The Extracellular Matrix at a Glance Introduction the Extracellular Matrix (ECM) Is the Non- Christian Frantz1, Kathleen M

Total Page:16

File Type:pdf, Size:1020Kb

The Extracellular Matrix at a Glance Introduction the Extracellular Matrix (ECM) Is the Non- Christian Frantz1, Kathleen M Cell Science at a Glance 4195 The extracellular matrix at a glance Introduction The extracellular matrix (ECM) is the non- Christian Frantz1, Kathleen M. Stewart1 and Valerie M. Weaver1,2,* cellular component present within all tissues and 1Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California San organs, and provides not only essential physical Francisco, San Francisco, CA 94143, USA scaffolding for the cellular constituents but also 2 Department of Anatomy, Department of Bioengineering and Therapeutic Sciences, Eli and Edythe Broad initiates crucial biochemical and biomechanical Center of Regeneration Medicine and Stem Cell Research at UCSF, UCSF Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA cues that are required for tissue morphogenesis, *Author for correspondence ([email protected]) differentiation and homeostasis. The importance Journal of Cell Science 123, 4195-4200 of the ECM is vividly illustrated by the wide © 2010. Published by The Company of Biologists Ltd range of syndromes, which can be anything doi:10.1242/jcs.023820 from minor to severe, that arise from genetic abnormalities in ECM proteins (Jarvelainen et al., 2009). Although, fundamentally, the ECM is composed of water, proteins and The Extracellular Matrix at a Glance polysaccharides, each tissue has an ECM with Christian Frantz, Kathleen M. Stewart and Valerie M. Weaver a unique composition and topology that is 1 ECM macromolecules generated during tissue development through Examples of proteoglycans Fibrous proteins a dynamic and reciprocal, biochemical Glycosaminoglycan hydrogel Modular PGs SLRPs Cell-surface PGs Syndecan Glypican and biophysical dialogue between the Fibrous collagens Core protein Decorin Lumican Fibronectin Tenascin Elastins Laminin Glycosamino- Cell membrane various cellular components (e.g. epithelial, glycan chains Perlecan Aggrecan fibroblast, adipocyte, endothelial elements) 2 ECM structure and function and the evolving cellular and protein Normal Aged Wounded or fibrotic Tumor Loss of cell−cell adhesion Loss of apical−basal polarity Loss of apical–basal polarity microenvironment. Indeed, the physical, Cell proliferation Cell migration topological, and biochemical composition of the Thinner BM BM ECM is not only tissue-specific, but is also Metastatic markedly heterogeneous. Cell adhesion to the cell migration EMT Epithelial cell Inflammatory cell Senescent fibroblast (growth arrest, ECM is mediated by ECM receptors, such as (apical−basal polarity) (infiltration from blood resistant to apoptotic signals) and lymph vessels) Fibrin blood clot Fibroblast (secreting ECM Growth factors MMP precursors and reorganizing Myofibroblast integrins, discoidin domain receptors and the ECM) Non-enzymatic crosslinking (differentiated fibroblast) Proteoglycans (PGs) Adipocyte (each and glycosaminoglycan Activated infiltrated Transformed Differentiated fibroblasts surrounded by a secreted chains cell (peritumoral fibroblasts, reactive syndecans (Harburger and Calderwood, 2009; inflammatory cell thick basal lamina) stroma fibroblasts, cancer-associated Col I Epithelial-to-mesenchymal fibroblasts and myofibroblasts) EMT Myoepithelial cell transition Humphries et al., 2006; Leitinger and (in contact with BM) Fibronectin Collagen-crosslinking enzymes Hohenester, 2007; Xian et al., 2010). Adhesion Molecular composition mediates cytoskeletal coupling to the ECM and Col I Fibronectin Elastin Degenerated elastin network ↑ Fibronectin ↑ Col types I, III ↑ Fibronectin ↑ Col types I, III and IV ↑ Fibronectin ↑ Elastin is involved in cell migration through the ECM PGs (examples) (Schmidt