Segment Polarity in Leech 1631
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Helobdella Robusta Sp.Nov., and Comparison with Helobdella Triserialis on the Basis of Morphology, Embryology, and Experimental Breeding
Description of the Californian leech Helobdella robusta sp.nov., and comparison with Helobdella triserialis on the basis of morphology, embryology, and experimental breeding MARTYSHANKLAND Department of Anatomy and Cellular Biology, Harvard Medical School, Boston, MA 021 15, U.S. A. SHIRLEYT. BISSEN Department of Biology, University of Missouri, St. Louis, MO 63121, U.S.A. AND DAVIDA. WEISBLAT Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, U.S. A. Received August 2, 199 1 Accepted December 18, 199 1 SHANKLAND,M., BISSEN,S. T., and WEISBLAT,D. A. 1992. Description of the Californian leech Helobdella robusta sp. nov., and comparison with Helobdella triserialis on the basis of morphology, embryology, and experimental breeding. Can. J. Zool. 70: 1258 - 1263. This paper describes the leech Helobdella robusta, which was collected from the Sacramento delta of California. This new species is generally similar to another species found in California, Helobdella triserialis, and the two were compared in detail. In the adult, we observed reliable differences in the relative dimensions of the body, the size of the dorsal papillae, the pattern of cutaneous pigmentation, and the structure of the gut. In the embryo, we observed differences in the appearance of the yolk platelets and the size of the adhesive gland. We also observed differences in the rate of embryonic development. All of these differences persist in breeding populations that have been maintained in the laboratory over many generations. Experimental studies indicate that H. robusta and H. triserialis have little or no proclivity for interbreeding, supporting their distinction as separate species. -
Intermediate Filament Genes As Differentiation Markers in the Leech Helobdella
Dev Genes Evol (2011) 221:225–240 DOI 10.1007/s00427-011-0375-3 ORIGINAL ARTICLE Intermediate filament genes as differentiation markers in the leech Helobdella Dian-Han Kuo & David A. Weisblat Received: 12 August 2011 /Accepted: 8 September 2011 /Published online: 22 September 2011 # Springer-Verlag 2011 Abstract The intermediate filament (IF) cytoskeleton is a evolutionary changes in the cell or tissue specificity of CIFs general feature of differentiated cells. Its molecular compo- have occurred among leeches. Hence, CIFs are not suitable nents, IF proteins, constitute a large family including the for identifying cell or tissue homology except among very evolutionarily conserved nuclear lamins and the more closely related species, but they are nevertheless useful diverse collection of cytoplasmic intermediate filament species-specific differentiation markers. (CIF) proteins. In vertebrates, genes encoding CIFs exhibit cell/tissue type-specific expression profiles and are thus Keywords Cell differentiation . Intermediate filament . useful as differentiation markers. The expression of Gene expression pattern . Helobdella . Leech . Annelid invertebrate CIFs, however, is not well documented. Here, we report a whole-genome survey of IF genes and their developmental expression patterns in the leech Helobdella, Introduction a lophotrochozoan model for developmental biology re- search. We found that, as in vertebrates, each of the leech The intermediate filament (IF) cytoskeleton is a structural CIF genes is expressed in a specific set of cell/tissue types. component that provides mechanical support for the cell. In This allows us to detect earliest points of differentiation for keeping with the large variety of cellular phenotypes, the IF multiple cell types in leech development and to use CIFs as cytoskeleton exhibits a high level of structural diversity and molecular markers for studying cell fate specification in is assembled from a much larger family of proteins leech embryos. -
The Asymmetric Cell Division Machinery in the Spiral-Cleaving Egg and Embryo of the Marine Annelid Platynereis Dumerilii Aron B
