Sonication, Or Buzz Pollination: Constructing Habitats for Effective Fertilization Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wild Bee Species Increase Tomato Production and Respond Differently to Surrounding Land Use in Northern California
BIOLOGICAL CONSERVATION 133 (2006) 81– 87 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/biocon Wild bee species increase tomato production and respond differently to surrounding land use in Northern California Sarah S. Greenleaf*, Claire Kremen1 Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States ARTICLE INFO ABSTRACT Article history: Pollination provided by bees enhances the production of many crops. However, the contri- Received 11 December 2005 bution of wild bees remains unmeasured for many crops, and the effects of anthropogenic Received in revised form change on many bee species are unstudied. We experimentally investigated how pollina- 5 May 2006 tion by wild bees affects tomato production in northern California. We found that wild bees Accepted 16 May 2006 substantially increase the production of field-grown tomato, a crop generally considered Available online 24 July 2006 self-pollinating. Surveys of the bee community on 14 organic fields that varied in proximity to natural habitat showed that the primary bee visitors, Anthophora urbana Cresson and Keywords: Bombus vosnesenskii Radoszkowski, were affected differently by land management prac- Agro-ecosystem tices. B. vosnesenskii was found primarily on farms proximate to natural habitats, but nei- Crop pollination ther proximity to natural habitat nor tomato floral abundance, temperature, or year Ecosystem services explained variation in the visitation rates of A. urbana. Natural habitat appears to increase Bombus vosnesenskii B. vosnesenskii populations and should be preserved near farms. Additional research is Anthophora urbana needed to determine how to maintain A. urbana. Species-specific differences in depen- Habitat conservation dency on natural habitats underscore the importance of considering the natural histories of individual bee species when projecting population trends of pollinators and designing management plans for pollination services. -
Specialist Foragers in Forest Bee Communities Are Small, Social Or Emerge Early
Received: 5 November 2018 | Accepted: 2 April 2019 DOI: 10.1111/1365-2656.13003 RESEARCH ARTICLE Specialist foragers in forest bee communities are small, social or emerge early Colleen Smith1,2 | Lucia Weinman1,2 | Jason Gibbs3 | Rachael Winfree2 1GraDuate Program in Ecology & Evolution, Rutgers University, New Abstract Brunswick, New Jersey 1. InDiviDual pollinators that specialize on one plant species within a foraging bout 2 Department of Ecology, Evolution, and transfer more conspecific and less heterospecific pollen, positively affecting plant Natural Resources, Rutgers University, New Brunswick, New Jersey reproDuction. However, we know much less about pollinator specialization at the 3Department of Entomology, University of scale of a foraging bout compared to specialization by pollinator species. Manitoba, Winnipeg, Manitoba, CanaDa 2. In this stuDy, we measured the Diversity of pollen carried by inDiviDual bees forag- Correspondence ing in forest plant communities in the miD-Atlantic United States. Colleen Smith Email: [email protected] 3. We found that inDiviDuals frequently carried low-Diversity pollen loaDs, suggest- ing that specialization at the scale of the foraging bout is common. InDiviDuals of Funding information Xerces Society for Invertebrate solitary bee species carried higher Diversity pollen loaDs than Did inDiviDuals of Conservation; Natural Resources social bee species; the latter have been better stuDied with respect to foraging Conservation Service; GarDen Club of America bout specialization, but account for a small minority of the worlD’s bee species. Bee boDy size was positively correlated with pollen load Diversity, and inDiviDuals HanDling EDitor: Julian Resasco of polylectic (but not oligolectic) species carried increasingly Diverse pollen loaDs as the season progresseD, likely reflecting an increase in the Diversity of flowers in bloom. -
Wild Bee Declines and Changes in Plant-Pollinator Networks Over 125 Years Revealed Through Museum Collections
University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Spring 2018 WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS Minna Mathiasson University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Mathiasson, Minna, "WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS" (2018). Master's Theses and Capstones. 1192. https://scholars.unh.edu/thesis/1192 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS BY MINNA ELIZABETH MATHIASSON BS Botany, University of Maine, 2013 THESIS Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences: Integrative and Organismal Biology May, 2018 This thesis has been examined and approved in partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences: Integrative and Organismal Biology by: Dr. Sandra M. Rehan, Assistant Professor of Biology Dr. Carrie Hall, Assistant Professor of Biology Dr. Janet Sullivan, Adjunct Associate Professor of Biology On April 18, 2018 Original approval signatures are on file with the University of New Hampshire Graduate School. -