and Friedl, 2010). Moreover, the ↑ HA ↑ Fibrin ↑ PGs (decorin, biglycan, lumican, fibromodulin…) ↓ Total PGs ↑ Decorin Journal of Cell Science ECM is a highly dynamic structure that is HA Decorin Aggrecan Perlecan constantly being remodeled, either Biological and mechanical properties enzymatically or non-enzymatically, and its Compliant meshwork, β TGF-β and VEGF ↑ EGF-like GFs Unbound TGF , VGEF, G resists tensile and G G G promote vessel G CH G recruits inflammatory cells molecular components are subjected to a myriad compressive stress ↓ Tensile strength growth and inflammation CHCH PAI G ↑ TGF-β, PDGF, bFGF, G GFs: EGF, TGF-β, bFGF G ↑ β G ↑ Stiffness VEGF TGF- , VEGF, PDGF, ROSS ROS G EGF, bFGF, HGF G of post-translational modifications. Through G CH CH ↓ Mechanical stability, G G PAI G G tensile strength, elasticity ROS ECM stiffening, G CH reduced elasticity G ↑ G Stiffness these physical and biochemical characteristics G G G CCH G G G G CH the ECM generates the biochemical and G Glycosaminoglycan- ROS G G bound growth factor G PAII CH G (GH) G G CH G mechanical properties of each organ, such as its G G G G G Unbound GH G CH ROSS G ROS Glycosaminoglycan G MMP activity G Newly secreted GH ROS G tensile and compressive strength and elasticity, G chain 500 Pa 3000 Pa and also mediates protection by a buffering Increased stiffness Extrinsic and intrinsic forces action that maintains extracellular homeostasis Tensional ECM resistance Reciprocal ECM resistance Reciprocal ECM resistance homeostasis Migrating and and water retention. In addition, the ECM dividing cells ECM-contracting Stiff crosslinked PG-modified collagen fibers collagen and myofibroblast elastin fibers directs essential morphological organization Stiff crosslinked collagen fibers Solid stress Solid stress Proliferating Weak basement transformed and physiological function by binding growth Basement membrane epithelium membrane Stiff crosslinked collagen fibers factors (GFs) and interacting with cell-surface Exerted ECM-contracting force myofibroblast receptors to elicit signal transduction and 3 Natural and synthetic engineered ECMs regulate gene transcription. The biochemical Natural Modified or synthetic Soft rBM gel (e.g. Matrigel™) (Kleinman et al., Col I (Friess, 1998) Functionalized HA (Serban and Prestwich, 2008) PEG hydrogels and biomechanical, protective and 1986; Kleinman and Martin, 2005) (Lutolf and Hubbell, 2005) Self-assembling peptides (Hauser and Zhang, 2010) R R Conjugated Multi-arm macromers conjugated R RGD peptides, G R with RGD, LDV, YIGSR Self-assembled peptide-amphiphiles. RRRR R organizational properties of the ECM in a given R Col I, laminin, G Functionalized with RGF, RGD, LDV, fibronectin G R YIGSR. Fiber diameter~50 nm R G Integrin ligands R R G R R G Adhesion receptor Collagen concentration G ligands tissue can vary tremendously from one tissue to G R SIS scaffold (Badylak, 2007) Fibrin gel (fibrinogen + thrombin) Key (Blombäck and Bark, 2004) Electrospun biomaterial (silk, lactic acid and glycolic acid Functionalized polyacrylamide gel (Pelham and Wang, 1997) another (e.g. lungs versus skin versus bone) and R Remodeling sites polymers) (Zhang et al., 2009; McCullen et al., 2009) R G Col I, laminin, GFs Crosslinked with ECM R R G Embedded growth factors G R and fibronectin R molecules and peptides R R R Fiber diameter 50 nm−300 μm. even within one tissue (e.g. renal cortex versus R R G Mixed with Col I, fibrin, HA Thrombin mg/ml (See accompanying article for full citations.) renal medulla), as well as from one physiological state to another (normal versus Abbreviations: bFGF, basic fibroblast growth factor; BM, basement membrane; CH, chemokines; Col, collagen; EGF, endothelial growth factor; HGH, human growth hormone; HA, hyaluronic acid; MMP, matrix metalloproteinase; LDV, Leu-Asp-Val; PAI, plasminogen activator inhibitor; PDGF, platelet-derived growth