Extracellular Matrix Degradation and Remodeling in Development and Disease

Total Page:16

File Type:pdf, Size:1020Kb

Extracellular Matrix Degradation and Remodeling in Development and Disease Downloaded from http://cshperspectives.cshlp.org/ on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Extracellular Matrix Degradation and Remodeling in Development and Disease Pengfei Lu1,2, Ken Takai2, Valerie M. Weaver3, and Zena Werb2 1Breakthrough Breast Cancer Research Unit, Paterson Institute for Cancer Research and Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M20 4BX, United Kingdom 2Department of Anatomy and Program in Developmental Biology, University of California, San Francisco, California 94143-0452 3Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, California 94143 Correspondence: [email protected] The extracellular matrix (ECM) serves diverse functions and is a major component of the cellular microenvironment. The ECM is a highly dynamic structure, constantly undergoing a remodeling process where ECM components are deposited, degraded, or otherwise modified. ECM dynamics are indispensible during restructuring of tissue architecture. ECM remodeling is an important mechanism whereby cell differentiation can be regulated, including processes such as the establishment and maintenance of stem cell niches, branch- ing morphogenesis, angiogenesis, bone remodeling, and wound repair. In contrast, abnor- mal ECM dynamics lead to deregulated cell proliferation and invasion, failure of cell death, and loss of cell differentiation, resulting in congenital defects and pathological processes including tissue fibrosis and cancer. Understanding the mechanisms of ECM remodeling and its regulation, therefore, is essential for developing new therapeutic inter- ventions for diseases and novel strategies for tissue engineering and regenerative medicine. he extracellular matrix (ECM) forms a milieu versatile and performs many functions in addi- Tsurrounding cells that reciprocally influ- tion to its structural role. As a major component ences cellular function to modulate diverse fun- of the microenvironment of a cell, the ECM damental aspects of cell biology (Hynes 2009). takes part in most basic cell behaviors, from The diversity and sophistication of ECM cell proliferation, adhesion and migration, to components and their respective cell surface cell differentiation and cell death (Hynes receptors are among the most salient features 2009). This pleiotropic aspect of ECM function during metazoan evolution (Har-el and Tanzer depends on the highly dynamic structure of 1993; Hutter et al. 2000; Whittaker et al. 2006; ECM and its remodeling as an effective me- Engler et al. 2009; Huxley-Jones et al. 2009; chanism whereby diverse cellular behaviors Ozbek et al. 2010). The ECM is extremely can be regulated. This concept is particularly Editors: Richard O. Hynes and Kenneth M. Yamada Additional Perspectives on Extracellular Matrix Biology available at www.cshperspectives.org Copyright # 2011 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a005058 Cite this article as Cold Spring Harb Perspect Biol 2011;3:a005058 1 Downloaded from http://cshperspectives.cshlp.org/ on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press P. Lu et al. important when considering processes and cell of cell behaviors can be deployed by exploiting behaviors that need to be deployed promptly the important roles of ECM dynamics to build and transiently and wherein cell–cell and vertebrate organs and maintain their func- cell–matrix interactions are constantly chang- tions, and how deregulation of ECM dynamics ing (Daley et al. 2008). contributes to the initiation and progression ECM dynamics are a feature of tissues of human cancer. wherein radical remodeling occurs, such as dur- ing metamorphosis of insects and amphibians PLAYERS IN ECM DEGRADATION AND or remodeling of the adult bone and mammary REMODELING gland, and in developmental processes, includ- ing neural crest migration, angiogenesis, tooth The ECM is composed of a large collection of and skeletal development, branching morpho- biochemically and structurally diverse com- genesis, maturation of synapses, and the nerv- ponents. Biochemically, these components can ous system (Berardi et al. 2004; Fukumoto and be divided into proteins, proteoglycans, and Yamada 2005; Page-McCaw et al. 2007; Zim- glycoproteins, each of which has diverse sub- mermann and Dours-Zimmermann 2008). categories of components and varying physical ECM dynamics can result from changes and biochemical properties. Some of the ECM of ECM composition, for example, because proteins, including fibrillar collagens and of altered synthesis or degradation of one or elastin, form fibrils from protein monomers more ECM components, or in architecture and contribute the major tensile strength and because of altered organization. Mounting viscoelasticity of the tissue. Other