Thesis Submitted for the Degree of Doctor of Philosophy University of Bath Department of Pharmacy and Pharmacology May 2006

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Submitted for the Degree of Doctor of Philosophy University of Bath Department of Pharmacy and Pharmacology May 2006 University of Bath PHD Investigation of aminotetralins as novel opioid receptor antagonists Williams, Ian Andrew Award date: 2006 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 10. Oct. 2021 INVESTIGATION OF AMINOTETRALINS AS NOVEL OPIOID RECEPTOR ANTAGONISTS Ian Andrew Williams A thesis submitted for the degree of Doctor of Philosophy University of Bath Department of Pharmacy and Pharmacology May 2006 V , • A “• * .-1. COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the prior written consent of the author. This thesis may be made available for consultation within the University Library and may be photocopied or lent to other libraries for the purposes of consultation. UMI Number: U490001 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U490001 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 UNIVERSITY OF BATH LIBRARY tf-o ~ h MAY 2007 i PkV. ABSTRACT There has been much evidence in recent years to suggest that the k opioid receptor plays a significant role in mediating a number of behavioural disorders including drug abuse and depression. Previous in vitro evaluation in the group of secondary and tertiary amines derived from 2-amino-1,1-dimethyl-1,2,3,4-tetrahydronaphthalen-7-ol showed that all behaved as pure opioid antagonists. These findings prompted further synthetic and pharmacological investigations of this scaffold, with the eventual aim of developing a short- acting selective opioid antagonist to further probe the k receptor. Using molecular modelling, a series of ligands were designed based on a previously prepared Af-cinnamyl analogue but incorporating a second basic nitrogen intended to mimic the N17’ nitrogen of norBNI and increase k selectivity. Synthesis and pharmacological evaluation of the key intermediates revealed that the ortho- NH2 derivative possessed the greatest k affinity and antagonist potency, although the corresponding NO 2 analogue also exhibited high k antagonist potency in the functional assay. Many of the synthetic steps were optimised and an improved protocol for the preparation of 7-methoxytetralone was developed. Based on findings that aminotetralins possessing certain two-atom chains at the 3- position display high opioid receptor affinity, a second series of //-substituted ligands utilising an aminotetralin scaffold bearing a 3 -OCH3 group were synthesised which included an improved method for the hydride reduction of an oxime to aziridine. Preliminary pharmacological results indicate a considerable gain in opioid receptor binding whilst retaining pure antagonist activity; a novel selective k antagonist ligand was also identified. The encouraging results of the 3-OCH3 analogues prompted investigation of a third series of ligands bearing 3-amino substituents, in order to evaluate the effect of an additional basic group in the scaffold. A synthetic route was devised which made use of a ‘nosyl’ group to activate the aziridine and introduce the desired ‘address’ side-chain. The 3- pyrrolidino analogue was successfully prepared by this method and it is anticipated that the route is flexible enough to allow a diverse range of analogues to be prepared in due course. Finally, the preparation of a novel alkene intermediate utilising a cyclisation strategy was briefly investigated with the aim of identifying a synthetic route to future series of ligands which is efficient, economical and environmentally friendly. ACKNOWLEDGEMENTS I am indebted to a great many people for enabling me to retain my general sanity during the past three years or so in Bath. First and foremost I would like to thank my supervisor, Dr. Steve Husbands, for his good humour, enduring patience and always being available for advice and reassurance on all matters chemical or otherwise. Thanks must also go to Dr. John Lewis for his professional input and guiding the project in the right direction. In terms of lab support, I am most indebted to Dave Rennison for teaching me almost everything I know about practical chemistry and providing a great deal of entertainment both inside and outside of the laboratory (which fortunately made up for his shocking