and lymphadenopathy of one or more lymph node groups was nine and [35S]cysteine (200 ACi/ml; 1 Ci = 37 GBq) for 1 hr seen in only six animals. Thus, it appears that SIV/SMM and then lysed. Viral proteins were immunoprecipitated with infection
Recommended publications
  • Flexible Decision-Making in Grooming Partner Choice in Sooty Mangabeys
    Flexible decision-making in grooming partner choice rsos.royalsocietypublishing.org in sooty mangabeys and Research chimpanzees Cite this article: Mielke A, Preis A, Samuni L, Alexander Mielke1,2, Anna Preis1,2, Liran Samuni1,2, Gogarten JF, Wittig RM, Crockford C. 2018 1,2,3,4 1,2,† Flexible decision-making in grooming partner Jan F. Gogarten , Roman M. Wittig and choice in sooty mangabeys and chimpanzees. Catherine Crockford1,2,† R. Soc. open sci. 5: 172143. http://dx.doi.org/10.1098/rsos.172143 1Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany 2Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Taï Chimpanzee Project, Abidjan, Côte d’Ivoire Received: 8 December 2017 3Department of Biology, McGill University, Montreal, Canada Accepted: 7 June 2018 4P3: ‘Epidemiology of Highly Pathogenic Microorganisms’, Robert Koch Institute, Berlin, Germany AM, 0000-0002-8847-6665;AP,0000-0002-7443-4712; JFG, 0000-0003-1889-4113;CC,0000-0001-6597-5106 Subject Category: Biology (whole organism) Living in permanent social groups forces animals to make decisions about when, how and with whom to interact, Subject Areas: requiring decisions to be made that integrate multiple sources behaviour/cognition of information. Changing social environments can influence this decision-making process by constraining choice or altering Keywords: the likelihood of a positive outcome. Here, we conceptualized grooming, bystanders, sooty mangabey, grooming as a choice situation where an individual chooses chimpanzee,
    [Show full text]
  • 4944941.Pdf (742.8Kb)
    Phylogeny and History of the Lost SIV from Crab-Eating Macaques: SIVmfa The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation McCarthy, Kevin R., Welkin E. Johnson, and Andrea Kirmaier. 2016. “Phylogeny and History of the Lost SIV from Crab- Eating Macaques: SIVmfa.” PLoS ONE 11 (7): e0159281. doi:10.1371/journal.pone.0159281. http://dx.doi.org/10.1371/ journal.pone.0159281. Published Version doi:10.1371/journal.pone.0159281 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:29002415 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA RESEARCH ARTICLE Phylogeny and History of the Lost SIV from Crab-Eating Macaques: SIVmfa Kevin R. McCarthy1,2☯¤, Welkin E. Johnson2, Andrea Kirmaier2☯* 1 Program in Virology, Harvard Medical School, Boston, MA, United States of America, 2 Biology Department, Boston College, Chestnut Hill, MA, United States of America ☯ These authors contributed equally to this work. ¤ Current address: Boston Children’s Hospital, Boston, MA, United States of America * [email protected] a11111 Abstract In the 20th century, thirteen distinct human immunodeficiency viruses emerged following independent cross-species transmission events involving simian immunodeficiency viruses (SIV) from African primates. In the late 1900s, pathogenic SIV strains also emerged in the United Sates among captive Asian macaque species following their unintentional infection OPEN ACCESS with SIV from African sooty mangabeys (SIVsmm).
    [Show full text]
  • Tana River Colobus and Mangabey Colin P
    Tana River Colobus and Mangabey Colin P. Groves, Peter Andrews and Jennifer F. M. Home The numbers of both these highly endangered monkeys, found only on the Tana River in north-east Kenya, are down to about 2000, possibly fewer. The authors of this status and habitat survey describe the continuing threats to both animals and make proposals for a reserve to protect them. The Tana River is the longest river in Kenya—300 miles in a straight line from source to mouth, but 500 miles following the broad north- ward loop, and probably at least double this figure following its lower course meanders. The river can be divided into three sections: the upper as far as the Hargazo Falls on the northern bend; the middle from the Falls to about Wenje; and the lower from Wenje to the sea. The upper Tana receives all the permanent tributaries; below the falls the river loses water by evaporation, so that at its mouth the total water content is only half that below the falls. The middle section is bordered by a thin strip of continuous woodland, except where removed for cul- tivation, where the dominant tree is the Tana River poplar Populus ilicifolia, after which comes a broad belt of thorn thicket, more arid to the north, where it grades into the Somali desert, than to the south. The lower Tana flows through a floodplain, and twice a year— mid-April to early June, and again in September and early October— swollen with the up-country rains, it overflows its banks, pouring out along floodwater channels, and flooding the land to a depth of 1-2 feet for a mile or more on either bank.