Nakama et al. BMC Developmental Biology (2017) 17:16 DOI 10.1186/s12861-017-0158-9 RESEARCH ARTICLE Open Access The asymmetric cell division machinery in the spiral-cleaving egg and embryo of the marine annelid Platynereis dumerilii Aron B. Nakama1, Hsien-Chao Chou1,2 and Stephan Q. Schneider1* Abstract Background: Over one third of all animal phyla utilize a mode of early embryogenesis called ‘spiral cleavage’ to divide the fertilized egg into embryonic cells with different cell fates. This mode is characterized by a series of invariant, stereotypic, asymmetric cell divisions (ACDs) that generates cells of different size and defined position within the early embryo. Astonishingly, very little is known about the underlying molecular machinery to orchestrate these ACDs in spiral-cleaving embryos. Here we identify, for the first time, cohorts of factors that may contribute to early embryonic ACDs in a spiralian embryo. Results: To do so we analyzed stage-specific transcriptome data in eggs and early embryos of the spiralian annelid Platynereis dumerilii for the expression of over 50 candidate genes that are involved in (1) establishing cortical domains such as the partitioning defective (par) genes, (2) directing spindle orientation, (3) conveying polarity cues including crumbs and scribble, and (4) maintaining cell-cell adhesion between embryonic cells. In general, each of these cohorts of genes are co-expressed exhibiting high levels of transcripts in the oocyte and fertilized single-celled embryo, with progressively lower levels at later stages. Interestingly, a small number of key factors within each ACD module show different expression profiles with increased early zygotic expression suggesting distinct regulatory functions. -
Especie Nueva De Sanguijuela Del Género Helobdella (Rhynchobdellida: Glossiphoniidae) Del Lago De Catemaco, Veracruz, México
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Acta Zoológica Mexicana (nueva serie) Acta Zoológica MexicanaActa Zool. (n.s.)Mex. 23(1):(n.s.) 23(1)15-22 (2007) ESPECIE NUEVA DE SANGUIJUELA DEL GÉNERO HELOBDELLA (RHYNCHOBDELLIDA: GLOSSIPHONIIDAE) DEL LAGO DE CATEMACO, VERACRUZ, MÉXICO Alejandro OCEGUERA-FIGUEROA City University of New York (CUNY), Graduate School and University Center y Division of Invertebrate Zoology, American Museum of Natural History. Central Park West at 79th Street, Nueva York, Nueva York, 10024, EUA. [email protected] RESUMEN Se describe una especie nueva de sanguijuela del género Helobdella del Lago de Catemaco, Veracruz, México con base en 23 ejemplares. Los organismos se encontraron adheridos a piedras y raíces a las orillas del lago. La especie nueva carece de placa quitinoide dorsal y se diferencia del resto de las especies del género por presentar la superficie dorsal del cuerpo obscura con manchas blancas de tamaño y distribución muy variable; de tres a cinco hileras dorsales de papilas; glándulas salivales difusas en el parénquima; buche con seis pares de ciegos, el último par forma post-ciegos o divertículos. Palabras Clave: Hirudinea, Glossiphoniidae, Helobdella, Catemaco, México, sanguijuela. ABSTRACT A new leech species of the genus Helobdella from Catemaco Lake, Veracruz, Mexico is described based on the examination of 23 specimens. Leeches were found attached to submerged rocks and plants. The new species lacks a nuchal scute and is distinguishable from other species of the genus by the presence of a obscure dorsal surface with white spots of different size and irregularly arranged; three or five longitudinal rows of dorsal papillae; salivary glands diffused in the parenchyma; six pairs of crop caeca, the posterior pair forming post-caeca or diverticula. -
Evolutionary Crossroads in Developmental Biology: Annelids David E
PRIMER SERIES PRIMER 2643 Development 139, 2643-2653 (2012) doi:10.1242/dev.074724 © 2012. Published by The Company of Biologists Ltd Evolutionary crossroads in developmental biology: annelids David E. K. Ferrier* Summary whole to allow more robust comparisons with other phyla, as well Annelids (the segmented worms) have a long history in studies as for understanding the evolution of diversity. Much of annelid of animal developmental biology, particularly with regards to evolutionary developmental biology research, although by no their cleavage patterns during early development and their means all of it, has tended to concentrate on three particular taxa: neurobiology. With the relatively recent reorganisation of the the polychaete (see Glossary, Box 1) Platynereis dumerilii; the phylogeny of the animal kingdom, and the distinction of the polychaete Capitella teleta (previously known as Capitella sp.); super-phyla Ecdysozoa and Lophotrochozoa, an extra stimulus and the oligochaete (see Glossary, Box 1) leeches, such as for studying this phylum has arisen. As one of the major phyla Helobdella. Even within this small selection of annelids, a