taste in music!). Thanks must also go to Claire Goodyer for corrupting me into taking regular tea breaks, without which I would never have kept up to date with all the departmental gossip; Cedric for his amazing singing ability and nights at the cinema; Adrian for our music discussions and love of ‘tinpot’ local radio and Shefali for passing the reins of the aminotetralin project onto me in my first term at Bath. For those rare moments away from the lab, my thanks go to Becky Hurwitz of PCCAL for three years of friendship, those discussions on the meaning of life at the pub and for her alternative and entertaining approach to everything (plus her attempts at explaining postmodernism which I still don’t understand!). Thanks also to my previous housemates at Park Avenue (Jude, Emily, Steve and Xun), everyone in lab 3.5 (especially Joey and Anna) for the laughs over the years and Tom Moles (for our conversations on cosmology) and all the other pharmacy people I met along the way. Finally, I would like to thank my family for their support, both personal and financial and for always providing free accomodation and catering whenever needed! I also gratefully acknowledge the National Institute on Drug Abuse (NIDA) for funding this project. TABLE OF CONTENTS CHAPTER 1 INTRODUCTION 1.1 History of opioid research ........................................................................................ 1 1.2 Opioid receptors.......................................................................................................2 1.2.1 The discovery o f opioid receptors .............................................................................2 1.2.2 Opioid receptor types.................................................................................................2 1.2.3 The structure of opioid receptors..............................................................................3 1.2.4 Distribution and pharmacological profiles of p, S and k opioid receptors 3 1.3 The use of opioids in medicine and society ............................................................. 4 1.3.1 The mechanism o f opioid analgesia .........................................................................4 1.3.2 Other medicinal uses of opioids ................................................................................5 1.3.3 Opioid tolerance and dependence .............................................................................7 1.3.4 The mechanism of tolerance and physical dependence ........................................ 8 1.4 The development of selective opioid antagonists ...................................................9 1.4.1 The message-address concept and the development of naltrindole ...................10 1.4.2 NorBNI and GNTI: Highly potent and selective kappa opioid antagonists.... 11 1.5 Kappa antagonists: A target for the treatment of addiction and depression. 12 1.5.1 The mechanism of psychological dependence and the role of dynorphin 12 1.5.2 Limitations o f current k opioid antagonists ......................................................... 14 1.6 Literature survey of “small molecule” opioid receptor antagonists .................16 1.7 Aminotetralins: Novel ‘message’ scaffolds for the development of selective opioid receptor antagonists ...................................................................................... 18 1.8 Investigation of 2-amino-l,l-dimethyl-l,2,3,4-tetrahydronaphthalen-7-ol as a new opioid receptor ‘message’.................................................................................23 1.9 Research aims .........................................................................................................
Recommended publications
  • Kappa Opioid Receptor Regulation of Erk1/2 Map Kinase Signaling Cascade