    [Show full text]
  • Vocal Repertoire of Sooty Mangabeys (Cercocebus Torquatus Atys) in The
    Ethology 110, 301—321 (2004) Ó 2004 Blackwell Verlag, Berlin ISSN 0179–1613 Vocal Repertoire of Sooty Mangabeys (Cercocebus torquatus atys)in the Taı¨ National Park Friederike Range* & Julia Fischer *Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA; Max-Planck Institute for Evolutionary Anthropology, Leipzig, Germany Abstract Three factors, environment, quality and type of interaction, and phylogeny have been hypothesized to influence the structure of signal repertoires in primates. Much is known about vocal repertoires of terrestrial, savannah-dwelling species and arboreal, rainforest-dwelling species, but very little is known about terrestrial rainforest species.To fill this knowledge gap and to further elucidate how the three factors influence vocal repertoires of primates, we designed a study on sooty mangabeys (Cercocebus torquatus atys), a terrestrial Old World primate that lives in dense rainforests.Recordings of sooty mangabeys in their natural environment were used to compile the vocal repertoire of this species.All calls are described according to the basic acoustical structure and the behavioral context in which they occurred.Descriptions are supplemented by quantitative measurements of call occurrence in all age–sex classes.For the most frequently produced vocalizations, a preliminary acoustical analysis was conducted to test for individual and contextual differences.Finally, we compare vocalizations of sooty mangabeys with vocalizations of several other primate species and discuss how the factors mentioned
    [Show full text]
  • Expanding Comparative Genomics in Nonhuman Primates
    Center Initiated Proposal: Expanding Comparative Genomics in Nonhuman Primates Summary: We will generate de novo whole genome assemblies and associated information about genetic variation (SNPs) for seven nonhuman primate species. These species were chosen through discussions between BCM Human Genome Sequencing Center faculty and the Genome 10K international consortium project. The goal of Genome10K is to facilitate and co-ordinate the sequencing of 10,000 vertebrate genomes over the next several years. This effort is intended to sample phylogenetic and adaptive diversity in vertebrates, including nonhuman primates. HGSC has selected these seven primate species (four Old World monkeys, two New World monkeys and one strepsirrhine) because they add significantly to the phylogenetic coverage across primates, and because they include species with particular biological characteristics that will add valuable new information to our understanding of genome evolution and adaptation. The HGSC is committed to driving continued progress in comparative genomics, with emphasis on primates. This CIP requests approval for expansion of this comparative primate genomics in co-ordination with the Genome 10K project. Background: The goal of this Center Initiated Project is to advance the field of comparative primate genomics by sequencing additional primate species designated as significant new targets through discussion and collaboration with the Genome 10K consortium project. The BCM Human Genome Sequencing Center has outstanding prior experience with de novo whole genome assemblies of insect and mammalian genomes. We have completed the assembly of the rhesus macaque, and are near completion and publication of three more primate genomes: marmoset, gibbon and baboon. We also have other active mammalian sequencing projects (e.g.
