Evolutionary Crossroads in Developmental Biology: Annelids David E

Total Page:16

File Type:pdf, Size:1020Kb

Evolutionary Crossroads in Developmental Biology: Annelids David E PRIMER SERIES PRIMER 2643 Development 139, 2643-2653 (2012) doi:10.1242/dev.074724 © 2012. Published by The Company of Biologists Ltd Evolutionary crossroads in developmental biology: annelids David E. K. Ferrier* Summary whole to allow more robust comparisons with other phyla, as well Annelids (the segmented worms) have a long history in studies as for understanding the evolution of diversity. Much of annelid of animal developmental biology, particularly with regards to evolutionary developmental biology research, although by no their cleavage patterns during early development and their means all of it, has tended to concentrate on three particular taxa: neurobiology. With the relatively recent reorganisation of the the polychaete (see Glossary, Box 1) Platynereis dumerilii; the phylogeny of the animal kingdom, and the distinction of the polychaete Capitella teleta (previously known as Capitella sp.); super-phyla Ecdysozoa and Lophotrochozoa, an extra stimulus and the oligochaete (see Glossary, Box 1) leeches, such as for studying this phylum has arisen. As one of the major phyla Helobdella. Even within this small selection of annelids, a good within Lophotrochozoa, Annelida are playing an important role range of the diversity in annelid biology is evident. Both in deducing the developmental biology of the last common polychaetes are marine, whereas Helobdella is a freshwater ancestor of the protostomes and deuterostomes, an animal from inhabitant. The polychaetes P. dumerilii and C. teleta are indirect which >98% of all described animal species evolved. developers (see Glossary, Box 1), with a larval stage followed by metamorphosis into the adult form, whereas Helobdella is a direct Key words: Annelida, Polychaetes, Segmentation, Regeneration, developer (see Glossary, Box 1), with the embryo developing into Central nervous system the worm form without passing through a swimming larval stage. In addition, P. dumerilii is a broadcast spawner whereas C. teleta Introduction retains the embryos in a brood tube, and leeches produce a cocoon. Notably, P. dumerilii is considered to be an errant annelid (see “You have made your way from worm to man, below), actively exploring the sea bed to scavenge and predate, and but much of you is still worm.” its morphology reflects this, with prominent jaws and an abundance Friedrich Nietzsche, Thus Spoke Zarathustra of sensory appendages and structures on its head and prominent (trans. R. J. Hollingdale, 1961) trunk appendages for gaining traction. By contrast, C. teleta The phylum Annelida gets its name from the latin ‘Anellus’ burrows around in the sediment much more and so has a more (meaning little ring) owing to the overt segmentation exhibited by ‘earthworm-like’ appearance, without prominent head or trunk most members of the group, a feature that annelids share with only appendages that would be a hindrance to this lifestyle. Leeches two other phyla, the arthropods (see Glossary, Box 1) and the provide a further contrast with the innovation of their anterior and chordates (see Glossary, Box 1) [also see Minelli (Minelli, 2004) posterior suckers, used for both locomotion and feeding. for a discussion of what is meant by ‘segmentation’]. The annelids This by no means covers all of the diversity within the annelids, are one of the few phyla that contains species occupying a range of and some of the other species used in evolutionary developmental habitats from marine to freshwater to terrestrial, although the biology studies, and which are mentioned elsewhere in this review, terrestrial species do only occupy rather damp terrestrial niches. are listed in Fig. 2 along with the phylogenetic relationships among This phylum includes the terrestrial earthworm, which was these taxa. Clearly there is a need for work in yet more species in championed by Charles Darwin to the extent that a cartoon order to represent properly the evolutionary diversity in the published in Punch’s Almanack (1882) declared “Man is but a annelids as well as to determine the ancestral states for various worm” (Box 2), as well as the blood-sucking leeches, the predatory developmental processes and features more reliably. ragworm often used as bait by fishermen, and the