Crossy: a Crossing-Based Drawing Application
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Class 715 Data Processing: Presentation Processing of Document, 715 - 1 Operator Interface Processing, and Screen Saver Display Processing
CLASS 715 DATA PROCESSING: PRESENTATION PROCESSING OF DOCUMENT, 715 - 1 OPERATOR INTERFACE PROCESSING, AND SCREEN SAVER DISPLAY PROCESSING 715 DATA PROCESSING: PRESENTATION PROCESSING OF DOCUMENT, OPERATOR INTERFACE PROCESSING, AND SCREEN SAVER DISPLAY PROCESSING 200 PRESENTATION PROCESSING OF 236 ..Stylesheet based markup DOCUMENT language transformation/ 201 .Integration of diverse media translation (e.g., to a 202 ..Authoring diverse media published format using stylesheet, etc.) presentation 237 ..Markup language syntax 203 ..Synchronization of presentation validation 204 ..Presentation attribute (e.g., ..Accommodating varying screen layout, etc.) 238 size 205 .Hypermedia 239 ..Conversion from one markup 206 ..Hyperlink organization (e.g., language to another (e.g., XML grouping, bookmarking, etc.) to HTML or utilizing an 207 ..Hyperlink display attribute intermediate format, etc.) (e.g., color, shape, etc.) 240 ..Frames 208 ..Hyperlink editing (e.g., link 241 ..Placemark-based indexing authoring, rerouting, etc.) 242 ..Structured document compression 209 .Compound document 243 .Layout 210 ..Matching application process to 244 ..Spacing control displayed media 245 ...Horizontal spacing 211 .Drawing 246 ..Area designation 212 .Spreadsheet 247 ..Boundary processing 213 ..Alternative scenario management 248 ..Format information in separate 214 ..Having dimension greater than file two 249 ..Format transformation 215 ..Including graph or chart of 250 ..Detecting format code change spreadsheet information 251 ..Pagination 216 ..Cell protection -
WIMP Interfaces for Emerging Display Environments
Graz University of Technology Institute for Computer Graphics and Vision Dissertation WIMP Interfaces for Emerging Display Environments Manuela Waldner Graz, Austria, June 2011 Thesis supervisor Prof. Dr. Dieter Schmalstieg Referee Prof. Dr. Andreas Butz To Martin Abstract With the availability of affordable large-scale monitors and powerful projector hardware, an increasing variety of display configurations can be found in our everyday environments, such as office spaces and meeting rooms. These emerging display environments combine conventional monitors and projected displays of different size, resolution, and orientation into a common interaction space. However, the commonly used WIMP (windows, icons, menus, and pointers) user interface metaphor is still based on a single pointer operating multiple overlapping windows on a single, rectangular screen. This simple concept cannot easily capture the complexity of heterogeneous display settings. As a result, the user cannot facilitate the full potential of emerging display environments using these interfaces. The focus of this thesis is to push the boundaries of conventional WIMP interfaces to enhance information management in emerging display environments. Existing and functional interfaces are extended to incorporate knowledge from two layers: the physical environment and the content of the individual windows. The thesis first addresses the tech- nical infrastructure to construct spatially aware multi-display environments and irregular displays. Based on this infrastructure, novel WIMP interaction and information presenta- tion techniques are demonstrated, exploiting the system's knowledge of the environment and the window content. These techniques cover two areas: spatially-aware cross-display navigation techniques for efficient information access on remote displays and window man- agement techniques incorporating knowledge of display form factors and window content to support information discovery, manipulation, and sharing. -
Sample Paper Title