proteins, evidence has shown how individual ECM such as fibronectin, laminin, and nidogen, components are laid down, cross-linked, and also participate in building the matrix network organized together via covalent and noncova- as connectors or linking proteins (Vakonakis lent modifications and how they can greatly and Campbell 2007; Daley et al. 2008). influence the fundamental aspects of cell behav- ior (Lopez et al. 2008; Engler et al. 2009; Egeblad Protein Components of the ECM Are et al. 2010b). This higher level of ECM organi- Degraded by Proteinases zation is also dynamic and subject to sustained remodeling as mediated by reciprocal interac- An effective strategy to remodel the ECM is by tions between the ECM and its resident cellular removal of one or more of its components. components (Daley et al. 2008). Understand- This is necessary during profound tissue ably, ECM dynamics are tightly regulated to remodeling processes such as insect and am- ensure normal development, physiology, and phibian metamorphosis or mammary gland robustness of organ systems. This is achieved involution (Sternlicht and Werb 2001). In these by redundant mechanisms to modulate the cases, massive tissues are replaced by new ones. expression and function of ECM modifying In most other cases, however, tissue remodeling enzymes at multiple levels. When such control is much less discernible with spatially restricted mechanisms are corrupted, ECM dynamics cleavage, deposition, or rearrangement of its become deregulated, leading to various human components (Egeblad and Werb 2002). congenital defects and diseases, including All the protein components outside or cancer. inside a cell are subject to degradation and Here, we examine the players involved in modification. The most significant enzymes ECM remodeling and how they are tightly regu- in ECM remodeling are metalloproteinases lated to achieve a delicate balance between (Cawston and Young 2010). Two main fam- stability and remodeling of the ECM. We focus ilies of metalloproteinases, including matrix on the cellular and molecular mechanisms metalloproteinase (MMP) and a disintegrin through which ECM dynamics influence cellu- and metalloproteinase with thrombospondin lar behaviors. We illustrate how a wide variety motifs (ADAMTS) families, are specialized in 2 Cite this article as Cold Spring Harb Perspect Biol 2011;3:a005058 Downloaded from http://cshperspectives.cshlp.org/ on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press ECM Degradation and Remodeling degrading the ECM. Serine proteinases, which closely related metalloproteinases (Table 1). As include plasmin and cathepsin G, are active at their names indicate, ADAMs and ADAMTSs neutral pH and also degrade ECM protein share several structural domains, including the components extracellularly. In contrast, cys- prodomain, disintegrin domain, which binds teine, aspartate, and threonine proteinases are to integrins and prevents cell–cell interac- predominantly active at acidic pH and mainly tions, and the metalloproteinase domain. Unlike digest intracellular proteins (Cawston and ADAMs, however, ADAMTSs do not have a Young 2010). However, the cysteine proteases cysteine-rich domain, an epidermal growth- cathepsins B and L can be secreted outside the factor-like domain, or a cytoplasmic tail. Instead, cell and digest the ECM as well (Green and ADAMTSs have a thrombospondin type-1 Lund 2005). (TSP-1) repeat, a Cys domain, and one or There are about 23 members in the MMP more additional TSP-1 repeats (Apte 2009). As family in vertebrates, all sharing a self-inhibi- membrane proteins expressed at the cell surface, tory prodomain at the amino terminus, a ADAMs are often involved with cytokine proc- catalytic domain, a flexible hinge motif, and a essing and growth factor receptor shedding hemopexin domain at the carboxyl terminus (Murphy 2008). ADAM-17, for example, can (Page-McCaw et al. 2007). Most of the MMPs release TNF-a from the cell surface. In contrast, have the basic three-domain structures, whereas ADAMTSs are mainly responsible for degrada- others have certain variations: MMP-2 and tion of ECM components, particularly proteo- MMP-9, for instance, have fibronectin type II glycans. Indeed, ADAMTS-1, -4, -5, -8, -9, repeats inserted in the catalytic domain to -15, -16, and -18 are regarded as proteoglyca- mediate collagen binding (Table 1). Although nases because they can degrade aggrecan, ver- most MMPs are secreted molecules, the sican, brevican, and other proteoglycans. In membrane-type MMPs (MT-MMPs; MMP- contrast, ADAMTS-2 participates in the re- 14, -15, -23, and -24) have
Recommended publications
  • WMIC 2015 Plenary Speaker Zena Werb, Ph.D., Professor University Of