factor; PEG, polyethyleneglycol; rBM, reconstituted basement membrane; RGD, Arg-Gly-Asp; ROS, reactive oxygen species; SIS, small intestinal submucosa; SRLPs, small leucine- cancerous). In this Cell Science at a Glance rich proteoglycans; TGF-β, transforming growth factor β; VEGF, vascular endothelial growth factor; © Journal of Cell Science 2010 (123, pp. 4195–4200) YIGSR, article, we briefly describe the main molecular (See poster insert) components of the ECM and then compare and 4196 Journal of Cell Science 123 (24) contrast the ECM within a normal simple epithelial tissue with that found within a Box 1. Structure and function of proteoglycans pathologically modified tissue, as exemplified Proteoglycans (PGs) are composed of glycosaminoglycan (GAG) chains covalently linked in aged tissue, wounded or fibrotic tissue and to a specific protein core (with the exception of hyaluronic acid) (Iozzo and Murdoch, 1996; tumors. We particularly focus on the Schaefer and Schaefer, 2010). PGs have been classified according to their core proteins, localization and GAG composition. The three main families are: small leucine-rich composition and architecture of the ECM and proteoglycans (SLRPs), modular proteoglycans and cell-surface proteoglycans (Schaefer interactions with its cellular constituents, and Schaefer, 2010). The GAG chains on the protein core are unbranched polysaccharide and describe in detail common post- chains composed of repeating disaccharide units [sulfated N-aceltylglucosamine or translational modifications that evoke defined N-acetylgalactosamine, D-glucuronic or L-iduronic acid and galactose (–4 N- topological and viscoelasticity changes in the acetylglucosamine-1,3-galactose-1)] that can be divided further into sulfated (chondroitin tissue. We thereafter discuss the functional sulfate, heparan sulfate and keratan sulfate) and non-sulfated (hyaluronic acid) GAGs consequences of ECM remodeling
Recommended publications
  • Recombinant Laminin Α5 LG1-3 Domains Support the Stemness of Human Mesenchymal Stem Cells
    EXPERIMENTAL AND THERAPEUTIC MEDICINE 21: 166, 2021 Recombinant laminin α5 LG1-3 domains support the stemness of human mesenchymal stem cells SUJIN LEE1*, DONG‑SUNG LEE2* and JUN‑HYEOG JANG1 1Department of Biochemistry, College of Medicine, Inha University, Incheon 22212; 2College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea Received April 23, 2020; Accepted November 24, 2020 DOI: 10.3892/etm.2020.9597 Abstract. The extracellular matrix components laminin and be met by mimicking the in vivo extracellular matrix (ECM) elastin serve key roles in stem cell therapy. Elastin‑like poly‑ configuration, thereby modulating the activity of stem cells peptides (ELPs), derived from a soluble form of elastin, affect in vitro (2). The principle behind this hypothesis is that the the proliferation and differentiation of various types of cells. ECM not only functions as structural support for stem cells In the present study, a novel protein was designed containing in vivo but also provides biochemical cues for their mainte‑ globular domains 1‑3 of laminin α5 (Lα5LG1‑3) fused to nance versus directed differentiation (3). ELPs (Lα5LG1‑3/ELP). Lα5LG1‑3/ELP was expressed in Basement membranes (BMs) are a subgroup of the ECM Escherichia coli and displayed a molecular size of ~70 kDa that is necessary for cell differentiation during early devel‑ on 12% SDS‑polyacrylamide gels. The cellular activities, opmental processes. In addition, BMs are critical for the such as cellular adhesion (adhesion assay) and proliferation formation and maintenance of mature tissues (4,5). Laminin, (MTT cytotoxicity assay), of human mesenchymal stem one of the components of BMs, consists of three genetically cells (hMSCs) treated with 1 µg/ml of Lα5LG1‑3/ELP were distinct subunits called α, β and γ chains, which are assembled enhanced compared with those of untreated cells.