Marking the City: Interactions in Multiple Space Scales in Virtual Reality Marina Lima Medeiros Fig. 1. Desktop Menu in Following VR Viewer mode while HDM-user creates a Marker with Spatial Menu and Radial Menu options. Abstract—This article shows an overview of an immersive VR application to explore, to analyze and to mark large-scale photogrammetric 3D models. The objective is to interrogate the effectiveness of the proposed navigation process and annotation tools for spatial understanding. Due to the amount of interactions, different kinds of menus were necessary: desktop coordination menu, radial menu attached to the controller and 3D spatial menu for creating markers. Besides the menus, the navigation tasks through different perception space scales required a great number of interactions metaphors, patterns and techniques displaying the complexity of the user experience in Virtual Reality for understanding and analyzing urban digital twins. Those interactions allowed by the user interface were then analysed and classifyed according to a theoretical background and were experimented in preliminary tests with end users. Although designed for particular needs of the army, the tools and interactions can be adapted for city models explorations and urban planning. For future steps of the research, a usability study is going to be performed to test the performance of the interface and to have more end users feedback. Index Terms— Immersive User Interface, Interaction pattern, Interaction technique, Digital Urban Twins. 1 INTRODUCTION Digital twins’ technologies for simulating cities are a powerful tool understanding. This research proposes an immersive VR application for planners and stakeholders. They are especially important for the with navigation options through different space scales and annotation development of smart cities. -
Design Patterns and Frameworks for Developing WIMP User Interfaces
Design Patterns and Frameworks for Developing WIMP+ User Interfaces Vom Fachbereich Informatik der Technischen Universität Darmstadt genehmigte Dissertation zur Erlangung des akademischen Grades der Doktor-Ingenieurin (Dr.-Ing.) vorgelegt von Yongmei Wu, M.Sc. geboren in Guizhou, China Referenten der Arbeit: Prof. Dr.-Ing. Hans-Jürgen Hoffmann Prof. Robert J.K. Jacob, Ph.D. Tag des Einreichens: 09.10.2001 Tag der mündlichen Prüfung: 11.12.2001 D17 Darmstädter Dissertation 2001 Abstract Abstract This work investigates the models and tools for support of developing a kind of future user interfaces, which are partially built upon the WIMP (Windows, Icons, Menus, and Pointing device: the mouse) interaction techniques and devices; and able to observe and leverage at least one controlled process under the supervision of their user(s). In this thesis, they are called WIMP+ user interfaces. There are a large variety of applications dealt with WIMP+ user interfaces, e.g., robot control, telecommunication, car driver assistant systems, distributed multi-user database systems, automation rail systems, etc. At first, it studies the evolution of user interfaces, deduces the innovative functions of future user interfaces, and defines WIMP+ user interfaces. Then, it investigates high level models for user interface realization. Since the most promising user-centered design methodology is a new emerging model, it is still short of modeling methodology and rules to support the concrete development process. Therefore, in this work, a universal modeling methodology, which picks up the design pattern application, is researched and used to structure different low level user interface models. And a framework, named Hot-UCDP, for aiding the development process, is proposed. -
Flexible Interfaces: Future Developments for Post-WIMP Interfaces Benjamin Bressolette, Michel Beaudouin-Lafon
Flexible interfaces: future developments for post-WIMP interfaces Benjamin Bressolette, Michel Beaudouin-Lafon To cite this version: Benjamin Bressolette, Michel Beaudouin-Lafon. Flexible interfaces: future developments for post- WIMP interfaces. CMMR 2019 - 14th International Symposium on Computer Music Multidisciplinary Research, Oct 2019, Marseille, France. hal-02435177 HAL Id: hal-02435177 https://hal.archives-ouvertes.fr/hal-02435177 Submitted on 15 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Flexible interfaces : future developments for post-WIMP interfaces Benjamin Bressolette and Michel Beaudouin-Lafon LRI, Universit´eParis-Sud, CNRS, Inria, Universit´eParis-Saclay Orsay, France [email protected] R´esum´e Most current interfaces on desktop computers, tablets or smart- phones are based on visual information. In particular, graphical user in- terfaces on computers are based on files, folders, windows, and icons, ma- nipulated on a virtual desktop. This article presents an ongoing project on multimodal interfaces, which may lead to promising improvements for computers' interfaces. These interfaces intend to ease the interaction with computers for blind or visually impaired people. We plan to inter- view blind or visually impaired users, to understand how they currently use computers, and how a new kind of flexible interface can be designed to meet their needs. -