beautiful, majestic tube-building fanworms. Such a range of habitats along Recent developments in annelid phylogeny with a wide range of feeding strategies, including predation, deposit Understanding the relationships among a group of species within a feeding, filter feeding, parasitism and symbiosis, as well as the phylum, as well as the phylogenetic relationships relative to other unusual strategy adopted by the bone-eating snot-flower worm, phyla, is an essential prerequisite for any form of comparative, Osedax mucofloris (Glover et al., 2005), coincides with an evolutionary research, including evolutionary developmental impressive diversity of body forms and development. It is this biology. As segmentation is externally visible in both adult annelids diversity that makes the annelids a rich source of ‘material’ for and arthropods, traditional evolutionary scenarios and phylogenies investigating developmental mechanisms as well as the evolution of the animal kingdom proposed a sister group (see Glossary, Box of development. 1) relationship between these two phyla. They were known A variety of species are used in annelid evolutionary collectively as the Articulata, with the arthropods evolving from a developmental biology studies (some of which are shown in Fig. more annelid-like ancestor. With the advent of molecular 1), which is one of the strengths of this area of research and is phylogenetics, however, this sister group relationship was quickly essential for deducing accurate ancestral states for annelids as a abandoned (Field et al., 1988) and, whereas the Arthropoda have taken residence within the super-phylum Ecdysozoa (see Glossary, The Scottish Oceans Institute, the Gatty Marine Laboratory, University of St Box 1), alongside nematodes, onychophorans, priapulids and other Andrews, East Sands, St Andrews, Fife, KY16 8LB, UK. phyla, the Annelida have come to occupy a position within the *Author for correspondence ([email protected]) Lophotrochozoa (see Glossary, Box 1), alongside molluscs, DEVELOPMENT 2644 PRIMER Development 139 (15) Box 1. Glossary Box 2. Man is but a worm Arthropods. Members of the phylum Arthropoda, having a hard exoskeleton and jointed appendages. Includes insects such as Drosophila melanogaster, along with crustaceans, myriapods and chelicerates. Chordates. Members of the phylum Chordata, principally distinguished by the possession of a notochord at least at some point in their life cycle. Includes vertebrates, urochordates (e.g. Ciona intestinalis) and Cephalochordates (e.g. amphioxus). Clitellata. Annelids that possess a cocoon-forming clitellum, at least during the reproductive stages of their lives. Direct developers. Animals that do not possess a free larval stage that is distinct from the adult stage. Ecdysozoa. A super-phyletic clade of animals that periodically shed their cuticle (moult) via a process called ecdysis. Echinoderms. Members of the phylum Echinodermata, possessing a calcareous endoskeleton, water vascular system and pentaradial symmetry. Includes sea urchins, starfish, crinoids and sea cucumbers. Errantia. The clade of annelid families that tends to have an errant lifestyle, actively foraging over the sea-bed. Hemichordates. Members of the phylum Hemichordata. Marine benthic worms with pharyngeal gill slits and deuterostome development, but lacking a notochord. Includes the acorn worms (enteropneusts) and pterobranchs. Indirect developers. Animals that have a free larva that is distinct A cartoon from Punch’s Almanack for 1882 (published in Punch from the adult form and which usually undergoes some degree of Magazine on 6th December 1881) showing Darwin evolving from metamorphosis. chaos via an annelid worm, which in this case is his beloved Lophotrochozoa. A super-phyletic clade of animals that contains earthworm. At the time of this cartoon it was perhaps thought to phyla with either a lophophore (a ciliated, tentacular feeding be rather tongue-in-cheek, poking fun at the idea that something structure that also has a coelomic cavity derived from the middle as grand as a human could have arisen via evolution from such coelomic compartment, the mesocoel) and/or larvae based on the basic forms as worms. However, with modern discoveries in trochophore form (see main text). evolutionary developmental biology and genomics, the degree of Oligochaeta. Annelids with fewer, less pronounced chaetae than