    [Show full text]
  • Collagen and Elastin Fibres
    J Clin Pathol: first published as 10.1136/jcp.s3-12.1.49 on 1 January 1978. Downloaded from J. clin. Path., 31, Suppl. (Roy. Coll. Path.), 12, 49-58 Collagen and elastin fibres A. J. BAILEY From the Agricultural Research Council, Meat Research Institute, Langford, Bristol Although an understanding of the intracellular native collagen was generated from type I pro- biosynthesis of both collagen and elastin is of collagen. Whether this means that the two pro- considerable importance it is the subsequent extra- collagens are converted by different enzyme systems cellular changes involving fibrogenesis and cross- and the type III enzyme was deficient in these linking that ensure that these proteins ultimately fibroblast cultures, or that the processing of pro become the major supporting tissues of the body. type III is extremely slow, is not known. The latter This paper summarises the formation and stability proposal is consistent with the higher proportion of collagen and elastin fibres. of soluble pro type III extractable from tissue (Lenaers and Lapiere, 1975; Timpl et al., 1975). Collagen Basement membrane collagens, on the other hand, do not form fibres and this property may be The non-helical regions at the ends of the triple due to the retention of the non-helical extension helix of procollagen probably provide a number of peptides (Kefalides, 1973). In-vivo biosynthetic different intracellular functions-that is, initiating studies showing the absence of any extension peptide rapid formation of the triple helix; inhibiting intra- removal support this (Minor et al., 1976), but other cellular fibrillogenesis; and facilitating transmem- workers have reported that there is some cleavage brane movement.
    [Show full text]
  • Immunohistochemical Expression of Tenascin and Elastin In
    Clinical Obstetrics, Gynecology and Reproductive Medicine Research Article ISSN: 2059-4828 Immunohistochemical expression of tenascin and elastin in women with pelvic organ prolapse and/or without stress urinary incontinence Ilias Liapis1, Panagiotis Bakas2, Pafiti-Kondi Agatha3, Matrona Frangou-Plemenou4, Charalampos Karachalios5*, Dimos Sioutis6 and Aggelos Liapis2 1Birmingham Women’s and Children’s Hospital, NHS Foundation Trust, Health Education England Midlands and East-West Midlands, Birmingham, England, United Kingdom 2Second Department of Obstetrics and Gynecology, Aretaieio University Hospital, School of Health Sciences, Medical School, National and Kapodistrian University of Athens, Athens, Attica, Greece 3Pathology Laboratory, Aretaieio University Hospital, School of Health Sciences, Medical School, National and Kapodistrian University of Athens, Athens, Attica, Greece 4Microbiology Laboratory, Aretaieio University Hospital, School of Health Sciences, Medical School, National and Kapodistrian University of Athens, Athens, Attica, Greece 5Second Department of Obstetrics and Gynecology, Aretaieio University Hospital, School of Health Sciences, Medical School, National and Kapodistrian University of Athens, Athens, Attica, Greece 6Third Department of Obstetrics and Gynecology, Attikon University Hospital, School of Health Sciences, Medical School, National and Kapodistrian University of Athens, Athens, Attica, Greece Abstract Background and aim: Pelvic organ prolapse (POP) and stress urinary incontinence (SUI) constitute entities of pelvic floor disorders and most often occur simultaneously in the same patient, adversely affecting women’s quality of life. The pathogenesis of pelvic organ prolapse and stress urinary incontinence is not fully understood. The pelvic viscera are maintained in their place thanks to interconnection of levator ani muscles, cardinal and uterosacral ligaments, and pubocervical and rectovaginal fascia. Ligaments and fascia consist mainly of connective tissue.