Advanced Auditory Menus
Advanced Auditory Menus Pavani Yalla & Bruce N. Walker Georgia Institute of Technology GVU Center Technical Report # GIT-GVU-07-12 1 1 Introduction........................................................................................................................3 2 Visual Menus .....................................................................................................................3 2.1 General Characteristics .............................................................................................3 2.1.1 Parts of a Menu 3 2.1.2 Types of Menus 4 2.2 Menu Movement Rules.............................................................................................6 2.2.1 Intra-frame Movements 7 2.2.2 Inter-frame Movements 7 2.2.3 Shortcuts 9 2.3 Cognitive Process of Menu Selection........................................................................9 2.3.1 Outputs of Menu Selection 10 2.3.2 Components of Menu Selection 10 2.4 Designing Menus.................................................................................................... 12 2.4.1 Content Organization 12 2.4.2 Providing Action Feedback 14 2.4.3 Providing Contextual Information 15 2.4.4 Consistency 17 3 Auditory Menus ...............................................................................................................18 3.2 Non-Speech Sounds in Auditory Menus..................................................................19 3.2.1 Auditory Icons 19 3.2.2 Earcons 20 3.2.3 Spearcons 21 3.2.4 Sonification in Mobile Phones 22 3.3 Spatial Audio......................................................................................................... -
Design and Implementation of Post-WIMP Interactive Spaces with the ZOIL Paradigm
Design and Implementation of Post-WIMP Interactive Spaces with the ZOIL Paradigm Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von Hans-Christian Jetter an der Universität Konstanz Mathematisch-Naturwissenschaftliche Sektion Fachbereich Informatik und Informationswissenschaft Tag der mündlichen Prüfung: 22. März 2013 1. Referent: Prof. Dr. Harald Reiterer (Universität Konstanz) 2. Referent: Prof. Dr. Andreas Butz (LMU München) Prüfungsvorsitzender: Prof. Dr. Daniel Keim (Universität Konstanz) Konstanz, Dezember 2013 Design and Implementation of Post-WIMP Interactive Spaces with the ZOIL Paradigm Dissertation submitted for the degree of Doctor of Natural Sciences (Dr. rer. nat.) Presented by Hans-Christian Jetter at the University of Konstanz Faculty of Sciences Department of Computer and Information Science Date of the oral examination: March 22nd, 2013 1st Supervisor: Prof. Dr. Harald Reiterer (University of Konstanz) 2nd Supervisor: Prof. Dr. Andreas Butz (University of Munich, LMU) Chief Examiner: Prof. Dr. Daniel Keim (University of Konstanz) Konstanz, December 2013 i Zusammenfassung Post-WIMP (post-“Windows, Icons, Menu, Pointer”) interaktive Räume sind physische Umgebungen oder Räume für die kollaborative Arbeit, die mit Technologien des Ubiquitous Computing angereichert sind. Ihr Zweck ist es, eine computer-unterstützte Kollaboration mehrerer Benutzer zu ermöglichen, die auf einer nahtlosen Benutzung mehrerer Geräte und Bildschirme mittels „natürlicher“ post-WIMP Interaktion basiert. Diese Dissertation beantwortet die Forschungsfrage, wie Gestalter und Entwickler solcher Umgebungen dabei unterstützt werden können, gebrauchstaugliche interaktive Räume für mehrere Benutzer mit mehreren Geräten zu erschaffen, die eine kollaborative Wissensarbeit ermöglichen. Zu diesem Zweck werden zunächst Konzepte wie post-WIMP Interaktion, interaktive Räume und Wissensarbeit definiert. Die Arbeit formuliert dann das neue technologische Paradigma ZOIL (Zoomable Object-Oriented Information Landscape). -
Lessons Learned from the Design and Implementation of Distributed Post