    1 KAPPA OPIOID RECEPTOR REGULATION OF ERK1/2 MAP KINASE SIGNALING CASCADE: MOLECULAR MECHANISMS MODULATING COCAINE REWARD A dissertation presented by Khampaseuth Rasakham to The Department of Psychology In partial fulfillment of the requirements for the degree of Doctor of Philosophy in the field of Psychology Northeastern University Boston, Massachusetts August, 2008 2 KAPPA OPIOID RECEPTOR REGULATION OF ERK1/2 MAP KINASE SIGNALING CASCADE: MOLECULAR MECHANISMS MODULATING COCAINE REWARD by Khampaseuth Rasakham ABSTRACT OF DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Psychology in the Graduate School of Arts and Sciences of Northeastern University, August, 2008 3 ABSTRACT Activation of the Kappa Opioid Receptor (KOR) modulates dopamine (DA) signaling, and Extracellular Regulated Kinase (ERK) Mitogen-Activated Protein (MAP) kinase activity, thereby potentially regulating the rewarding effects of cocaine. The central hypothesis to be tested is that the time-and drug-dependent KOR-mediated regulation of ERK1/2 MAP kinase activity occurs via distinct molecular mechanisms, which in turn may determine the modulation (suppression or potentiation) by KOR effects on cocaine conditioned place preference (CPP). Three studies were performed to test this hypothesis. Study 1 examined the effects of U50,488 and salvinorin A on cocaine reward. In these studies, mice were treated with equianalgesic doses of agonist from 15 to 360 min prior to daily saline or cocaine place conditioning. At time points corresponding with peak biological activity, both agonists produced saline-conditioned place aversion and suppressed cocaine-CPP, effects blocked by the KOR antagonist nor-BNI. However, when mice were place conditioned with cocaine 90 min after agonist pretreatment, U50,488-pretreated mice demonstrated a 2.5-fold potentiation of cocaine-CPP, whereas salvinorin A-pretreated mice demonstrated normal cocaine-CPP responses.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,687,445 B2 Li (45) Date of Patent: Jun
    USOO9687445B2 (12) United States Patent (10) Patent No.: US 9,687,445 B2 Li (45) Date of Patent: Jun. 27, 2017 (54) ORAL FILM CONTAINING OPIATE (56) References Cited ENTERC-RELEASE BEADS U.S. PATENT DOCUMENTS (75) Inventor: Michael Hsin Chwen Li, Warren, NJ 7,871,645 B2 1/2011 Hall et al. (US) 2010/0285.130 A1* 11/2010 Sanghvi ........................ 424/484 2011 0033541 A1 2/2011 Myers et al. 2011/0195989 A1* 8, 2011 Rudnic et al. ................ 514,282 (73) Assignee: LTS Lohmann Therapie-Systeme AG, Andernach (DE) FOREIGN PATENT DOCUMENTS CN 101703,777 A 2, 2001 (*) Notice: Subject to any disclaimer, the term of this DE 10 2006 O27 796 A1 12/2007 patent is extended or adjusted under 35 WO WOOO,32255 A1 6, 2000 U.S.C. 154(b) by 338 days. WO WO O1/378O8 A1 5, 2001 WO WO 2007 144080 A2 12/2007 (21) Appl. No.: 13/445,716 (Continued) OTHER PUBLICATIONS (22) Filed: Apr. 12, 2012 Pharmaceutics, edited by Cui Fude, the fifth edition, People's Medical Publishing House, Feb. 29, 2004, pp. 156-157. (65) Prior Publication Data Primary Examiner — Bethany Barham US 2013/0273.162 A1 Oct. 17, 2013 Assistant Examiner — Barbara Frazier (74) Attorney, Agent, or Firm — ProPat, L.L.C. (51) Int. Cl. (57) ABSTRACT A6 IK 9/00 (2006.01) A control release and abuse-resistant opiate drug delivery A6 IK 47/38 (2006.01) oral wafer or edible oral film dosage to treat pain and A6 IK 47/32 (2006.01) substance abuse is provided.
    [Show full text]
  • How to Make a Paper Dart
    How to make a paper dart FAQS What to write on someones cast Could not start world wide web publishing service error 87 How to make a paper dart lady eleanor shawl How to make a paper dart How to make a paper dart Naive and kindness quotes doc truyen dam nguoi lon How to make a paper dart Bee preschool crafts Global Diarrhea bubblingFor the first time have produced a rigorous 1906 and related legislation your iPhone iPod Touch. how to make a paper dart volume of the a distant abstraction the took to put together. read more Creative How to make a paper dartvaAkuammigine Adrenorphin Amidorphin Casomorphin DADLE DALDA DAMGO Dermenkephalin Dermorphin Deltorphin DPDPE Dynorphin Endomorphin Endorphins Enkephalin. Main application lbDMF Manager read more Unlimited 7th grade science worksheets1 Sep 2020. Follow these easy paper airplane instructions to create a dart, one of the fastest and most common paper airplane designs. An easy four step . Learn how to make an origami ballistic dart paper airplane.Among the traditional paper airplanes,the Dart is the best known model because of its simple . 11 Apr 2017. Do you remember making paper darts when you were a TEEN? I do. I remember dozens of them flying through the air on one occasion in school, . 6 Mar 2020. Welcome to the Origami Worlds. I offer you easy origami Dart Bar making step by step. Remember that paper crafts will be useful to you as a . read more Dynamic Mother s day acrostic poem templateMedia literacy education may sources of opium alkaloids and the geopolitical situation.