    [Show full text]
  • Evaluation of Elastin/Collagen Content in Human Dermis In-Vivo by Multiphoton Tomography—Variation with Depth and Correlation with Aging
    Cosmetics 2014, 1, 211-221; doi:10.3390/cosmetics1030211 OPEN ACCESS cosmetics ISSN 2079-9284 www.mdpi.com/journal/cosmetics Article Evaluation of Elastin/Collagen Content in Human Dermis in-Vivo by Multiphoton Tomography—Variation with Depth and Correlation with Aging Jean-Christophe Pittet 1,*, Olga Freis 2,†, Marie-Danielle Vazquez-Duchêne 2,†, Gilles Périé 2,† and Gilles Pauly 2,† 1 Orion Concept, 100 Rue de Suède, 37100 Tours, France 2 BASF Beauty Care Solutions France SAS, 3 Rue de Seichamps, CS 71040 Pulnoy, 54272 Essey-lès-Nancy Cedex, France; E-Mails: [email protected] (O.F.); [email protected] (M.-D.V.-D.); [email protected] (G.Pé.); [email protected] (G.Pa.) † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +33-247-052-316; Fax: +33-610-786-695. Received: 14 March 2014; in revised form: 31 July 2014 / Accepted: 1 August 2014 / Published: 20 August 2014 Abstract: The aim of this study was to evaluate the influence of the depth of the dermis on the measured collagen and elastin levels and to establish the correlation between the amount of these two extracellular matrix (ECM) components and age. Multiphoton Microscopy (MPM) that measures the autofluorescence (AF) and second harmonic generation (SHG) was used to quantify the levels of elastin and collagen and to determine the SAAID (SHG-to-AF Aging Index of Dermis) at two different skin depths. A 50 MHz ultrasound scanner was used for the calculation of the Sub Epidermal Non Echogenic Band (SENEB).
    [Show full text]
  • Collagen VI-Related Myopathy
    Collagen VI-related myopathy Description Collagen VI-related myopathy is a group of disorders that affect skeletal muscles (which are the muscles used for movement) and connective tissue (which provides strength and flexibility to the skin, joints, and other structures throughout the body). Most affected individuals have muscle weakness and joint deformities called contractures that restrict movement of the affected joints and worsen over time. Researchers have described several forms of collagen VI-related myopathy, which range in severity: Bethlem myopathy is the mildest, an intermediate form is moderate in severity, and Ullrich congenital muscular dystrophy is the most severe. People with Bethlem myopathy usually have loose joints (joint laxity) and weak muscle tone (hypotonia) in infancy, but they develop contractures during childhood, typically in their fingers, wrists, elbows, and ankles. Muscle weakness can begin at any age but often appears in childhood to early adulthood. The muscle weakness is slowly progressive, with about two-thirds of affected individuals over age 50 needing walking assistance. Older individuals may develop weakness in respiratory muscles, which can cause breathing problems. Some people with this mild form of collagen VI-related myopathy have skin abnormalities, including small bumps called follicular hyperkeratosis on the arms and legs; soft, velvety skin on the palms of the hands and soles of the feet; and abnormal wound healing that creates shallow scars. The intermediate form of collagen VI-related myopathy is characterized by muscle weakness that begins in infancy. Affected children are able to walk, although walking becomes increasingly difficult starting in early adulthood. They develop contractures in the ankles, elbows, knees, and spine in childhood.