Buzzing Bees and the Evolution of Sexual Floral Dimorphism in Australian Spiny Solanum
BUZZING BEES AND THE EVOLUTION OF SEXUAL FLORAL DIMORPHISM IN AUSTRALIAN SPINY SOLANUM ARTHUR SELWYN MARK School of Agriculture Food & Wine The University of Adelaide This thesis is submitted in fulfillment of the degree of Doctor of Philosophy June2014 1 2 Table of Contents List of Tables........................................................................................................... 6 List of Figures ......................................................................................................... 7 List of Boxes ......................................................................................................... 10 Abstract ................................................................................................................. 11 Declaration ............................................................................................................ 14 Acknowledgements ............................................................................................... 15 Chapter One - Introduction ................................................................................... 18 Floral structures for animal pollination .......................................................... 18 Specialisation in pollination .................................................................... 19 Specialisation in unisexual species ......................................................... 19 Australian Solanum species and their floral structures .................................. 21 Floral dimorphisms ................................................................................ -
Unique Bee Communities Within Vacant Lots and Urban Farms Result from Variation in Surrounding Urbanization Intensity
sustainability Article Unique Bee Communities within Vacant Lots and Urban Farms Result from Variation in Surrounding Urbanization Intensity Frances S. Sivakoff ID , Scott P. Prajzner and Mary M. Gardiner * ID Department of Entomology, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, USA; [email protected] (F.S.S.); [email protected] (S.P.P.) * Correspondence: [email protected]; Tel.: +1-330-601-6628 Received: 1 May 2018; Accepted: 5 June 2018; Published: 8 June 2018 Abstract: We investigated the relative importance of vacant lot and urban farm habitat features and their surrounding landscape context on bee community richness, abundance, composition, and resource use patterns. Three years of pan trap collections from 16 sites yielded a rich assemblage of bees from vacant lots and urban farms, with 98 species documented. We collected a greater bee abundance from vacant lots, and the two forms of greenspace supported significantly different bee communities. Plant–pollinator networks constructed from floral visitation observations revealed that, while the average number of bees utilizing available resources, niche breadth, and niche overlap were similar, the composition of floral resources and common foragers varied by habitat type. Finally, we found that the proportion of impervious surface and number of greenspace patches in the surrounding landscape strongly influenced bee assemblages. At a local scale (100 m radius), patch isolation appeared to limit colonization of vacant lots and urban farms. However, at a larger landscape scale (1000 m radius), increasing urbanization resulted in a greater concentration of bees utilizing vacant lots and urban farms, illustrating that maintaining greenspaces provides important habitat, even within highly developed landscapes. -
Changes in Composition and Structure of a Wild Bee Community and Plant- Pollinator Interactions in South-Central Ontario Over a Forty-Nine Year Period
Changes in composition and structure of a wild bee community and plant- pollinator interactions in South-Central Ontario over a forty-nine year period by Claire Rubens A thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Science in Environmental Sciences Guelph, Ontario, Canada © Claire Rubens, September 2019 ABSTRACT CHANGES IN COMPOSITION AND STRUCTURE OF A WILD BEE COMMUNITY AND PLANT-POLLINATOR INTERACTIONS IN SOUTH-CENTRAL ONTARIO OVER A FORTY-NINE YEAR PERIOD Claire Rubens Advisor: University of Guelph, 2019 Professor Nigel E. Raine Wild pollinators provide important ecosystem services for both agricultural and natural ecosystems. While there is evidence of global pollinator declines, more long-term studies are needed to assess population trends, and the potential impacts of environmental stress factors such as land-use intensification and climate change. This is the first study to examine long-term changes in a wild bee community in Canada. Wild bee abundance, species richness, diversity and evenness were compared across three sampling periods (1968-1969, 2002-03, and 2016-17) in Caledon, Ontario over 49 years. Despite decreases in wild bee abundance since 2002-03, the diversity, evenness and richness increased over time. Extensive restructuring (including loss and frequency changes) of plant-pollinator interactions from 2002-03 to 2016-17 appeared not to affect network resilience. While local trends in land-use patterns did not predict changes in this wild bee community, climatic changes in temperature and snowfall correlated with wild bee abundance at the site. iii ACKNOWLEDGEMENTS I would like to thank my advisor Dr. -