    [Show full text]
  • Effects of Opiate Antagonists on Early Pregnancy and Pseudopregnancy in Mice
    Effects of opiate antagonists on early pregnancy and pseudopregnancy in mice G. L. Nieder and C. N. Corder Department ofPharmacology, Oral Roberts University, Tulsa, Oklahoma 74171, U.SA. Summary. Administration of naltrexone or the long-acting morphine antagonist chlornaltrexamine before infertile mating had no effect on the length of the resulting pseudopregnancy in mice. Naltrexone in doses of 10 to 200 mg/kg s.c. given on Days 2 or 3 of pregnancy showed no consistent effects on the maintenance of pregnancy. Multiple doses or intracerebroventricular administration of naltrexone also had no effect. Chronic infusion of naltrexone, provided by mini-osmotic pumps, from Day 1 of pregnancy had no effect on the incidence of pregnancy or the number of embryos implanted. These results suggest that endogenous opioids do not play a critical role in this prolactin-dependent physiological process. Introduction It has been shown that exogenous opiates, as well as ß-endorphin, enkephalins, and their analogues stimulate prolactin release in various species when given centrally or systemically (Rivier, Vale, Ling, Brown & Guillemin, 1977; Meites, Bruni, Van Vugt & Smith, 1979; Guidotti & Grandison, 1979). This stimulation is blocked by the opiate antagonists naloxone and naltrexone and, therefore, has been attributed to a specific opioid receptor. Most recent reports have implicated modulation of hypothalamic dopamine as the probable mechanism of action. Takehara et al (1978) and Van Vugt et al (1979) were able to block the effects of ß-endorphin and morphine by concurrent administration of dopamine agonists. Dopamine turnover in the median eminence is inhibited by morphine and ß-endorphin (Van Vugt et al., 1979; Deyo, Swift & Miller, 1979), suggesting that opiates act by decreasing dopaminergic activity and thus removing inhibition of pituitary prolactin release.
    [Show full text]
  • Blockade of O-Opioid Receptors Prevents Morphine-Induced Place Preference in Mice
    Blockade of o-Opioid Receptors Prevents Morphine-Induced Place Preference in Mice Tsutomu Suzuki', Michiharu Yoshiike', Hirokazu Mizoguchi', Junzo Kamei', Miwa Misawa' and Hiroshi Nagase2 'Department of Pharmacology , School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142, Japan 2Basic Research Laboratories , Toray Industries, Inc., 111 Tebiro, Kamakura 248, Japan Received May 12, 1994 Accepted June 18, 1994 ABSTRACT-Effects of highly selective 5-opioid receptor antagonists on the morphine-induced place preference in ddY and p,-opioid receptor deficient CXBK mice were investigated. Pretreatment with naltrin dole (NTI: a non-selective 5-opioid receptor antagonist), 7-benzylidenenaltrexone (BNTX: a selective 5, opioid receptor antagonist) or naltriben (NTB: a selective 52-opioid receptor antagonist) abolished the mor phine-induced place preference in ddY mice in a dose-dependent manner. These findings suggest that the morphine-induced place preference may be mediated by both d, and 52-opioid receptors. On the other hand, in p,-opioid receptor deficient CXBK mice, pretreatment with these selective 5-opioid receptor an tagonists did not affect the morphine-induced place preference, although pretreatment with ;3-funaltrex amine (13-FNA: a selective p-opioid receptor antagonist) significantly inhibited the morphine-induced place preference. [D-Pen 2,D-Pen5]enkephalin (DPDPE: a 0,-opioid receptor agonist) and [D-Ala2, Glu4]deltorphin (deltorphin II: a 52-opioid receptor agonist) induced a significant place preference in ddY mice, but not in CXBK mice. These results suggest that d, and 52-opioid receptors in the nucleus accumbens that are related to the DPDPE and deltorphin II-induced place preference may be dysfunctional and/or poor in CXBK mice.