Lessons Learned from the Design and Implementation of Distributed Post-WIMP User Interfaces Thomas Seifried1, Hans-Christian Jetter2, Michael Haller1, Harald Reiterer2 1Upper Austria University of Applied Sciences 2University of Konstanz Media Interaction Lab Human-Computer Interaction Group {thomas.seifried, haller}@fh-hagenberg.at {jetter, reiterer}@inf.uni-konstanz.de a b c Figure 1: Interactive spaces based on post-WIMP DUIs. (a) NiCE Meeting Room [5], (b) DeskPiles [2] and (c) Facet-Streams [10] ABSTRACT “natural” interaction, i.e. the UI is perceived as something Creating novel user interfaces that are “natural” and unobtrusive or even invisible that does not require the distributed is challenging for designers and developers. users’ continuous attention or a great deal of cognitive “Natural” interaction techniques are barely standardized resources. A well-proven approach to achieve this are and in combination with distributed UIs additional technical visual model-world interfaces for “direct manipulation”, in difficulties arise. In this paper we present the lessons we which a tight coupling of input and output languages have learned in developing several natural and distributed narrows the gulfs of execution and evaluation [7]. While user interfaces and propose design patterns to support direct manipulation originates from 1980s desktop development of such applications. computing, its principles are also the foundation of novel Author Keywords post-WIMP (post-“Windows Icons Menu Pointing”) or Post-WIMP, natural user interfaces, distributed user reality-based UIs [8]: Their interaction styles (e.g. tangible, interfaces, zoomable user interfaces, design patterns. multi-touch or paper-based UIs) “draw strength by building on users’ pre-existing knowledge of the everyday, non- ACM Classification Keywords digital world to a much greater extent than before.” Users H5.2. -
Interacting with Hidden Content Using Content-Aware Free-Space Transparency
Interacting with Hidden Content Using Content-Aware Free-Space Transparency Edward W. Ishak Steven K. Feiner Columbia University, Department of Computer Science New York, NY 10027 Email: {ishak, feiner}@cs.columbia.edu ABSTRACT We present content-aware free-space transparency, an ap- proach to viewing and manipulating the otherwise hidden content of obscured windows through unimportant regions of overlapping windows. Traditional approaches to interact- ing with otherwise obscured content in a window system render an entire window uniformly transparent. In contrast, content-aware free-space transparency uses opaque-to- transparent gradients and image-processing filters to mini- mize the interference from overlapping material, based on properties of that material. By increasing the amount of si- Figure 1: Window rendered (left) without free- multaneously visible content and allowing basic interaction space transparency, and (right) with content-aware with otherwise obscured content, without modifying win- free-space transparency, exposing blurred hidden dow geometry, we believe that free-space transparency has content underneath. the potential to improve user productivity. We also present a set of interaction techniques that utilize Categories and Subject Descriptors: H.5.2 [Information the benefits of FST. The pop-though technique allows a user Interfaces and Presentation]: User Interfaces—Graphical to interact with content beneath unimportant regions of an user interfaces (GUI), Interaction styles, Screen design, obscuring window without moving or resizing it. The focus Windowing systems filter allows a user to temporarily transform a filtered por- tion of obscured content to its original unfiltered form, General Terms: Human Factors, Design which clarifies the exposed content beneath an obscuring window. -
The Design and Evaluation of a Flick Gesture for 'Back'
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UC Research Repository The Design and Evaluation of a Flick Gesture for ‘Back’ and ‘Forward’ in Web Browsers Michael Moyle Andy Cockburn Human-Computer Interaction Lab Department of Computer Science University of Canterbury Christchurch, New Zealand {mjm184, andy}@cosc.canterbury.ac.nz does so by gesturing with the cursor in the direction of the Abstract desired item. If the user hesitates in their selection, the full Web navigation relies heavily on the use of the ‘back’ button to pie-menu is displayed. traverse pages. The traditional back button suffers from the The following fictitious scenario drives our evaluation of distance and targeting issues that govern Fitts’ Law. An gesture-based navigation: Microsoft and Netscape have alternative