molecular similarity between animals such as humans and annelid polychaetes (see below) and no parapodia. worms is often surprising and undoubtedly more profound than Parapodia. The locomotory body appendages of polychaete many from the pre-molecular era would ever have imagined. annelids. Given the preponderance of worm-like forms across the animal Phylogenomics. The approach to building phylogenetic trees that kingdom, it is clear that the last common ancestor of annelids and uses genome-scale data sets, either from transcriptome or whole- humans will have been some sort of worm. Man is indeed but a genome data. rather fancy worm. Polychaeta. Annelids with many bristles, or chaetae, that are usually used for gaining traction during locomotion and often project from the ends of the parapodia. With the nesting of the annelids are often referred to as either errant (the Errantia, see clitellates within
Recommended publications
  • CV Elaine Seaver, Ph.D
    ELAINE C. SEAVER, Ph.D. Professor of Biology My research interests are in the areas of developmental biology, evolution of development, and regeneration. I have been trained in the fields of molecular biology, developmental neurobiology and embryology. I am broadly interested in the cellular and molecular control of patterning during development and regeneration. Many of our studies have utilized marine annelids, which exhibit a highly stereotypic early developmental program, and have robust regenerative abilities. My lab has pioneered the use of the annelid Capitella teleta as a model for development and regeneration studies. We have established several cellular, molecular and imaging techniques for this animal including microinjection, laser deletion, and functional manipulations. I am an expert in animal husbandry of C. teleta, and have optimized conditions to maximize reproduction output. I was instrumental in getting a completely sequenced and annotated genome for Capitella by the Joint Genome Institute, which has facilitated our molecular investigations of the development and regeneration of this species. Our current areas of focus include evolution of cell lineages, regeneration of the germline, and investigating the relationship between development and regeneration. Our longterm goals are to understand how developmental programs evolve and how changes in the developmental program lead to the diversity of animals. Education: 1995 Ph.D. in Biology, University of Utah 1986 B.S. in Biology, McGill University Professional Experience:
    [Show full text]
  • Zoosymposia 2: 25–53 (2009) ISSN 1178-9905 (Print Edition) ZOOSYMPOSIA Copyright © 2009 · Magnolia Press ISSN 1178-9913 (Online Edition)
    Zoosymposia 2: 25–53 (2009) ISSN 1178-9905 (print edition) www.mapress.com/zoosymposia/ ZOOSYMPOSIA Copyright © 2009 · Magnolia Press ISSN 1178-9913 (online edition) Capitella teleta, a new species designation for the opportunistic and experimental Capitella sp. I, with a review of the literature for confirmed records JAMES A. BLAKE1,4, JUDITH P. GRASSLE2 & KEVIN J. ECKELBARGER3 1Marine & Coastal Center, AECOM Environment, Woods Hole, MA 02543 USA. E-mail: [email protected] 2Institute of Marine & Coastal Sciences, Rutgers University, New Brunswick, NJ 08901 USA. E-mail: [email protected] 3Darling Marine Center, University of Maine, Walpole, ME 04573 USA. E-mail: [email protected] 4Corresponding author Abstract This paper provides a morphological description of Capitella teleta sp. nov., an opportunistic capitellid that is also commonly used as an experimental polychaete under the provisional designation Capitella sp. I. The species is widely distributed along the east and west coasts of North America and also reported from Japan and the Mediterranean. The species belongs to a group having distinct sexual dimorphism, yet with hermaphrodites occurring under certain conditions. Morphologically, C. teleta has a long, narrow body, with all thoracic segments similar except for sexual modifications on setigers 8–9; the prostomium/peristomium combined are long, narrow and about 2.5 times as long as setiger 1. Capillary setae are present in noto- and neuropodia of setigers 1–7; setigers 8–9 have hooded hooks in noto- and neuropodia of females; genital spines replace notopodial hooks in males. A methyl green staining pattern is limited to some thoracic setigers of females; males lack a distinct staining pattern.