good within Lophotrochozoa, Annelida are playing an important role range of the diversity in annelid biology is evident. Both in deducing the developmental biology of the last common polychaetes are marine, whereas Helobdella is a freshwater ancestor of the protostomes and deuterostomes, an animal from inhabitant. The polychaetes P. dumerilii and C. teleta are indirect which >98% of all described animal species evolved. developers (see Glossary, Box 1), with a larval stage followed by metamorphosis into the adult form, whereas Helobdella is a direct Key words: Annelida, Polychaetes, Segmentation, Regeneration, developer (see Glossary, Box 1), with the embryo developing into Central nervous system the worm form without passing through a swimming larval stage. -
Joint Genome Institute PROGRESS REPORT 2006 JGI’S Mission
U.S. DEPARTMENT OF ENERGY Joint Genome Institute PROGRESS REPORT 2006 JGI’s Mission The U.S. Department of Energy Joint Genome Institute (JGI), supported by the DOE Office of Science, is focused on the application of Genomic Sciences to support the DOE mission areas of clean energy generation, global carbon management, and environmental characterization and clean-up. JGI’s Production Genomics Facility in Walnut Creek, California , provides integrated high-throughput sequencing and compu- tational analysis that enable systems-based scientific approaches to these challenges. In addition, the Institute engages both technical and scientific partners at five national laboratories, Lawrence Berkeley, Lawrence Livermore, Los Alamos, Oak Ridge, and Pacific Northwest, along with the Stanford Human Genome Center. U.S. DEPARTMENT OF ENERGY Joint Genome Institute PROGRESS REPORT 2006 table of contents Director’s Perspective + + + + + + + + + + + + + + + + + + + + + iv JGI History + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 6 JGI Departments and Programs + + + + + + + + + + + + + + 8 JGI Users + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 11 The Benefits of Biofuels + + + + + + + + + + + + + + + + + + + 14 The JGI Sequencing Process + + + + + + + + + + + + + + + 1 6 Science Behind the Sequence Highlights: Biomass to Biofuels + + + + + + + + + + + + + + 18 Carbon Cycling + + + + + + + + + + + + + + + + + + + + + + + + + + 22 Bioremediation + + + + + + + + + + + + + + + + + + + + + + + + + + 24 Exploratory Sequence-Based -
The Genome of Medicinal Leech (Whitmania Pigra) and Comparative Genomic Study for Exploration of Bioactive Ingredients
The Genome of Medicinal Leech (Whitmania pigra) and comparative genomic study for Exploration of Bioactive Ingredients Lei Tong Kunming University Shao-Xing Dai Kunming University of Science and Technology De-Jun Kong Kunming University Peng-Peng Yang Kunming University of Science and Technology Xin Tong Kunming University of Science and Technology Xiang-Rong Tong Kunming University Xiao-Xu Bi Kunming University Yuan Su Kunming University Yu-Qi Zhao University of California Los Angeles Zi-Chao Liu ( [email protected] ) Kunming University https://orcid.org/0000-0002-7509-6209 Research article Keywords: Whitmania pigra, Genome, Bioactive Ingredients, Helobdella robusta, Hirudo medicinalis Posted Date: October 12th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-31354/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/20 Abstract Background Leeches are classic annelids that have a huge diversity and closely related to people, especially medicinal leeches. Medicinal leeches have been widely utilized in medicine based on the pharmacological activities of their bioactive ingredients. Comparative genomic study of these leeches enables us to understand the difference among medicinal leeches and other leeches and facilitates the discovery of bioactive ingredients. Results In this study, we reported the genome of Whitmania pigra and compared it with Hirudo medicinalis and Helobdella robusta. The assembled genome size of W. pigra is 177 Mbp, close to the estimated genome. Approximately about 23% of the genome was repetitive. A total of 26,743 protein-coding genes were subsequently predicted. W. pigra have 12346 (46%) and 10295 (38%) orthologous genes with H. -
Insights Into Bilaterian Evolution from Three Spiralian Genomes