    [Show full text]
  • The Beneficial Regulation of Extracellular Matrix
    cosmetics Article The Beneficial Regulation of Extracellular Matrix and Heat Shock Proteins, and the Inhibition of Cellular Oxidative Stress Effects and Inflammatory Cytokines by 1α, 25 dihydroxyvitaminD3 in Non-Irradiated and Ultraviolet Radiated Dermal Fibroblasts Neena Philips *, Xinxing Ding, Pranathi Kandalai, Ilonka Marte, Hunter Krawczyk and Richard Richardson School of Natural Sciences, Fairleigh Dickinson University, Teaneck, NJ 07601, USA * Correspondence: [email protected] or [email protected] Received: 30 June 2019; Accepted: 20 July 2019; Published: 1 August 2019 Abstract: Intrinsic skin aging and photoaging, from exposure to ultraviolet (UV) radiation, are associated with altered regulation of genes associated with the extracellular matrix (ECM) and inflammation, as well as cellular damage from oxidative stress. The regulatory properties of 1α, 25dihydroxyvitamin D3 (vitamin D) include endocrine, ECM regulation, cell differentiation, photoprotection, and anti-inflammation. The goal of this research was to identify the beneficial effects of vitamin D in preventing intrinsic skin aging and photoaging, through its direct effects as well as its effects on the ECM, associated heat shock proteins (HSP-47, and -70), cellular oxidative stress effects, and inflammatory cytokines [interleukin (IL)-1 and IL-8] in non-irradiated, UVA-radiated, UVB-radiated dermal fibroblasts. With regard to the ECM, vitamin D stimulated type I collagen and inhibited cellular elastase activity in non-irradiated fibroblasts; and stimulated type I collagen and HSP-47, and inhibited elastin expression and elastase activity in UVA-radiated dermal fibroblasts. With regard to cellular protection, vitamin D inhibited oxidative damage to DNA, RNA, and lipids in non-irradiated, UVA-radiated and UVB-radiated fibroblasts, and, in addition, increased cell viability of UVB-radiated cells.
    [Show full text]
  • Dietary Protein Restriction Rapidly Reduces Transforming Growth Factor
    Proc. Natl. Acad. Sci. USA Vol. 88, pp. 9765-9769, November 1991 Medical Sciences Dietary protein restriction rapidly reduces transforming growth factor p1 expression in experimental glomerulonephritis (extraceliular matrix/transforming growth factor 8/glomerulonephritis) SEIYA OKUDA*, TAKAMICHI NAKAMURA*, TATSUO YAMAMOTO*, ERKKI RUOSLAHTIt, AND WAYNE A. BORDER*t *Division of Nephrology, University of Utah School of Medicine, Salt Lake City, UT 84132; and tCancer Research Center, La Jolla Cancer Research Foundation, La Jolla, CA 92037 Communicated by Eugene Roberts, August 19, 1991 (receivedfor review April 29, 1991) ABSTRACT Dietary protein restriction has been shown to TGF-/31 on both cell types is to regulate the synthesis of two slow the rate of loss of kidney function in humans with chondroitin/dermatan sulfate proteoglycans, biglycan and progressive glomerulosclerosis due to glomerulonephritis or decorin, both of which can bind TGF-P1 (23). In an experi- diabetes mellitus. A central feature of glomerulosclerosis is the mental model ofglomerulonephritis in the rat, we have found pathological accumulation of extracellular matrix within the a close association between elevated expression of the diseased glomeruli. Transforming growth factor j1 (TGF-.81) TGF-131 gene and the development of glomerulonephritis is known to have widespread regulatory effects on extracellular (10). Seven days after glomerular injury, at the time of matrix and has been implicated as a major cause of increased significant extracellular matrix accumulation, the glomeruli extracellular matrix synthesis and buildup of pathological showed a 5-fold increase in TGF-f31 mRNA and a nearly matrix within glomeruli in experimental glomerulonephritis. 50-fold increase in production ofbiglycan and decorin.
    [Show full text]
  • Extracellular Matrix Grafts: from Preparation to Application (Review)
    INTERNATIONAL JOURNAL OF MOleCular meDICine 47: 463-474, 2021 Extracellular matrix grafts: From preparation to application (Review) YONGSHENG JIANG1*, RUI LI1,2*, CHUNCHAN HAN1 and LIJIANG HUANG1 1Science and Education Management Center, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700; 2School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, P.R. China Received July 30, 2020; Accepted December 3, 2020 DOI: 10.3892/ijmm.2020.4818 Abstract. Recently, the increasing emergency of traffic acci- Contents dents and the unsatisfactory outcome of surgical intervention are driving research to seek a novel technology to repair trau- 1. Introduction matic soft tissue injury. From this perspective, decellularized 2. ECM-G characterization matrix grafts (ECM-G) including natural ECM materials, and 3. Methods of decellularization treatments their prepared hydrogels and bioscaffolds, have emerged as 4. Removal of residual cellular components and chemicals possible alternatives for tissue engineering and regenerative 5. Application of ECM-P in regenerative medicine medicine. Over the past decades, several physical and chemical 6. Challenges and future outlook on ECM-P decellularization methods have been used extensively to deal 7. Conclusions with different tissues/organs in an attempt to carefully remove cellular antigens while maintaining the non-immunogenic ECM components. It is anticipated that when the decellular- 1. Introduction ized biomaterials are seeded with cells in vitro or incorporated into irregularly shaped defects in vivo, they can provide the The extracellular matrix (ECM) derived from organs/tissues is appropriate biomechanical and biochemical conditions for a complex, highly organized assembly of macromolecules with directing cell behavior and tissue remodeling.