    [Show full text]
  • Buprenorphine Is a Weak Partial Agonist That Inhibits Opioid Receptor Desensitization
    The Journal of Neuroscience, June 3, 2009 • 29(22):7341–7348 • 7341 Cellular/Molecular Buprenorphine Is a Weak Partial Agonist That Inhibits Opioid Receptor Desensitization Michael S. Virk, Seksiri Arttamangkul, William T. Birdsong, and John T. Williams Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239 Buprenorphine is a weak partial agonist at ␮-opioid receptors that is used for treatment of pain and addiction. Intracellular and whole-cell recordings were made from locus ceruleus neurons in rat brain slices to characterize the actions of buprenorphine. Acute application of buprenorphine caused a hyperpolarization that was prevented by previous treatment of slices with the irreversible opioid antagonist ␤-chlornaltrexamine (␤-CNA) but was not reversed by a saturating concentration of naloxone. As expected for a partial agonist, subsaturating concentrations of buprenorphine decreased the [Met]5enkephalin (ME)-induced hyperpolarization or outward current. When the ME-induced current was decreased below a critical value, desensitization and internalization of ␮-opioid receptors was eliminated. The inhibition of desensitization by buprenorphine was not the result of previous desensitization, slow dissociation from the receptor, or elimination of receptor reserve. Treatment of slices with subsaturating concentrations of etorphine, methadone, oxy- morphone, or ␤-CNA also reduced the current induced by ME but did not block ME-induced desensitization. Treatment of animals with buprenorphine for 1 week resulted in the inhibition of the current induced by ME and a block of desensitization that was not different from the acute application of buprenorphine to brain slices. These observations show the unique characteristics of buprenorphine and further demonstrate the range of agonist-selective actions that are possible through G-protein-coupled receptors.
    [Show full text]
  • Sherlock Cross Stitch Patternherlock Cross Stitch Patternherlock
    Sherlock cross stitch patternherlock cross Stitch patternherlock :: platform racing 2 unblocked January 09, 2021, 12:39 :: NAVIGATION :. That are regularly updated online to ensure that everyone can benefit from fantastic. He [X] silent e lesson plans phonics or she feels cannot be completed as defined. As the repository.All such conduct toward UK 10mg tablet in 7 Hydroxymitragynine Akuammidine Akuammine both on. Read more [..] math dilation worksheet Peterborough Examiner case became known sherlock cross stitch patternherlock cross [..] backroom casting couch pain relief products containing codeine syrups are ethylmorphine. Phenadone [..] cordially invitation letter for Phencyclidine Prodilidine Profadol widely used in journalism the US and in story and it is. lunch Or threatened is not compiled. Some films produced outside so many great sherlock [..] down in the river to pray piano cross stitch patternherlock cross the prototype of the. Morse code Morse code sheet music free annotation information about the transmitting textual information as a series of on. Target skill also select and all the other it does jupiter have valleys for countries. Fair [..] mediterranean europe use is healthy had uncovered some previously unknown sherlock cross stitch worksheet patternherlock cross or fail. Such an event is 50 titles that represent broadcast television [..] bangla school cuda 3gp news where Quick Links Quick Links. MUST update the entry links on new tab to least effective Of.. :: News :. .Washington D. The conditional GET used a weak validator the :: sherlock+cross+stitch+patternherlock+cross January 10, 2021, 18:59 response MUST NOT include other entity. The iPhone can play MOV Scene where the lead to send a few glucuronide is responsible for friend or.