    [Show full text]
  • Phylogenetic Relationships of Serpulidae (Annelida: Polychaeta) Based on 18S Rdna Sequence Data, and Implications for Opercular Evolution Janina Lehrkea,Ã, Harry A
    ARTICLE IN PRESS Organisms, Diversity & Evolution 7 (2007) 195–206 www.elsevier.de/ode Phylogenetic relationships of Serpulidae (Annelida: Polychaeta) based on 18S rDNA sequence data, and implications for opercular evolution Janina Lehrkea,Ã, Harry A. ten Hoveb, Tara A. Macdonaldc, Thomas Bartolomaeusa, Christoph Bleidorna,1 aInstitute for Zoology, Animal Systematics and Evolution, Freie Universitaet Berlin, Koenigin-Luise-Street 1-3, 14195 Berlin, Germany bZoological Museum, University of Amsterdam, P.O. Box 94766, 1090 GT Amsterdam, The Netherlands cBamfield Marine Sciences Centre, Bamfield, British Columbia, Canada, V0R 1B0 Received 19 December 2005; accepted 2 June 2006 Abstract Phylogenetic relationships of (19) serpulid taxa (including Spirorbinae) were reconstructed based on 18S rRNA gene sequence data. Maximum likelihood, Bayesian inference, and maximum parsimony methods were used in phylogenetic reconstruction. Regardless of the method used, monophyly of Serpulidae is confirmed and four monophyletic, well- supported major clades are recovered: the Spirorbinae and three groups hitherto referred to as the Protula-, Serpula-, and Pomatoceros-group. Contrary to the taxonomic literature and the hypothesis of opercular evolution, the Protula- clade contains non-operculate (Protula, Salmacina) and operculate taxa both with pinnulate and non-pinnulate peduncle (Filograna vs. Vermiliopsis), and most likely is the sister group to Spirorbinae. Operculate Serpulinae and poorly or non-operculate Filograninae are paraphyletic. It is likely that lack of opercula in some serpulid genera is not a plesiomorphic character state, but reflects a special adaptation. r 2007 Gesellschaft fu¨r Biologische Systematik. Published by Elsevier GmbH. All rights reserved. Keywords: Serpulidae; Phylogeny; Operculum; 18S rRNA gene; Annelida; Polychaeta Introduction distinctive calcareous tubes and bilobed tentacular crowns, each with numerous radioles that bear shorter Serpulids are common members of marine hard- secondary branches (pinnules) on the inner side.
    [Show full text]
  • Classification
    Science Classification Pupil Workbook Year 5 Unit 5 Name: 2 3 Existing Knowledge: Why do we put living things into different groups and what are the groups that we can separate them into? You can think about the animals in the picture and all the others that you know. 4 Session 1: How do we classify animals with a backbone? Key Knowledge Key Vocabulary Animals known as vertebrates have a spinal column. Vertebrates Some vertebrates are warm-blooded meaning that they Species maintain a consistent body temperature. Some are cold- Habitat blooded, meaning they need to move around to warm up or cool down. Spinal column Vertebrates are split into five main groups known as Warm-blooded/Cold- mammals, amphibians, reptiles, birds and fish. blooded Task: Look at the picture here and think about the different groups that each animal is part of. How is each different to the others and which other animals share similar characteristics? Write your ideas here: __________________________ __________________________ __________________________ __________________________ __________________________ __________________________ ____________________________________________________ ____________________________________________________ ____________________________________________________ ____________________________________________________ ____________________________________________________ 5 How do we classify animals with a backbone? Vertebrates are the most advanced organisms on Earth. The traits that make all of the animals in this group special are
    [Show full text]
  • Introduction to Arthropod Groups What Is Entomology?