Bumble Bees Are Essential
Prepared by the Bombus Task Force of the North American Pollinator Protection Campaign (NAPPC) Photo Sheila Colla Rusty-patched bumble bee, Bombus affi nis Declining North American Bumble Bees Photo David Inouye Western bumble bee, Bombus occidentalis Bumble Bees Helping Photo James Strange are Pollinators Essential Thrive Franklin bumble bee, Bombus franklini Bumble Bee Facts Photo Leif Richardson Globally, there are about 250 described species Some bumble bee are known to rob fl owers of bumble bees. They are found primarily in the of their nectar. Nectar robbing occurs when temperate zones of North and South America, a bee extracts nectar from a fl ower without and Eurasia. coming into contact with its reproductive Yellow-banded bumble bee, Bumble bees are documented to pollinate parts (i.e. anthers and/or stigma), usually Bombus terricola many important food crops. They are also more by biting a hole at the base of the fl ower. Photo Ron Hemberger effective than honey bees at pollinating crops Bumble bees are effective buzz pollinators grown in greenhouses. of several economically important plants in When most insects are inactive due to cold the family Solanaceae such as tomato, bell temperatures bumble bees are able to fl y by pepper and eggplant. In buzz pollination warming their fl ight muscles by shivering, bees extract pollen from a fl ower by American bumble bee, enabling them to raise their body temperature vibrating against the fl ower’s anthers, Bombus pensylvanicus as necessary for fl ight. making an audible buzzing noise. Instead of starting their own colonies, some Currently, the Common Eastern bumble bee bumble bee species have evolved to take over (Bombus impatiens) is the only species being another species’ colony to rear their young. -
The Oligolectic Bee Osmia Brevis Sonicates Penstemon Flowers for Pollen: a Newly Documented Behavior for the Megachilidae
Apidologie (2014) 45:678--684 Original article © INRA, Dffi and Springer-Verlag France, 2014 DOl: 10.10071s13592-014-0286-1 This file was created by scanning the printed publication. Errors identified by the software have been corrected; however, some errors may remain. The oligolectic bee Osmia brevis sonicates Penstemon flowers for pollen: a newly documented behavior for the Megachilidae James H. CANE USDA-ARS Pollinating Insect Research Unit, Utah State University, Logan, UT 84322-5310, USA Received 7 December 2013 -Revised 21 February 2014- Accepted 2 April2014 Abstract - Flowers with poricidally dehiscent anthers are typically nectarless but are avidly visited and often solely pollinated by bees that sonicate the flowers to harvest pollen. Sonication results from shivering the thoracic flight muscles. Honey bees (Apis) and the 4,000+ species of Megachilidae are enigmatic in their seeming inability to sonicate flowers. The oligolectic megachilid bee Osmia brevis was found audibly sonicating two of its beardtongue pollen hosts, Penstemon radicosus and P. cyananthus. The bees' high-pitched sonication sequences are readily distinguishable from flight sounds in audiospectrograms, as well as sounds that result from anther rasping. Instead, floral sonication by 0. brevis resembles the familiar sounds of bumblebees buzzing, in this case while visiting P. strictus flowers. Apiformes I Megachilidae I buzz pollination I Penstemon I noral sonication I pollen foraging I porose anthers 1. INTRODUCTION blebees, are known to sonicate these poricidal anthers, as well as cones of introrse anthers, to The anthers of many species of flowering enhance their acquisition of pollen (Buchmann plants do not freely shed their pollen, but rather 1985; Buchmann 1983; De Luca and Vallejo dehisce pollen through terminal pores, slits, or Marin 2013). -
Landscape Pattern and Wild Bee Communities in Maine Brianne Du Clos University of Maine, [email protected]
The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library Spring 5-11-2019 Landscape Pattern and Wild Bee Communities in Maine Brianne Du Clos University of Maine, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd Part of the Agricultural Education Commons, Agricultural Science Commons, Agronomy and Crop Sciences Commons, Apiculture Commons, Biodiversity Commons, Botany Commons, Entomology Commons, Fruit Science Commons, Integrative Biology Commons, Laboratory and Basic Science Research Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Du Clos, Brianne, "Landscape Pattern and Wild Bee Communities in Maine" (2019). Electronic Theses and Dissertations. 2970. https://digitalcommons.library.umaine.edu/etd/2970 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. LANDSCAPE PATTERN AND WILD BEE COMMUNITIES IN MAINE By Brianne Elizabeth Du Clos B.S. University of Wisconsin-Superior, 2009 M.S. University of Maine, 2012 A DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (in Ecology and Environmental Sciences) The Graduate School The University of Maine May 2019 Advisory Committee: Cynthia S. Loftin, Unit Leader, U.S. Geological Survey Maine Cooperative Fish and Wildlife Research Unit, Associate Professor of Wildlife Ecology, Co-Advisor Francis A. Drummond, Professor of Insect Ecology, Co-Advisor Dana Marie Bauer, Assistant Director and Research Scientist, George Perkins Marsh Institute, Clark University Alison C. -