    [Show full text]
  • Request for Approval for Sequencing of the Sooty Mangabey (Cercocebus Atys) Genome
    Request for approval for sequencing of the sooty mangabey (Cercocebus atys) genome Despite more than 20 years of effort and the investment of substantial resources, the biomedical research community has not yet been able to develop an effective strategy to prevent infection with HIV. The unusual properties of this virus have confounded all efforts develop a vaccine, and as a result more than 2.5 million new infections occur worldwide each year. Recent high-profile failures of vaccine trials have caused the HIV- AIDS research community to re-think strategies and initiate new avenues of research. One of those avenues is expanded investigation of nonhuman primate species that have evolved the ability to successfully cope with persistent infection with HIV-related lentiviruses, without progressing to AIDS-like disease. These natural host species, all of which are native to Africa, include the sooty mangabey (Cercocebus atys), the African green monkey and the mandrill. These species exhibit high rates of natural infection in the wild with various simian immunodeficiency viruses (SIV). When Asian rhesus or cynomolgus macaques are infected with SIV obtained from sooty mangabeys, these macaques develop a variety of symptoms that are remarkably similar to humans infected with HIV, and generally succumb to an AIDS-like disease in a few months. While researchers have begun to explore the mechanisms by which sooty mangabeys and other natural primate hosts cope with high SIV viral loads and remain free of disease, the details of this resistance are still poorly understood. Access to whole genome DNA sequences for natural hosts, and the resulting ability to compare genes and genetic pathways among natural hosts and non-natural hosts (i.e.
    [Show full text]
  • University of Illinois
    UNIVERSITY OF ILLINOIS Deceaber 14 1989 Tms IS TO CERTIFY THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Brenda S. Walters ENTITLED...... Sociallnttrictionsin ....... ••••••(eeeweaeaeevfewfaeeaveeeveelaeeeeeeeeae.,....,*(Mandrlllus sphinx) and........ ....,*»«f!.«'....r........«ea*eee««e*eeeee**es«e*«**e«e*sdVe*«»..Manxabeys (Ctrcocebus atvs) In a Captlvs Ssttina IS APPROVED BY ME AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE DEGREE OF.................... B«ch*lor of Arte.................... 0!«4 N Social Intaraction* in a Mixed Group of Mandrills (Mtndrlllm sphinx) and Mangabeys (Cercocebua atya) In a Captive Setting By Brenda S. Walters Thesis for the Degree of Bachelor of Arts in Liberal Arts and Sciences College of Liberal Arts and Sciences University of Illinois Urbane, Illinois 1989 TABLE Of CONTENTS Page Abstract iii 1.0 Introduction 1 1.1 Mandrills 1 1.2 Sooty Mangabeys 3 2.0 The Setting 4 3.0 The Study Group e 3.1 The Mangabey Group 8 3.2 The Guenon Group 9 3.3 The Mandrill Group 9 3.4 Others 9 3.5 The Focal Group 10 4.0 Method* of Data Collaction 11 5.0 Results 14 5.10 Activity Budget of the Focal Group 14 5.11 Activity Budget of the Adult Male Mandrill 16 5.12 Activity Budget of the Adult Male Mangabey 16 5.13 Activity Budget of Adult Female Mandrill 1 17 i 5.14 Activity Budget of Adult Female Mandrill 2 17 5.15 Activity Budget of the Hybrid 10 5.2 Habitat Use 10 5.3 Measures of Affiliation 20 6.0 Discussion 23 6.1 A Comparison of the Adult Male Mandrill and 23 Mangabey 6.11 Grooming 23 6.12 Spacial Use of Habitat 25 6.13 Agonism 27 6.14 Sexual Behavior 20 6.2 A Comparison of the Adult Female Mandrills 29 6.3 Comparisons Among Adult Mandrills 30 6.4 The Hybrid 31 7.0 Conclusion 32 Appendix At Glossary Appendix Bt Focal Animals Appendix C: Habitat Map Appendix Dt Data Collection Form Works Cited ii ABSTRACT Data were collected on the behavior of a captive group of mandrills (MtndrlllUB BPhlna) and mangabeys (Cercocebus atys) from July 17, 1969 through August 8, 1989.