    WMIC 2015 Plenary Speaker Zena Werb, Ph.D., Professor University of California, San Francisco San Francisco, California, USA, Focus of WMIC 2015 Plenary Talk: Intravital Imaging Reveals Properties of Cancer Progression, Mestastasis and Response to Therapy Zena Werb, Ph.D. Dr. Zena Werb received her B.Sc. in Biochemistry from the University of Toronto, and her Ph.D. in Cell Biology from Rockefeller University, New York. After postdoctoral studies at the Strangeways Research Laboratory in Cambridge England, she was recruited to the faculty of the University of California, San Francisco, where she is currently Professor and Vice‐Chair of Anatomy. Her honors include the Charlotte Friend Award of the American Association for Cancer Research, the Alexander von Humboldt Research Award and the Colin Thomson Memorial Medal from the Association for International Cancer Research. Dr. Werb has been elected to the National Academy of Sciences, the Institute of Medicine, and the American Academy of Arts and Sciences. She has published more than 400 papers. Dr. Werb is recognized internationally for her fundamental discoveries about the molecular and cellular bases of extracellular matrix proteolysis by matrix metalloproteinases and their roles in the normal functioning and pathogenesis of tissues. Her studies have led to new paradigms about the role of the cellular microenvironment and intercellular communication in breast development and breast cancer. Her current research uses mouse models of breast cancer and patient‐derived breast cancer xenografts to study normal mammary development and its perturbation during tumor progression and metastasis. .
    [Show full text]
  • An Interview with Zena Werb
    Disease Models & Mechanisms 3, 513-516 (2010) doi:10.1242/dmm.006338 © 2010. Published by The Company of Biologists Ltd A MODEL FOR LIFE The extracellular matrix and disease: an interview with Zena Werb Zena Werb’s pioneering efforts brought recognition to the idea that the extracellular matrix has a profound influence in determining cell fate. Here, she discusses how a ‘rocky’ start in geophysics led her to a career that is changing the way we think about cancer. I started college. Ironically, earthquakes veryone is influenced by what became an important part of my life as a goes on around them, and cells resident of San Francisco, but I didn’t realise are much the same. The signalling this would be the case then. Back in college, Emolecules and support structures I wanted to go on a summer geology field of the extracellular matrix (ECM) course to the Rockies. I was one of the top direct many aspects of normal cell two students in my class, but they wouldn’t behaviour, including shape, migration and let me go because I was female – they said survival. However, the ECM can also play that there were not the proper facilities on a role in the development and progression the site for women. Instead, I found a DMM of disease. For example, a cell does not summer job in the field and actually got become cancerous on its own – together paid for the experience I gained, which with intrinsic changes, oncogenesis is would not have happened if I’d been encouraged by cues from the surrounding allowed into the course.
    [Show full text]
  • Extracellular Matrix Grafts: from Preparation to Application (Review)
    INTERNATIONAL JOURNAL OF MOleCular meDICine 47: 463-474, 2021 Extracellular matrix grafts: From preparation to application (Review) YONGSHENG JIANG1*, RUI LI1,2*, CHUNCHAN HAN1 and LIJIANG HUANG1 1Science and Education Management Center, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700; 2School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, P.R. China Received July 30, 2020; Accepted December 3, 2020 DOI: 10.3892/ijmm.2020.4818 Abstract. Recently, the increasing emergency of traffic acci- Contents dents and the unsatisfactory outcome of surgical intervention are driving research to seek a novel technology to repair trau- 1. Introduction matic soft tissue injury. From this perspective, decellularized 2. ECM-G characterization matrix grafts (ECM-G) including natural ECM materials, and 3. Methods of decellularization treatments their prepared hydrogels and bioscaffolds, have emerged as 4. Removal of residual cellular components and chemicals possible alternatives for tissue engineering and regenerative 5. Application of ECM-P in regenerative medicine medicine. Over the past decades, several physical and chemical 6. Challenges and future outlook on ECM-P decellularization methods have been used extensively to deal 7. Conclusions with different tissues/organs in an attempt to carefully remove cellular antigens while maintaining the non-immunogenic ECM components. It is anticipated that when the decellular- 1. Introduction ized biomaterials are seeded with cells in vitro or incorporated into irregularly shaped defects in vivo, they can provide the The extracellular matrix (ECM) derived from organs/tissues is appropriate biomechanical and biochemical conditions for a complex, highly organized assembly of macromolecules with directing cell behavior and tissue remodeling.