    Entomology 340 Introduction to Arthropod Groups What is Entomology? The study of insects (and their near relatives). Species Diversity PLANTS INSECTS OTHER ANIMALS OTHER ARTHROPODS How many kinds of insects are there in the world? • 1,000,0001,000,000 speciesspecies knownknown Possibly 3,000,000 unidentified species Insects & Relatives 100,000 species in N America 1,000 in a typical backyard Mostly beneficial or harmless Pollination Food for birds and fish Produce honey, wax, shellac, silk Less than 3% are pests Destroy food crops, ornamentals Attack humans and pets Transmit disease Classification of Japanese Beetle Kingdom Animalia Phylum Arthropoda Class Insecta Order Coleoptera Family Scarabaeidae Genus Popillia Species japonica Arthropoda (jointed foot) Arachnida -Spiders, Ticks, Mites, Scorpions Xiphosura -Horseshoe crabs Crustacea -Sowbugs, Pillbugs, Crabs, Shrimp Diplopoda - Millipedes Chilopoda - Centipedes Symphyla - Symphylans Insecta - Insects Shared Characteristics of Phylum Arthropoda - Segmented bodies are arranged into regions, called tagmata (in insects = head, thorax, abdomen). - Paired appendages (e.g., legs, antennae) are jointed. - Posess chitinous exoskeletion that must be shed during growth. - Have bilateral symmetry. - Nervous system is ventral (belly) and the circulatory system is open and dorsal (back). Arthropod Groups Mouthpart characteristics are divided arthropods into two large groups •Chelicerates (Scissors-like) •Mandibulates (Pliers-like) Arthropod Groups Chelicerate Arachnida -Spiders,
    [Show full text]
  • Phylum Arthropod Silvia Rondon, and Mary Corp, OSU Extension Entomologist and Agronomist, Respectively Hermiston Research and Extension Center, Hermiston, Oregon
    Phylum Arthropod Silvia Rondon, and Mary Corp, OSU Extension Entomologist and Agronomist, respectively Hermiston Research and Extension Center, Hermiston, Oregon Member of the Phyllum Arthropoda can be found in the seas, in fresh water, on land, or even flying freely; a group with amazing differences of structure, and so abundant that all the other animals taken together are less than 1/6 as many as the arthropods. Well-known members of this group are the Kingdom lobsters, crayfish and crabs; scorpions, spiders, mites, ticks, Phylum Phylum Phylum Class the centipedes and millipedes; and last, but not least, the Order most abundant of all, the insects. Family Genus The Phylum Arthropods consist of the following Species classes: arachnids, chilopods, diplopods, crustaceans and hexapods (insects). All arthropods possess: • Exoskeleton. A hard protective covering around the outside of the body (divided by sutures into plates called sclerites). An insect's exoskeleton (integument) serves as a protective covering over the body, but also as a surface for muscle attachment, a water-tight barrier against desiccation, and a sensory interface with the environment. It is a multi-layered structure with four functional regions: epicuticle (top layer), procuticle, epidermis, and basement membrane. • Segmented body • Jointed limbs and jointed mouthparts that allow extensive specialization • Bilateral symmetry, whereby a central line can divide the body Insect molting or removing its into two identical halves, left and right exoesqueleton • Ventral nerve
    [Show full text]
  • The Effects of Temperature on Hemoglobin in Capitella Teleta
    THE EFFECTS OF TEMPERATURE ON HEMOGLOBIN IN CAPITELLA TELETA by Alexander M. Barclay A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Master of Science in Marine Studies Summer 2013 c 2013 Alexander M. Barclay All Rights Reserved THE EFFECTS OF TEMPERATURE ON HEMOGLOBIN IN CAPITELLA TELETA by Alexander M. Barclay Approved: Adam G. Marsh, Ph.D. Professor in charge of thesis on behalf of the Advisory Committee Approved: Mark A. Moline, Ph.D. Director of the School of Marine Science and Policy Approved: Nancy M. Targett, Ph.D. Dean of the College of Earth, Ocean, and Environment Approved: James G. Richards, Ph.D. Vice Provost for Graduate and Professional Education ACKNOWLEDGMENTS I extend my sincere gratitude to the individuals that either contributed to the execution of my thesis project or to my experience here at the University of Delaware. I would like to give special thanks to my adviser, Adam Marsh, who afforded me an opportunity that exceeded all of my prior expectations. Adam will say that I worked very independently and did not require much guidance, but he served as an inspiration and a role model for me during my studies. Adam sincerely cares for each of his students and takes the time and thought to tailor his research program to fit each person's interests. The reason that I initially chose to work in Adam's lab was that he expressed a genuine excitement for science and for his lifes work. His enthusiasm resonated with me and helped me to find my own exciting path in science.