    [Show full text]
  • Genetic Diversity of Lentiviruses in Non-Human Primates
    AIDSRev2001,' 3: 3-10 Genetic Diversity of Lentiviruses in Non-Human Primates M. Peetets, V. Courgnaud and B. Abela LBborBtoire Rlttrovirus, IRa Mort/p illar, FranC8 Abstract Simian immunodeficiency viruses (SIVs) can be found naturally in a large number of African primate species; already 31 species have been identified with serological evidence of SIV infection, and in 21 this was confirmed bypartial or full-length genome sequencing. So far, the primate lentiviruses, for which full­ length genome sequences are available, fall into six approximately equidistant majorlineages and are represented by, 1) the HIV-1/SIVcpz lineage, 2) the HIV­ 21SIVsm lineage, 3)the SIVagm lineage from African green monkeys, 4) the SIVsyk lineage from Sykes' monkeys, 5) the SIVlhoest lineage including viruses from mandrills, I'Hoest and sun-tailed monkeys and, 6) the SIVcol lineage from a colobus monkey. SIVs from otherAfrican primates have been partially characterised, butthe exact phylogenetic relationship between these SIVs and other nonhuman primate lentiviruses requires the analysis of the complete genome. Most of the SIV-positive primates are the natural hosts of these viruses, and do not seem to develop any clinical symptoms. Nevertheless, if cross-species transmission occurs, the virus may be pathogenic for the new host. The two major viraltypes infecting humans, HIV-1 and HIV-2, represent zoonotic transmissions from chimpanzees (Pan troglodytes) and sooty mangabeys (Cercocebus atys) respectively. Therefore, the identification and characterisation of new SIV strains are important to better understand the origins of HIV-1 and-2 and to assess the potential risk for additionallentiviruses into the human population.
    [Show full text]
  • Sooty Mangabey Genome Sequence Provides Insight Into AIDS Resistance in a Natural SIV Host David Palesch1*, Steven E
    OPEN LETTER doi:10.1038/nature25140 Sooty mangabey genome sequence provides insight into AIDS resistance in a natural SIV host David Palesch1*, Steven E. Bosinger1,2*, Gregory K. Tharp1, Thomas H. Vanderford1, Mirko Paiardini1,2, Ann Chahroudi1,3, Zachary P. Johnson1, Frank Kirchhoff4, Beatrice H. Hahn5, Robert B. Norgren Jr6, Nirav B. Patel1, Donald L. Sodora7, Reem A. Dawoud1, Caro-Beth Stewart8, Sara M. Seepo8, R. Alan Harris9,10, Yue Liu9, Muthuswamy Raveendran9,10, Yi Han9, Adam English9, Gregg W. C. Thomas11, Matthew W. Hahn11, Lenore Pipes12, Christopher E. Mason12, Donna M. Muzny9,10, Richard A. Gibbs9,10, Daniel Sauter4, Kim Worley9,10, Jeffrey Rogers9,10 & Guido Silvestri1,2 In contrast to infections with human immunodeficiency virus (HIV) in natural hosts is the low rate of mother-to-infant transmission that is in humans and simian immunodeficiency virus (SIV) in macaques, related to low expression of CCR5 on circulating and mucosal CD4+ T SIV infection of a natural host, sooty mangabeys (Cercocebus atys), cells3. Although many aspects of the natural course of SIV infection in is non-pathogenic despite high viraemia1. Here we sequenced and sooty mangabeys have now been described, the key molecular mecha- assembled the genome of a captive sooty mangabey. We conducted nisms by which these animals avoid AIDS remain poorly understood. genome-wide comparative analyses of transcript assemblies from In this study, we sequenced the genome of a captive sooty mangabey C. atys and AIDS-susceptible species, such as humans and macaques, and compared this genome to the genomes of AIDS-susceptible pri- to identify candidates for host genetic factors that influence mates to look for candidate genes that may influence susceptibility susceptibility.
    [Show full text]
  • Partial Molecular Characterization of Two Simian Immunodeficiency
    JOURNAL OF VIROLOGY, Jan. 2003, p. 744–748 Vol. 77, No. 1 0022-538X/03/$08.00ϩ0 DOI: 10.1128/JVI.77.1.744–748.2003 Copyright © 2003, American Society for Microbiology. All Rights Reserved. Partial Molecular Characterization of Two Simian Immunodeficiency Downloaded from Viruses (SIV) from African Colobids: SIVwrc from Western Red Colobus (Piliocolobus badius) and SIVolc from Olive Colobus (Procolobus verus) Valerie Courgnaud,1 Pierre Formenty,2 Chantal Akoua-Koffi,3 Ronald Noe,4 Christophe Boesch,5 Eric Delaporte,1 and Martine Peeters1* http://jvi.asm.org/ Laboratoire Retrovirus UR 036, IRD, Montpellier,1 and Universite´Louis Pasteur, Strasbourg,4 France; Ebola Tai Forest Project, World Health Organization,2 and Institut Pasteur de Coˆte d’Ivoire,3 Abidjan, Coˆte d’Ivoire; and Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany5 Received 19 July 2002/Accepted 24 September 2002 In order to study primate lentivirus evolution in the Colobinae subfamily, in which only one simian immu- nodeficiency virus (SIV) has been described to date, we screened additional species from the three different genera of African colobus monkeys for SIV infection. Blood was obtained from 13 West African colobids, and on March 14, 2016 by MAY PLANCK INSTITUTE FOR Evolutionary Anthropology HIV cross-reactive antibodies were observed in 5 of 10 Piliocolobus badius,1of2Procolobus verus, and0of1 Colobus polykomos specimens. Phylogenetic analyses of partial pol sequences revealed that the new SIVs were more closely related to each other than to the other SIVs and especially did not cluster with the previously described SIVcol from Colobus guereza. This study presents evidence that the three genera of African colobus monkeys are naturally infected with an SIV and indicates also that there was no coevolution between virus and hosts at the level of the Colobinae subfamily.