    [Show full text]
  • Testimony of Paul Berg, Ph.D. Chair, Public Policy Committee The
    THE AMERICAN SOCIETY FOR OFFICERS SUZANNE PFEFFER CELL President BIOLOGY HARVEY LODISH President-Elect GARY BORISY NATIONAT. OFFICE: 8120 Woodmont Avenue, Suite 750 Bethesda, Maryland 20814-2762 Past-President TEL: 301/347-9300 FAX: 301/347-9310 E-MAIL: [email protected] www.ascb.org LAWRENCE S. B. GOLDSTEIN Secretary GARY WARD Treasurer ELIZABETH MARINCOLA Testimony of Executive Director COUNCIL HELEN BLAU Paul Berg, Ph.D. ANTHONY BRETSCHER KEVIN P. CAMPBELL Chair, Public Policy Committee PIETRO DE CAMILLI ALAN RICK HORWITZ The American Society KATHRYN E, HOWELL for Cell Biology SANDRA L. SCHMID JEAN SCHWARZBAUER W. SUE SHAFER JANET SHAW to the JULIE THERIOT PETER WALTER COMMITTEE CHAIRS Senate Judiciary Committee DON CLEVELAND Constitution & By-Laws KENNETH R. MILLER Education United States Senate GARY WARD Finance ENRIQUE RODRIGUEZ-BOULAN International Affairs MATTHEW WELCH Local Arrangements LAWRENCE S. B. GOLDSTEIN March 19, 2003 Mentbership DONELLA J. WILSON Minorities Affairs RICHARD HYNES Nominating KATHERINE L. WILSON Public Information PAUL BERG Public Policy VIVEK MALHOTRA Scientific Meetings ZENA WERB Women in Cell Biology CELL BIOLOGY EDUCATION A, MALCOLM CAMPBELL Co-Editor-in-Chief SARAH C. R. ELGIN Co-Editor-in-Chief MOLECULAR BIOLOGY OF THE CELL KEITH R. YAMAMOTO Editor-in-Chief Statement of Paul Berg Robert and Vivian Cahill Professor, Emeritus of Cancer Research and Biochemistry Director, Emeritus of the Beckman Center for Molecular and Genetic Medicine, Stanford University Medical Center Chair, Public Policy Committee, The American Society for Cell Biology Mr. Chairman, Members of the Committee, thank you for inviting me to testify on this most important issue. I have followed the debate on the cloning questions we will address today and | welcome the opportunity to submit my own views on the matter.
    [Show full text]
  • Metastasis and Invasion 3 – Metastasis Science Cancer
    CANCER SCIENCE 3 Cancer Science 3 – Metastasis and Invasion 3 – Metastasis Science Cancer www.ipsen.com 2FI 0069 Metastasis and Invasion Tuscany, May 20-23, 2007 24, rue Erlanger – 75016 Paris – Tel.: 33(0)1 44 96 10 10 – Fax: 33(0)1 44 96 11 99 COLLOQUES MÉDECINE ET RECHERCHE Fondation Ipsen SCIENTIFIC REPORT BY APOORVA MANDAVILLI 2 Fondation Ipsen is placed under the auspices of Fondation de France MOLECULAR MARKERS 3 4 Foreword by Inder M. Verma 7 Part I: Molecular markers 9 J. Michael Bishop Senescence and metastasis in mouse models of breast cancer 15 Joan Massagué Metastasis genes and functions 21 Zena Werb Transcriptional regulation of the metastatic program 25 Inder M. Verma BRCA1 maintains constitutive heterochromatin formation: a unifying hypothesis of its function 29 Tak Wah Mak The role of RhoC in development and metastasis 35 Part II: Motility and invasiveness 37 Robert Weinberg Mechanisms of malignant progression 43 Daniel Louvard Fascin, a novel target of b-catenin-Tcf signaling, is expressed at the invasive front of human colon cancer 49 Gerhard Christofori Distinct mechanisms of tumor cell invasion and metastasis 55 Douglas Hanahan Multiple parameters influence acquisition by solid tumors CONTENTS of a capability for invasive growth 59 Part III : Mechanisms of metastasis 61 Richard Hynes Cellular mechanisms contributing to metastasis 67 Ann Chambers Novel imaging approaches for studying tumor metastasis 73 Jeffrey Pollard Macrophages are a cellular toolbox that tumors sequester to promote their progression to malignancy 79 Wolf-Hervé Fridman T effector/memory cells, the ultimate control of metastasis in humans 85 Kari Alitalo Inhibition of lymphangiogenesis and metastasis 91 Shahin Rafii Contribution of CXCR4+VEGFR1+ pro-angiogenic hematopoietic cells to tumor oncogenesis 97 Part IV : Cancer stem cells 99 Paolo Comoglio Invasive growth : a MET-driven genetic program for cancer and stem cells 105 Hans Clevers Wnt and Notch cooperate to maintain proliferative compartments in crypts and intestinal neoplasia 111 Owen N.