    [Show full text]
  • Extracellular Matrix Degradation and Remodeling in Development and Disease
    Downloaded from http://cshperspectives.cshlp.org/ on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Extracellular Matrix Degradation and Remodeling in Development and Disease Pengfei Lu1,2, Ken Takai2, Valerie M. Weaver3, and Zena Werb2 1Breakthrough Breast Cancer Research Unit, Paterson Institute for Cancer Research and Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M20 4BX, United Kingdom 2Department of Anatomy and Program in Developmental Biology, University of California, San Francisco, California 94143-0452 3Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, California 94143 Correspondence: [email protected] The extracellular matrix (ECM) serves diverse functions and is a major component of the cellular microenvironment. The ECM is a highly dynamic structure, constantly undergoing a remodeling process where ECM components are deposited, degraded, or otherwise modified. ECM dynamics are indispensible during restructuring of tissue architecture. ECM remodeling is an important mechanism whereby cell differentiation can be regulated, including processes such as the establishment and maintenance of stem cell niches, branch- ing morphogenesis, angiogenesis, bone remodeling, and wound repair. In contrast, abnor- mal ECM dynamics lead to deregulated cell proliferation and invasion, failure of cell death, and loss of cell differentiation, resulting in congenital defects and pathological processes including tissue fibrosis and cancer. Understanding the mechanisms of ECM remodeling and its regulation, therefore, is essential for developing new therapeutic inter- ventions for diseases and novel strategies for tissue engineering and regenerative medicine. he extracellular matrix (ECM) forms a milieu versatile and performs many functions in addi- Tsurrounding cells that reciprocally influ- tion to its structural role.
    [Show full text]
  • Blood Vitronectin Is a Major Activator of LIF and IL-6 in the Brain Through Integrin–FAK and Upar Signaling Matthew P
    © 2018. Published by The Company of Biologists Ltd | Journal of Cell Science (2018) 131, jcs202580. doi:10.1242/jcs.202580 RESEARCH ARTICLE Blood vitronectin is a major activator of LIF and IL-6 in the brain through integrin–FAK and uPAR signaling Matthew P. Keasey1, Cuihong Jia1, Lylyan F. Pimentel1,2, Richard R. Sante1, Chiharu Lovins1 and Theo Hagg1,* ABSTRACT Microglia and astrocytes express the VTN receptors αvβ3 and α β We defined how blood-derived vitronectin (VTN) rapidly and potently v 5 integrin (Herrera-Molina et al., 2012; Kang et al., 2008; activates leukemia inhibitory factor (LIF) and pro-inflammatory Milner, 2009; Welser-Alves et al., 2011). Microglia and astrocytes, interleukin 6 (IL-6) in vitro and after vascular injury in the brain. as well as endothelial cells, are major producers of pro- α in vitro Treatment with VTN (but not fibrinogen, fibronectin, laminin-111 or inflammatory cytokines, such as IL-6 and TNF , and collagen-I) substantially increased LIF and IL-6 within 4 h in after traumatic or ischemic injury to the brain (Banner et al., 1997; C6-astroglioma cells, while VTN−/− mouse plasma was less effective Erta et al., 2012; Lau and Yu, 2001) or upon self-induction by IL-6 than that from wild-type mice. LIF and IL-6 were induced by (Van Wagoner and Benveniste, 1999). IL-6 is a major regulator of a intracerebral injection of recombinant human (rh)VTN in mice, but variety of inflammatory disorders and a target for therapies (Hunter induction seen upon intracerebral hemorrhage was less in VTN−/− and Jones, 2015).