    [Show full text]
  • 1 the Oral Processing Behaviors of Mandrills (Mandrillus Sphinx)
    The Oral Processing Behaviors of Mandrills (Mandrillus sphinx) in a Captive Setting Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Arts in the Graduate School of The Ohio State University By Joseph Geherty Graduate Program in Anthropology The Ohio State University 2019 Thesis Committee W. Scott McGraw, Advisor Dawn Kitchen Jeffrey McKee 1 Copyrighted by Joseph Geherty 2019 2 Abstract Oral processing behaviors are known to co-vary with aspects of feeding ecology, food material properties, and cranio-dental anatomy. Previous field studies on terrestrial mangabeys (Cercocebus) have revealed important age/sex differences in the frequency of incision, isometric biting and chewing frequency related to diet. Here, I provide information on the Cercocebus sister taxon in order to better understand variation within this clade of African papionins. I examined oral processing behavior of captive mandrills (Mandrillus sphinx) at the Columbus Zoo and tested the hypothesis that extreme sexual dimorphism in this species would result in significant age and sex differences in food processing behaviors. I used focal animal sampling on an adult male and female, and two sub-adult males to quantify ingestive and oral processing behaviors associated with different foods made available to the monkeys. Kruskal-Wallis tests were performed on a sample of over 1,100 ingestive events across subjects. Significance tests revealed a variety of age/sex differences in rates of incision or mastication when individuals consumed the same food items. There was lack of a uniformity in mandrill oral processing behavior. There were certain foods the adult male used more incision or mastication but other foods in which the other individuals used more oral processing.
    [Show full text]
  • AGONISTIC STRATEGIES and SPATIAL DISTRIBUTION 1 (2013). Psychological Reports: Relationships & Communications, 112, 593-606
    AGONISTIC STRATEGIES AND SPATIAL DISTRIBUTION 1 (2013). Psychological Reports: Relationships & Communications , 112 , 593-606 AGONISTIC STRATEGIES AND SPATIAL DISTRIBUTION IN CAPTIVE SOOTY MANGABEYS ( CERCOCEBUS ATYS )1, 2 RUTH DOLADO University of Barcelona IGNACIO CIFRE Ramon Llull University, Barcelona and Ballearic Islands University FRANCESC S. BELTRAN Institute for Brain, Cognition and Behavior (IR3C) University of Barcelona Summary .—The aim of this article is to study the relationship between the dominance hierarchy and the spatial distribution of a group of captive sooty mangabeys ( Cercocebus atys ). The analysis of the spatial distribution of individuals in relation to their rank in the dominance hierarchy showed a clear linear hierarchy in which the dominant individual was located in central positions with regard to the rest of the group members. The large open enclosure where the group was living allowed them to adopt a high-risk agonistic strategy in which individuals attacked other individuals whose rank was significantly different from their own. The comparison of the results with a previous study of mangabeys showed that, although the dominance ranks of both groups were similar, the fact that they lived in facilities with different layouts caused different agonistic strategies to emerge and allowed the dominant individual to assume different spatial locations. Although the social organization of humans has been studied for decades by a variety of social scientists (such as social psychologists, sociologists and politicians), the organization of individuals in social groups is a very common phenomenon in nature. Moreover, the patterns of social structure observed in some species are often as complex as the social patterns observed in humans.
    [Show full text]