    [Show full text]
  • Immune Clearance of Senescent Cells to Combat Ageing and Chronic Diseases
    cells Review Immune Clearance of Senescent Cells to Combat Ageing and Chronic Diseases Ping Song * , Junqing An and Ming-Hui Zou Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street SE, Atlanta, GA 30303, USA; [email protected] (J.A.); [email protected] (M.-H.Z.) * Correspondence: [email protected]; Tel.: +1-404-413-6636 Received: 29 January 2020; Accepted: 5 March 2020; Published: 10 March 2020 Abstract: Senescent cells are generally characterized by permanent cell cycle arrest, metabolic alteration and activation, and apoptotic resistance in multiple organs due to various stressors. Excessive accumulation of senescent cells in numerous tissues leads to multiple chronic diseases, tissue dysfunction, age-related diseases and organ ageing. Immune cells can remove senescent cells. Immunaging or impaired innate and adaptive immune responses by senescent cells result in persistent accumulation of various senescent cells. Although senolytics—drugs that selectively remove senescent cells by inducing their apoptosis—are recent hot topics and are making significant research progress, senescence immunotherapies using immune cell-mediated clearance of senescent cells are emerging and promising strategies to fight ageing and multiple chronic diseases. This short review provides an overview of the research progress to date concerning senescent cell-caused chronic diseases and tissue ageing, as well as the regulation of senescence by small-molecule drugs in clinical trials and different roles and regulation of immune cells in the elimination of senescent cells. Mounting evidence indicates that immunotherapy targeting senescent cells combats ageing and chronic diseases and subsequently extends the healthy lifespan. Keywords: cellular senescence; senescence immunotherapy; ageing; chronic disease; ageing markers 1.
    [Show full text]
  • Conference Program
    Conference Program Note: All Scientific Sessions will be held in the Omni Hotel at 675 L Street. Poster Sessions will be held at the Hard Rock Hotel at the corner of 5th Avenue & L Street. Sunday, January 20 7:00 p.m.-7:10 p.m. Welcoming Remarks 7:10 p.m.-8:00 p.m. Keynote Address Omni Hotel San Diego, Grand Ballroom Metastasis and diversity in breast cancer Kornelia Polyak, Dana-Farber Cancer Institute, Boston, MA 8:00 p.m.-9:30 p.m. Opening Reception Monday, January 21 7:00 a.m.-8:00 a.m. Continental Breakfast Omni Hotel San Diego, Art Gallery 8:00 a.m.-10:00 a.m. Session 1: The Soil Session Chairperson: Zena Werb, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA Omni Hotel San Diego, Grand Ballroom Microenvironmental control of bone metastasis Sylvain Provot, INSERM, Paris, France The role of the microenvironment protein cathelicidin LL-37 in pancreatic ductal adenocarcinoma* Christopher Heeschen, Spanish National Cancer Research Centre (CNIO), Madrid, Spain Normalizing tumor cell metabolism in breast cancer metastasis: A novel therapeutic approach Brunhilde Felding-Habermann, Scripps Research Institute, La Jolla, CA Identification of luminal breast cancers that establish a tumor supportive macroenvironment defined by proangiogenic platelets and bone marrow derived cells* Timothy Marsh, Brigham and Women’s Hospital, Boston, MA The extracellular matrix is fertile soil Richard Hynes, Massachusetts Institute of Technology, Cambridge, MA *Short talks from proffered papers Program and Proceedings • January 20-23, 2013 • San Diego, CA 7 Program 10:00 a.m.-10:30 a.m.