    [Show full text]
  • Six3 Demarcates the Anterior-Most Developing Brain Region In
    Steinmetz et al. EvoDevo 2010, 1:14 http://www.evodevojournal.com/content/1/1/14 RESEARCH Open Access Six3 demarcates the anterior-most developing brain region in bilaterian animals Patrick RH Steinmetz1,6†, Rolf Urbach2†, Nico Posnien3,7, Joakim Eriksson4,8, Roman P Kostyuchenko5, Carlo Brena4, Keren Guy1, Michael Akam4*, Gregor Bucher3*, Detlev Arendt1* Abstract Background: The heads of annelids (earthworms, polychaetes, and others) and arthropods (insects, myriapods, spiders, and others) and the arthropod-related onychophorans (velvet worms) show similar brain architecture and for this reason have long been considered homologous. However, this view is challenged by the ‘new phylogeny’ placing arthropods and annelids into distinct superphyla, Ecdysozoa and Lophotrochozoa, together with many other phyla lacking elaborate heads or brains. To compare the organisation of annelid and arthropod heads and brains at the molecular level, we investigated head regionalisation genes in various groups. Regionalisation genes subdivide developing animals into molecular regions and can be used to align head regions between remote animal phyla. Results: We find that in the marine annelid Platynereis dumerilii, expression of the homeobox gene six3 defines the apical region of the larval body, peripherally overlapping the equatorial otx+ expression. The six3+ and otx+ regions thus define the developing head in anterior-to-posterior sequence. In another annelid, the earthworm Pristina, as well as in the onychophoran Euperipatoides, the centipede Strigamia and the insects Tribolium and Drosophila,asix3/optix+ region likewise demarcates the tip of the developing animal, followed by a more posterior otx/otd+ region. Identification of six3+ head neuroectoderm in Drosophila reveals that this region gives rise to median neurosecretory brain parts, as is also the case in annelids.
    [Show full text]
  • Six3 Demarcates the Anterior-Most Developing Brain Region In
    Steinmetz et al. EvoDevo 2010, 1:14 http://www.evodevojournal.com/content/1/1/14 RESEARCH Open Access Six3 demarcates the anterior-most developing brain region in bilaterian animals Patrick RH Steinmetz1,6†, Rolf Urbach2†, Nico Posnien3,7, Joakim Eriksson4,8, Roman P Kostyuchenko5, Carlo Brena4, Keren Guy1, Michael Akam4*, Gregor Bucher3*, Detlev Arendt1* Abstract Background: The heads of annelids (earthworms, polychaetes, and others) and arthropods (insects, myriapods, spiders, and others) and the arthropod-related onychophorans (velvet worms) show similar brain architecture and for this reason have long been considered homologous. However, this view is challenged by the ‘new phylogeny’ placing arthropods and annelids into distinct superphyla, Ecdysozoa and Lophotrochozoa, together with many other phyla lacking elaborate heads or brains. To compare the organisation of annelid and arthropod heads and brains at the molecular level, we investigated head regionalisation genes in various groups. Regionalisation genes subdivide developing animals into molecular regions and can be used to align head regions between remote animal phyla. Results: We find that in the marine annelid Platynereis dumerilii, expression of the homeobox gene six3 defines the apical region of the larval body, peripherally overlapping the equatorial otx+ expression. The six3+ and otx+ regions thus define the developing head in anterior-to-posterior sequence. In another annelid, the earthworm Pristina, as well as in the onychophoran Euperipatoides, the centipede Strigamia and the insects Tribolium and Drosophila,asix3/optix+ region likewise demarcates the tip of the developing animal, followed by a more posterior otx/otd+ region. Identification of six3+ head neuroectoderm in Drosophila reveals that this region gives rise to median neurosecretory brain parts, as is also the case in annelids.
    [Show full text]
  • Regulatory Circuit Rewiring and Functional Divergence of the Duplicate Admp Genes in Dorsoventral Axial Patterning
    Developmental Biology 410 (2016) 108–118 Contents lists available at ScienceDirect Developmental Biology journal homepage: www.elsevier.com/locate/developmentalbiology Evolution of Developmental Control Mechanisms Regulatory circuit rewiring and functional divergence of the duplicate admp genes in dorsoventral axial patterning Yi-Cheng Chang a,b, Chih-Yu Pai a, Yi-Chih Chen a, Hsiu-Chi Ting a, Pedro Martinez c,d, Maximilian J. Telford e, Jr-Kai Yu a, Yi-Hsien Su a,b,n a Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan b Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan c Department de Genètica, Universitat de Barcelona, Barcelona, Spain d Institució de Recerca I Estudis Avançats (ICREA), Barcelona, Spain e Department of Genetics, Evolution and Environment, University College London, London, UK article info abstract Article history: The spatially opposed expression of Antidorsalizing morphogenetic protein (Admp) and BMP signals Received 18 December 2015 controls dorsoventral (DV) polarity across Bilateria and hence represents an ancient regulatory circuit. Accepted 18 December 2015 Here, we show that in addition to the conserved admp1 that constitutes the ancient circuit, a second Available online 21 December 2015 admp gene (admp2) is present in Ambulacraria (EchinodermataþHemichordata) and two marine worms Keywords: belonging to Xenoturbellida and Acoelomorpha. The phylogenetic distribution implies that the two admp BMP genes were duplicated in the Bilaterian common ancestor and admp2 was subsequently lost in chordates Admp and protostomes. We show that the ambulacrarian admp1 and admp2 are under opposite transcriptional Sea urchin control by BMP signals and knockdown of Admps in sea urchins impaired their DV polarity.