An Inventory of Native Bees (Hymenoptera: Apiformes)
An Inventory of Native Bees (Hymenoptera: Apiformes) in the Black Hills of South Dakota and Wyoming BY David J. Drons A thesis submitted in partial fulfillment of the requirements for the Master of Science Major in Plant Science South Dakota State University 2012 ii An Inventory of Native Bees (Hymenoptera: Apiformes) in the Black Hills of South Dakota and Wyoming This thesis is approved as a credible and independent investigation by a candidate for the Master of Plant Science degree and is acceptable for meeting the thesis requirements for this degree. Acceptance of this thesis does not imply that the conclusions reached by the candidate are necessarily the conclusions of the major department. __________________________________ Dr. Paul J. Johnson Thesis Advisor Date __________________________________ Dr. Doug Malo Assistant Plant Date Science Department Head iii Acknowledgements I (the author) would like to thank my advisor, Dr. Paul J. Johnson and my committee members Dr. Carter Johnson and Dr. Alyssa Gallant for their guidance. I would also like to thank the South Dakota Game Fish and Parks department for funding this important project through the State Wildlife Grants program (grant #T2-6-R-1, Study #2447), and Custer State Park assisting with housing during the field seasons. A special thank you to taxonomists who helped with bee identifications: Dr. Terry Griswold, Jonathan Koch, and others from the USDA Logan bee lab; Karen Witherhill of the Sivelletta lab at the University of New Mexico; Dr. Laurence Packer, Shelia Dumesh, and Nicholai de Silva from York University; Rita Velez from South Dakota State University, and Jelle Devalez a visiting scientist at the US Geological Survey. -
Bees of Ohio: a Field Guide
Bees of Ohio: A Field Guide North American Native Bee Collaborative The Bees of Ohio: A Field Guide (Version 1.1.1 , 5/2020) was developed based on Bees of Maryland: A Field Guide, authored by the North American Native Bee Collaborative Editing and layout for The Bees of Ohio : Amy Schnebelin, with input from MaLisa Spring and Denise Ellsworth. Cover photo by Amy Schnebelin Copyright Public Domain. 2017 by North American Native Bee Collaborative Public Domain. This book is designed to be modified, extracted from, or reproduced in its entirety by any group for any reason. Multiple copies of the same book with slight variations are completely expected and acceptable. Feel free to distribute or sell as you wish. We especially encourage people to create field guides for their region. There is no need to get in touch with the Collaborative, however, we would appreciate hearing of any corrections and suggestions that will help make the identification of bees more accessible and accurate to all people. We also suggest you add our names to the acknowledgments and add yourself and your collaborators. The only thing that will make us mad is if you block the free transfer of this information. The corresponding member of the Collaborative is Sam Droege ([email protected]). First Maryland Edition: 2017 First Ohio Edition: 2020 ISBN None North American Native Bee Collaborative Washington D.C. Where to Download or Order the Maryland version: PDF and original MS Word files can be downloaded from: http://bio2.elmira.edu/fieldbio/handybeemanual.html. -
Insect Pollinators Oregon’S Primary Pollinators Are Native Bumble Bees, Sweat Bees, Mining Bees, Wasps, Butterflies, and Moths
Introduction to Oregon Insect Pollinators Oregon’s primary pollinators are native bumble bees, sweat bees, mining bees, wasps, butterflies, and moths. Imported European honey bees also play a critical role in pollinating crops. This guide will help you recognize the characteristics of pollinators and their requirements for food and shelter. Bumble bees are social insects that All species nest in the ground. Hal- Native Pollinators build their nests in the ground, of- ictids have a range of nesting hab- Native bees are easily overlooked ten in abandoned mouse burrows, its, from dispersed solitary nests, to since most do not fi t the stereo- empty bird nests, and under fall- densely situated ones with individ- type image, like the European en grass. The mated queen over- ual bees sharing common entrance honey bee, with black and brown- winters in the soil while the rest of ways, to primitive social arrange- ish stripes, living with thousands the colony dies at the onset of cold ments. Halictid bees are common of others in a hive full of honey- weather. In early spring, she estab- insects and good general pollina- comb. About 4,000 species of na- lishes a new nest and rears the fi rst tors. tive bees have been identifi ed and worker brood. These workers are catalogued in North America. They small, sterile females that enlarge range in length from less than one the nest, forage, and tend to the Mining eighth of an inch to more than one next generation of workers. These Bees inch; vary in color from dark brown are larger bees, due to changed Andrenid or black to metallic green and blue; nest conditions, such as increased bees, and may have stripes of red, white, temperature, cell size, and food common- orange, or yellow.