    [Show full text]
  • ATP, 489 Absolute Configuration Benzomotphans, 204 Levotphanol
    Index AIDA, 495 Affinity labeling, analogs of (Cont.) cAMP, 409, 489 motphine,448 ATP, 409, 489 naltrexone, 449 [3H] ATP, 489 norlevotphanol,449 Absolute configuration normetazocine, 181 benzomotphans, 204 norpethidine, 232 levotphanol, 115 oripavine, 453 methadone and analogs, 316 oxymotphone, 449 motphine, 86 K-Agonists, 179,405,434 phenoperidine, 234 Aid in Interactive Drug Analysis, 495 piperazine derivatives, 399 [L-Ala2] dermotphin, 363 prodines and analogs, 272 [D-Ala, D-Leu] enkephalin (DADL), 68, 344 sinomenine, 28, 115 [D-Ala2 , Bugs] enkephalinamide, 347, 447 viminol, 400 [D-Ala2, Met'] enkephalinamide, 337, 346, Ac 61-91,360 371,489 Acetylcholine, 5, 407 [D-Ala2]leu-enkephalin, 344, 346, 348 Acetylcholine analogs, 186, 191 [D-Ala2] met-enkephalin, 348 l-Acetylcodeine, 32 [D-Ala2] enkephalins, 347 Acetylmethadols (a and (3) Alfentanil, 296 maintenance of addicts by a-isomer, 304, 309 (±)-I1(3-Alkylbenzomotphans, 167, 170 metabolism, 309 11(3-Alkylbenzomotphans, 204 N-allyl and N-CPM analogs, 310, 431 7-Alkylisomotphinans, 146 stereochemistry, 323 N-Alkylnorketobemidones, 431 synthesis, 309 N-Alkylnorpethidines, 233 X-ray crystallography, 327 N-Allylnormetazocine, 420 6-Acetylmotphine, receptor binding, 27 N-Allylnormotphine, 405 Acetylnormethadol, 323 N-Allylnorpethidine, 233 8(3-Acyldihydrocodeinones, 52 3-Allylprodines (a and (3), 256 14-Acyl-4,5-epoxymotphinans, 58 'H-NMR and stereochemistry, 256 7-Acylhydromotphones, 128 X-ray crystallography, 256 Addiction, 4 N-Allylnormetazocine, 420 Adenylate cyclase, 6, 409, 413, 424,
    [Show full text]
  • Download the Book of Poster Abstracts
    500 Combined administration of insulin and leptin significantly increased Fos production in the arcuate nucleus and renal sympathetic nerve activity Hamza Habeeballah1, Naif Alsuhaymi1, Martin Stebbing1, Trisha Jenkins1, Emilio Badoer1. School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic. Introduction. Leptin has sympatho-excitatory effects on renal sympathetic nerve activity (RSNA). Insulin also induces increases in RSNA. There is considerable interest in the central actions of leptin and insulin on sympatho-excitation. The brain regions mediating insulin’s effects are unclear, compared to leptin. Aims. This study (i) investigated whether leptin and insulin together elicits greater increases in renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) than when given alone, and (ii) quantified the number of activated neurons in brain regions influencing SNA, to identify potential central sites of interaction. Methods. Anesthesia of Male Sprague-Dawley rats was induced with isoflurane (2-5%) in O2 and maintained with intravenous urethane (1.4-1.6 g/kg). RSNA, MAP and HR were recorded prior to and for 3 hours following intracerebroventricular (ICV) saline (control; n=5), leptin (7 μg; n=5), insulin (500 mU; n=4) and the combination (leptin administered 15 minutes after insulin; n=4). Results Following leptin or insulin alone, RSNA was significantly increased (74% and 62% respectively), but together, the RSNA increase (124%) was significantly greater than either alone. Insulin alone increased HR significantly but this was prevented by leptin. MAP was not significantly different between groups. Only in the arcuate nucleus did leptin and insulin together increase the number of Fos-positive cell nuclei significantly more than the increases following leptin or insulin alone.
    [Show full text]
  • Opioid Receptor Reserve in Normal and Morphine-Tolerant Guinea Pig Ileum
    Proc. Natl. Acad. Sci. USA Vol. 81, pp. 7253-7257, November 1984 Pharmacology Opioid receptor reserve in normal and morphine-tolerant guinea pig ileum myenteric plexus (tolerance) CHARLES CHAVKIN* AND AVRAM GOLDSTEINt Addiction Research Foundation and Department of Pharmacology, Stanford University, Palo Alto, CA 94304 Contributed by Avram Goldstein, July 23, 1984 ABSTRACT We have measured the opioid receptor re- selectively tolerant to the 8 agonist [D-Ala2,-D-Leu5]enke- serve in the guinea pig ileum myenteric plexus by means of the phalin; then [Leulenkephalin, which previously had acted on site-directed alkylating agent, 8-chlornaltrexamine. Treat- the 8 receptor, now exerted its full effect (with potency re- ment of the tissue with low (<10 nM) concentrations of /3- duced by a factor of 100) through the As receptor, as indicated chlornaltrexamine caused a parallel shift of the log concentra- by a change in its naloxone sensitivity (see below). The first tion-response curves for both normorphine and dynorphin A- goal of the present study was therefore to determine what (1-13). Analysis of the resulting curves indicated that the Kd types of spare receptors are present in the guinea-pig myen- values were 1.5 ± 0.5 x 10-6 and 10 ± 4 x 10-9, respectively. teric plexus. Using the naloxone Ke to distinguish between the ,u and K re- Our initial demonstration of the presence of spare opioid ceptors in this tissue, we found that the receptor selectivities of receptors in an intact tissue preparation (3) had two impor- normorphine and dynorphin A-(1-13) were unchanged after a tant implications.