LETTER OPEN doi:10.1038/nature11696 Insights into bilaterian evolution from three spiralian genomes Oleg Simakov1,2, Ferdinand Marletaz1{, Sung-Jin Cho2, Eric Edsinger-Gonzales2, Paul Havlak3, Uffe Hellsten4, Dian-Han Kuo2{, Tomas Larsson1, Jie Lv3, Detlev Arendt1, Robert Savage5, Kazutoyo Osoegawa6, Pieter de Jong6, Jane Grimwood4,7, Jarrod A. Chapman4, Harris Shapiro4, Andrea Aerts4, Robert P. Otillar4, Astrid Y. Terry4, Jeffrey L. Boore4{, Igor V. Grigoriev4, David R. Lindberg8, Elaine C. Seaver9{, David A. Weisblat2, Nicholas H. Putnam3,10 & Daniel S. Rokhsar2,4,11 Current genomic perspectives on animal diversity neglect two Supplementary Table 2.2.2 and Supplementary Note 2.2. The repetitive prominent phyla, the molluscs and annelids, that together account landscape of these genomes is discussed in Supplementary Note 3.2). for nearly one-third of known marine species and are important Comparing the new genomes with other metazoan sequences, we both ecologically and as experimental systems in classical embry- characterized 8,756 modern bilaterian gene families as likely to have ology1–3. Here we describe the draft genomes of the owl limpet arisen from single progenitor genes in the last common bilaterian (Lottia gigantea), a marine polychaete (Capitella teleta) and a ancestor (Supplementary Note 3.4). As gene loss is common and highly freshwater leech (Helobdella robusta), and compare them with diverged orthologues can be difficult to detect, this is a conservative other animal genomes to investigate the origin and diversifica- lower bound on the number of genes encoded by the last common tion of bilaterians from a genomic perspective. We find that the bilaterian ancestor. -
Evo-Devo” Model Organism Brenda Irene Medina Jiménez1†, Hee-Jin Kwak1†, Jong-Seok Park1, Jung-Woong Kim2* and Sung-Jin Cho1*
Medina Jiménez et al. Frontiers in Zoology (2017) 14:60 DOI 10.1186/s12983-017-0240-y RESEARCH Open Access Developmental biology and potential use of Alboglossiphonia lata (Annelida: Hirudinea) as an “Evo-Devo” model organism Brenda Irene Medina Jiménez1†, Hee-Jin Kwak1†, Jong-Seok Park1, Jung-Woong Kim2* and Sung-Jin Cho1* Abstract Background: The need for the adaptation of species of annelids as “Evo-Devo” model organisms of the superphylum Lophotrochozoa to refine the understanding of the phylogenetic relationships between bilaterian organisms, has promoted an increase in the studies dealing with embryonic development among related species such as leeches from the Glossiphoniidae family. The present study aims to describe the embryogenesis of Alboglossiphonia lata (Oka, 1910), a freshwater glossiphoniid leech, chiefly distributed in East Asia, and validate standard molecular biology techniques to support the use of this species as an additional model for “Evo-Devo” studies. Results: A. lata undergoes direct development, and follows the highly conserved clitellate annelid mode of spiral cleavage development; the duration from the egg laying to the juvenile stage is ~7.5 days, and it is iteroparous, indicating that it feeds and deposits eggs again after the first round of brooding, as described in several other glossiphoniid leech species studied to date. The embryos hatch only after complete organ development and proboscis retraction, which has not yet been observed in other glossiphoniid genera. The phylogenetic position of A. lata within the Glossiphoniidae family has been confirmed using cytochrome c oxidase subunit 1 (CO1) sequencing. Lineage tracer injections confirmed the fates of the presumptive meso- and ectodermal precursors, and immunostaining showed the formation of the ventral nerve system during later stages of development. -
10 Hirudinida Mark E. Siddall , Alexa Bely , and Elizabeth Borda American Museum of Natural History, New York, New York 10024, U
10 Hirudinida Mark E. Siddall1, Alexa Bely2, and Elizabeth Borda1 1 American Museum of Natural History, New York, New York 10024, USA; 2 Department of Biology, University of Maryland, College Park, Maryland 20742, USA 10.1 Phylogeny and Systematics Leech phylogenetic relationships and, consequently, classification of its constituents has seen considerable attention in the last decade particularly as leeches have been the subject of analyses at several taxonomic levels using morphological characters and DNA sequence data. The origin of leeches and other symbiotic clitellate annelids was at one time an issue rather hotly debated by annelid systematists. As with many annelids, leeches are soft-bodied and do not regularly leave a fossil record. There are two putative Jurrasic fossils from Bavarian deposits, Epitrachys rugosus and Palaeohirudo eichstaettensis, but neither has both the caudal sucker and annular subdivisions that together would definitively suggest a leech (Ehlers 1869; Kozur, 1970). Nonetheless there have long been anatomical clues regarding hirudinidan origins. Leeches have a constant number of somites and a posterior sucker used for attachment to hosts, but so too do the tiny branchiobdellidan crayfish worms and the Arctic salmon worm Acanthobdella peledina. The latter has oligochaete-like chaetae and a constant number of 29 somites but exhibits leech-like coelmic and reproductive structures. In contrast, the branchiobdelidans have a more oligochaete-like reproductive organization, a constant number of 15 body somites and yet lack chaetae altogether. Not surprisingly there have been several historical suggestions of a close relationship amongst these groups (Odier, 1823; Livanow, 1931; Brinkhurst and Gelder, 1989; Siddall and Burreson, 1996) but others worried that the similiarities were mere convergence (Holt, 1989; Purschke et al., 1993; Brinkhurst,1994). -
Of the Leech Helobdella
DEVELOPMENTAL BIOLOGY 190, 284±300 (1997) ARTICLE NO. DB978689 View metadata,Conserved citation and similar papers Anterior at core.ac.uk Boundaries of Hox Gene brought to you by CORE Expression in the Central Nervous System provided by Elsevier - Publisher Connector of the Leech Helobdella Matthew J. Kourakis,* Viraj A. Master,²,1 Denise K. Lokhorst,³,2 Denise Nardelli-Hae¯iger,³,3 Cathy J. Wedeen,§,4 Mark Q. Martindale,*,\ and Marty Shankland³,5 *Department of Organismal Biology and Anatomy and ²Department of Pharmacological and Physiological Sciences, University of Chicago, Chicago, Illinois 60637; ³Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115; §Department of Molecular and Cell Biology, University of California, Berkeley, California 94720; and \Committees on Developmental Biology, Neurobiology, and Evolutionary Biology, University of Chicago, Chicago, Illinois 60637 Molecular developmental studies of ¯y and mouse embryos have shown that the identity of individual body segments is controlled by a suite of homeobox-containing genes called the Hox cluster. To examine the conservation of this patterning mechanism in other segmented phyla, we here describe four Hox gene homologs isolated from glossiphoniid leeches of the genus Helobdella. Based on sequence similarity and phylogenetic analysis, the leech genes Lox7, Lox6, Lox20, and Lox5 are deemed to be orthologs of the Drosophila genes lab, Dfd, Scr, and Antp, respectively. Sequence similarities between Lox5 and Antp outside the homeodomain and phylogenetic reconstructions suggest that the Antennapedia family of Hox genes (as de®ned by BuÈ rglin, 1994) had already expanded to include at least two discrete Antp and Ubx/abdA precursors prior to the annelid/ arthropod divergence. -
Evolutionary Dynamics of the Wnt Gene Family: a Lophotrochozoan Perspective Sung-Jin Cho, ,1 Yvonne Valle`S,* ,1 Vincent C
Evolutionary Dynamics of the wnt Gene Family: A Lophotrochozoan Perspective Sung-Jin Cho, ,1 Yvonne Valle`s,* ,1 Vincent C. Giani Jr,2 Elaine C. Seaver,2 and David A. Weisblat*,1 1Department of Molecular and Cell Biology, University of California 2Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii These authors contributed equally to this work. *Corresponding author: E-mail: [email protected]; [email protected]. Associate editor: Billie Swalla Abstract The wnt gene family encodes a set of secreted glycoproteins involved in key developmental processes, including cell fate Research article specification and regulation of posterior growth (Cadigan KM, Nusse R. 1997. Wnt signaling: a common theme in animal development. Genes Dev. 11:3286–3305.; Martin BL, Kimelman D. 2009. Wnt signaling and the evolution of embryonic posterior development. Curr Biol. 19:R215–R219.). As for many other gene families, evidence for expansion and/or contraction of the wnt family is available from deuterostomes (e.g., echinoderms and vertebrates [Nusse R, Varmus HE. 1992. Wnt genes. Cell. 69:1073–1087.; Schubert M, Holland LZ, Holland ND, Jacobs DK. 2000. A phylogenetic tree of the Wnt genes based on all available full-length sequences, including five from the cephalochordate amphioxus. Mol Biol Evol. 17:1896–1903.; Croce JC, Wu SY, Byrum C, Xu R, Duloquin L, Wikramanayake AH, Gache C, McClay DR. 2006. A genome- wide survey of the evolutionarily conserved Wnt pathways in the sea urchin Strongylocentrotus purpuratus. Dev Biol. 300:121–131.]) and ecdysozoans (e.g., arthropods and nematodes [Eisenmann DM. 2005. Wnt signaling. WormBook. 1–17.; Bolognesi R, Farzana L, Fischer TD, Brown SJ.