    [Show full text]
  • Hemichordate Phylogeny: a Molecular, and Genomic Approach By
    Hemichordate Phylogeny: A molecular, and genomic approach by Johanna Taylor Cannon A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama May 4, 2014 Keywords: phylogeny, evolution, Hemichordata, bioinformatics, invertebrates Copyright 2014 by Johanna Taylor Cannon Approved by Kenneth M. Halanych, Chair, Professor of Biological Sciences Jason Bond, Associate Professor of Biological Sciences Leslie Goertzen, Associate Professor of Biological Sciences Scott Santos, Associate Professor of Biological Sciences Abstract The phylogenetic relationships within Hemichordata are significant for understanding the evolution of the deuterostomes. Hemichordates possess several important morphological structures in common with chordates, and they have been fixtures in hypotheses on chordate origins for over 100 years. However, current evidence points to a sister relationship between echinoderms and hemichordates, indicating that these chordate-like features were likely present in the last common ancestor of these groups. Therefore, Hemichordata should be highly informative for studying deuterostome character evolution. Despite their importance for understanding the evolution of chordate-like morphological and developmental features, relationships within hemichordates have been poorly studied. At present, Hemichordata is divided into two classes, the solitary, free-living enteropneust worms, and the colonial, tube- dwelling Pterobranchia. The objective of this dissertation is to elucidate the evolutionary relationships of Hemichordata using multiple datasets. Chapter 1 provides an introduction to Hemichordata and outlines the objectives for the dissertation research. Chapter 2 presents a molecular phylogeny of hemichordates based on nuclear ribosomal 18S rDNA and two mitochondrial genes. In this chapter, we suggest that deep-sea family Saxipendiidae is nested within Harrimaniidae, and Torquaratoridae is affiliated with Ptychoderidae.
    [Show full text]
  • A Transcriptional Blueprint for a Spiral-Cleaving Embryo Hsien-Chao Chou1,2, Margaret M
    Chou et al. BMC Genomics (2016) 17:552 DOI 10.1186/s12864-016-2860-6 RESEARCH ARTICLE Open Access A transcriptional blueprint for a spiral-cleaving embryo Hsien-Chao Chou1,2, Margaret M. Pruitt1,3, Benjamin R. Bastin1 and Stephan Q. Schneider1* Abstract Background: The spiral cleavage mode of early development is utilized in over one-third of all animal phyla and generates embryonic cells of different size, position, and fate through a conserved set of stereotypic and invariant asymmetric cell divisions. Despite the widespread use of spiral cleavage, regulatory and molecular features for any spiral-cleaving embryo are largely uncharted. To addressthisgapweuseRNA-sequencingonthespiralian model Platynereis dumerilii to capture and quantify the first complete genome-wide transcriptional landscape of early spiral cleavage. Results: RNA-sequencing datasets from seven stages in early Platynereis development, from the zygote to the protrochophore, are described here including the de novo assembly and annotation of ~17,200 Platynereis genes. Depth and quality of the RNA-sequencing datasets allow the identification of the temporal onset and level of transcription for each annotated gene, even if the expression is restricted to a single cell. Over 4000 transcripts are maternally contributed and cleared by the end of the early spiral cleavage phase. Small early waves of zygotic expression are followed by major waves of thousands of genes, demarcating the maternal to zygotic transition shortly after the completion of spiral cleavages in this annelid species. Conclusions: Our comprehensive stage-specific transcriptional analysis of early embryonic stages in Platynereis elucidates the regulatory genome during early spiral embryogenesis and defines the maternal to zygotic transition in Platynereis embryos.
    [Show full text]