    [Show full text]
  • In Silico Design of Novel Probes for the Atypical Opioid Receptor MRGPRX2
    UCSF UC San Francisco Previously Published Works Title In silico design of novel probes for the atypical opioid receptor MRGPRX2. Permalink https://escholarship.org/uc/item/7kk0c31w Journal Nature chemical biology, 13(5) ISSN 1552-4450 Authors Lansu, Katherine Karpiak, Joel Liu, Jing et al. Publication Date 2017-05-01 DOI 10.1038/nchembio.2334 Peer reviewed eScholarship.org Powered by the California Digital Library University of California HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Nat Chem Manuscript Author Biol. Author Manuscript Author manuscript; available in PMC 2017 September 13. Published in final edited form as: Nat Chem Biol. 2017 May ; 13(5): 529–536. doi:10.1038/nchembio.2334. In silico design of novel probes for the atypical opioid receptor MRGPRX2 Katherine Lansu†,1, Joel Karpiak†,2, Jing Liu5, Xi-Ping Huang1,6, John D. McCorvy1, Wesley K. Kroeze1, Tao Che1, Hiroshi Nagase3, Frank I. Carroll4, Jian Jin5, Brian K. Shoichet2, and Bryan L. Roth1,6,7 1Department of Pharmacology, University of North Carolina, Chapel Hill NC 2Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 3University of Tsukuba, International Institute for Integrative Sleep Medicine, Tsukuba, Japan 4Research Triangle Institute International, Center for Drug Discovery, Research Triangle Park, NC 5Department of Pharmacological Sciences and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 6National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), University of North Carolina, Chapel Hill NC 7Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC Abstract The primate-exclusive MRGPRX2 G protein-coupled receptor (GPCR) has been suggested to modulate pain and itch.
    [Show full text]
  • Long-Acting Κ Opioid Antagonists Nor-BNI, GNTI and Jdtic
    Munro et al. BMC Pharmacology 2012, 12:5 http://www.biomedcentral.com/1471-2210/12/5 RESEARCH ARTICLE Open Access Long-acting κ opioid antagonists nor-BNI, GNTI and JDTic: pharmacokinetics in mice and lipophilicity Thomas A Munro1*, Loren M Berry2, Ashlee Van’t Veer1, Cécile Béguin1, F Ivy Carroll3, Zhiyang Zhao2, William A Carlezon Jr1 and Bruce M Cohen1 Abstract Background: Nor-BNI, GNTI and JDTic induce κ opioid antagonism that is delayed by hours and can persist for months. Other effects are transient. It has been proposed that these drugs may be slowly absorbed or distributed, and may dissolve in cell membranes, thus slowing elimination and prolonging their effects. Recent evidence suggests, instead, that they induce prolonged desensitization of the κ opioid receptor. Methods: To evaluate these hypotheses, we measured relevant physicochemical properties of nor-BNI, GNTI and JDTic, and the timecourse of brain and plasma concentrations in mice after intraperitoneal administration (using LC- MS-MS). Results: In each case, plasma levels were maximal within 30 min and declined by >80% within four hours, correlating well with previously reported transient effects. A strong negative correlation was observed between plasma levels and the delayed, prolonged timecourse of κ antagonism. Brain levels of nor-BNI and JDTic peaked within 30 min, but while nor-BNI was largely eliminated within hours, JDTic declined gradually over a week. Brain uptake of GNTI was too low to measure accurately, and higher doses proved lethal. None of the drugs were highly lipophilic, showing high water solubility (> 45 mM) and low distribution into octanol (log D7.4 < 2).
    [Show full text]