    [Show full text]
  • A Narrative Review on Plasminogen Activator Inhibitor-1 and Its (Patho)Physiological Role: to Target Or Not to Target?
    International Journal of Molecular Sciences Review A Narrative Review on Plasminogen Activator Inhibitor-1 and Its (Patho)Physiological Role: To Target or Not to Target? Machteld Sillen and Paul J. Declerck * Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B-3000 Leuven, Belgium; [email protected] * Correspondence: [email protected] Abstract: Plasminogen activator inhibitor-1 (PAI-1) is the main physiological inhibitor of plasminogen activators (PAs) and is therefore an important inhibitor of the plasminogen/plasmin system. Being the fast-acting inhibitor of tissue-type PA (tPA), PAI-1 primarily attenuates fibrinolysis. Through inhibition of urokinase-type PA (uPA) and interaction with biological ligands such as vitronectin and cell-surface receptors, the function of PAI-1 extends to pericellular proteolysis, tissue remodeling and other processes including cell migration. This review aims at providing a general overview of the properties of PAI-1 and the role it plays in many biological processes and touches upon the possible use of PAI-1 inhibitors as therapeutics. Keywords: plasminogen activator inhibitor-1; PAI-1; fibrinolysis; cardiovascular disease; cancer; inflammation; fibrosis; aging Citation: Sillen, M.; Declerck, P.J. 1. Introduction A Narrative Review on Plasminogen Plasminogen activator inhibitor-1 (PAI-1) belongs to the family of serine protease Activator Inhibitor-1 and Its inhibitors (serpins) and is an important regulator of the plasminogen/plasmin system (Patho)Physiological Role: To Target (Figure1)[ 1]. This system revolves around the conversion of the zymogen plasmino- or Not to Target?. Int. J. Mol. Sci. 2021, gen into the active enzyme plasmin through proteolytic cleavage that is mediated by 22, 2721.
    [Show full text]
  • Meeting Report
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Cell Stem Cell Meeting Report Cancer and Stem Cell Biology: How Tightly Intertwined? Carla F. Kim1,2,3,* and Peter B. Dirks4,* 1Stem Cell Program, Children’s Hospital Boston, Boston, MA 02115, USA 2Department of Genetics, Harvard Medical School, Boston, MA 02115, USA 3Harvard Stem Cell Institute, Cambridge, MA 02138, USA 4Developmental and Stem Cell Biology Program, Department of Surgery, Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, Ontario M5G1X8, Canada *Correspondence: [email protected] (C.F.K.), [email protected] (P.B.D.) DOI 10.1016/j.stem.2008.07.012 Ever since the discovery of cancer stem cells in leukemia and, more recently, in solid tumors, enormous attention has been paid to the apparent stem cell nature of cancer. These concepts were the focus of the ‘‘Stem Cells and Cancer’’ symposium held recently at the University of California, San Francisco, and the inspiration for this overview of current research and important questions emerging in this area. This year’s annual UCSF Helen Diller Family Comprehensive confer these properties accumulate. When these additional Cancer Center Symposium focused on stem cells and cancer. events occur in progenitor cell populations derived from mutant This symposium provided a representation of all facets of stem HSC clones, cancer progression occurs. Thus, the phenotype of cell biology: from the role of stem and progenitor cells in devel- the cancer stem cell may be more similar to the normal progen- opment to adult tissues, normal stem cells versus cancer stem itor population than to the HSC itself.