to the button approach is the use of marking menus—a released new versions of their browsers that support gesture based technique shown to improve access times of commonly repeated tasks. This paper describes the gestural navigation for the back and forward actions. We implementation and evaluation of a gesture-based mechanism for wish to understand whether these new features increase the issuing the back and forward commands in web navigation. efficiency of navigation, whether users quickly learn to use Results show that subjects were able to navigate significantly them, and whether users appreciate them. Efficiency is faster when using gestures compared to the normal back button. evaluated in two experiments that represent common web Furthermore, the subjects were extremely enthusiastic about the browsing tasks. Subjects used Microsoft Internet Explorer technique, with many expressing their wish that “all browsers for all evaluation tasks. -
Floating Pie Menus: Enhancing the Functionality of Contextual Tools
Floating Pie Menus: Enhancing the functionality of Contextual Tools Jose Moreno Rubio and Paul Janecek Database Laboratory Swiss Federal Institute of Technology (EPFL) 1015 Lausanne, Switzerland +41 21 693 6656 <jose.morenorubio, paul.janecek>@epfl.ch ABSTRACT PIE MENUS This paper describes several design enhancements we have Pie menus [1] are radial menus with the same added to pie menus: (1) transparency and repositioning to functionality as contextual menus. When the pie menu is allow a user to more easily see the model they are shown, the pointer is positioned in the center of the circle working on, (2) display of “contextual information” in the and all items are at an equal distance. Similar to other menu to show the current state of the object, (3) “lock- menus, they can be structured hierarchically. Users are mode” to apply multiple commands to the same object able to remember the angular position of items in the without closing the menu, and (4) “dynamic target” to menu more easily than linear menus, and inverse apply commands to multiple objects. The result is a new positions can be used to pair actions with opposite contextual interaction tool that mixes the dynamic aspect effects, such as copy and paste. of pie menus with the persistence of floating palettes. Keywords Pie menus have the same functionality as pop-up menus:: Pie Menu, contextual menus, interaction techniques. the user opens the menu and then makes a selection that causes an action. The action can directly activate a command, or open a dialog box where the user can change INTRODUCTION several properties. -
A Visual Language for Non-WIMP User Interfaces Robert J.K
A Visual Language for Non-WIMP User Interfaces Robert J.K. Jacob Department of Electrical Engineering and Computer Science Tufts University Medford, Mass. 02155 Abstract single input/output stream. Even where there are several devices, the input is treated conceptually as a single Unlike current GUI or WIMP style interfaces, non- multiplexed stream, and interaction proceeds in half- WIMP user interfaces, such as virtual environments, involve duplex, alternating between user and computer. Users do parallel, continuous interactions with the user. However, not, for example, meaningfully move a mouse while typing most current visual (and non-visual) languages for describing human-computer interaction are based on characters; they do one at a time. Non-WIMP interfaces are serial, discrete, token-based models. This paper introduces instead characterized by continuous interaction between a visual language for describing and programming the fine- user and computer via several parallel, asynchronous grained aspects of non-WIMP interaction. It is based on the channels or devices. notion that the essence of a non-WIMP dialogue is a set of Because interaction with such systems can draw on the continuous relationships, most of which are temporary. The user’s existing skills for interacting with the real world, they underlying model combines a data-flow or constraint-like offer the promise of interfaces that are easier to learn and to component for the continuous relationships with an event- use. However, they are currently making interfaces more based component for discrete interactions, which can difficult to build. Advances in user interface design and enable or disable individual continuous relationships.