    [Show full text]
  • With Caviar, Keratin & Collagen
    WITH CAVIAR, KERATIN & COLLAGEN Professional treatments for colour, bleaching, care and maintenance with CAVIAR, KERATIN and COLLAGEN Professional styling products with CAVIAR, KERATIN and COLLAGEN Technical professional products with CAVIAR, KERATIN and COLLAGEN 2 Professional products by Very high technology professional products to colour, treat and protect hair from the continuous chemical and environmental stress caused on a daily basis. Formulas based on: Caviar Keratin Collagen 3 WITH CAVIAR, KERATIN & COLLAGEN Colouring permanentCream professional ammonia PPD • Respects the hair structure thanks to an exposure free free time of 12 minutes • Non-progressive • Ammonia free • Paraphenylenediamine free • Unleashes all the EFFICANCY of its active principles and maximum COLOURING POWER Mix 1 : 1 4 WITH CAVIAR, KERATIN & COLLAGEN 1. Respect for scalp and hair thanks to a shorter processing time 2. Maximum grey hair coverage 3. Lightens up to 4 tones 4. Ammonia free and Paraphenylenediamine free 5. Safe application even on customers with a sensitive scalp 6. Extreme colour brilliancy and uniformity 7. Very easy and practical to use 8. Long lasting reflections 9. High colour fastness 10. Great protection action 11. Effective restructuring action benefits 12. Maximum conditioning 5 WITH CAVIAR, KERATIN & COLLAGEN Benefits 1 2 3 Respect for scalp and hair thanks to a shorter processing Lightens up to Maximum grey hair 4 tones time coverage 6 WITH CAVIAR, KERATIN & COLLAGEN has been developed according Cosmetic colour pDT BASE Be Colour 12 Minute Dpe DIAMINOPHENOXYETHANOL to the rules of the “molar stoichiometry,” a technique creamy gel with RESORCINOL m-AMINOPHENOL of colouring clear and uncompromising. It is based on CAVIAR, a mathematical principle according to which the molar concentration of the dye base is equal to the molar KERATIN and concentration of the sum of the other colouring couplers.
    [Show full text]
  • Effects of Collagen-Derived Bioactive Peptides and Natural Antioxidant
    www.nature.com/scientificreports OPEN Efects of collagen-derived bioactive peptides and natural antioxidant compounds on Received: 29 December 2017 Accepted: 19 June 2018 proliferation and matrix protein Published: xx xx xxxx synthesis by cultured normal human dermal fbroblasts Suzanne Edgar1, Blake Hopley1, Licia Genovese2, Sara Sibilla2, David Laight1 & Janis Shute1 Nutraceuticals containing collagen peptides, vitamins, minerals and antioxidants are innovative functional food supplements that have been clinically shown to have positive efects on skin hydration and elasticity in vivo. In this study, we investigated the interactions between collagen peptides (0.3–8 kDa) and other constituents present in liquid collagen-based nutraceuticals on normal primary dermal fbroblast function in a novel, physiologically relevant, cell culture model crowded with macromolecular dextran sulphate. Collagen peptides signifcantly increased fbroblast elastin synthesis, while signifcantly inhibiting release of MMP-1 and MMP-3 and elastin degradation. The positive efects of the collagen peptides on these responses and on fbroblast proliferation were enhanced in the presence of the antioxidant constituents of the products. These data provide a scientifc, cell-based, rationale for the positive efects of these collagen-based nutraceutical supplements on skin properties, suggesting that enhanced formation of stable dermal fbroblast-derived extracellular matrices may follow their oral consumption. Te biophysical properties of the skin are determined by the interactions between cells, cytokines and growth fac- tors within a network of extracellular matrix (ECM) proteins1. Te fbril-forming collagen type I is the predomi- nant collagen in the skin where it accounts for 90% of the total and plays a major role in structural organisation, integrity and strength2.
    [Show full text]