    [Show full text]
  • 2011: Macrophage Phenotype As a Determinant of Remodeling Outcome with the Use of Biologic Scaffolds
    Macrophage Phenotype as a Determinant of Remodeling Outcome with the use of Biologic Scaffolds Stephen F. Badylak1, Kathryn A. Kukla1,3, Li Zhang1, Neill J. Turner1, Bryan N. Brown1,2 Corresponding Author: Stephen F. Badylak 1McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; 2Department of Biomedical Engineering, Cornell University, Ithaca, NY; and 3Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA Statement of Purpose: The ultimate determination of deposition of dense and disorganized connective tissue clinical success for an implanted biomaterial is the consistent with encapsulation. Remodeling of the response of the host tissue following implantation. The autograft was characterized by necrosis of the muscular innate immune mechanisms that participate in and component of the tissue and deposition of dense mature modulate the host response include effector cells such as connective tissue and adipose tissue consistent with macrophages. Macrophages have been classified as scarring. having either an M1 or an M2 phenotype, depending upon gene expression, effector molecule production, and cell Despite differences in the tissue remodeling outcome, a function. To date, the causes and the effects of morphologically indistinguishable population of macrophage polarization towards an M1 or M2 phenotype macrophages was observed following implantation of have been studied largely in the context of the host each scaffold material. However, immunolabeling response to pathogens and in cancer biology. Recently, techniques showed that scaffolds which resulted in M1 and M2 macrophages have been shown to play constructive remodeling (i.e., UBM) were associated with distinct roles in the remodeling process following tissue a predominant M2 (regulatory, pro-wound healing) injury and the host response to biologic scaffold materials macrophage population, while scaffolds which resulted in (1).
    [Show full text]
  • Iman Aftab Khan
    MOLECULAR MECHANISMS OF ERBB2-DRIVEN THREE-DIMENSIONAL BREAST TUMOUR GROWTH. By Iman Aftab Khan Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy At Dalhousie University Halifax, Nova Scotia August 2018 © Copyright by Iman Aftab Khan, 2018 Dedicated to my parents Late Dr. Aftab Ahmad Khan and Mrs. Fatima Bisquerra Khan For their unconditional love, patience and struggle to support my decisions that helped me realize my dreams. ii Table of Contents LIST OF TABLES ........................................................................................................... ix LIST OF FIGURES .......................................................................................................... x ABSTRACT .................................................................................................................... xiii LIST OF ABBREVIATIONS USED ............................................................................ xiv ACKNOWLEDGEMENTS ......................................................................................... xxv CHAPTER 1. INTRODUCTION .................................................................................... 1 Resistance to detachment-induced cell death as a critical feature of ErbB2- driven breast cancer: an overview of project goals. ...................................................... 1 1.1 The role of the cell-ECM interactions in the mammary gland development and functions..................................................................................
    [Show full text]
  • Stromelysin-1 Regulates Adipogenesis During Mammary Gland Involution Caroline M
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Stromelysin-1 Regulates Adipogenesis during Mammary Gland Involution Caroline M. Alexander,* Sushma Selvarajan,‡ John Mudgett,ʈ and Zena Werb§ *McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison, Wisconsin 53706-1599; ‡Department of Pharmaceutical Chemistry and §Department of Anatomy, University of California San Francisco, San Francisco, California 94143-0452; and ʈDepartment of Immunology, Merck Research Laboratory, Rahway, New Jersey 07065 Abstract. The matrix metalloproteinase MMP-3/stro- lial cell death after weaning, but instead alter the stro- melysin-1 (Str1) is highly expressed during mammary mal microenvironment. We used adipogenic 3T3-L1 gland involution induced by weaning. During involu- cells as a cell culture model to test the function of tion, programmed cell death of the secretory epithe- MMPs during adipocyte differentiation. Fibroblastic lium takes place concomitant with the repopulation of 3T3-L1 progenitor cells expressed very low levels of the mammary fat pad with adipocytes. In this study, we MMPs or TIMPs. The transcription of a number of have used a genetic approach to determine the role of MMP and TIMP mRNAs [Str1, MT1-MMP, (MMP-14) Str1 during mammary involution. Although Str1 has collagenase-3 (MMP-13), gelatinase A (MMP-2), and been shown to induce unscheduled apoptosis when ex- TIMP-1, -2 and -3] was induced in committed preadipo- pressed ectopically during late pregnancy (Alexander, cytes, but only differentiated adipocytes expressed an C.M., E.W. Howard, M.J. Bissell, and Z. Werb. 1996. J. activated MMP, gelatinase A.
    [Show full text]