Parasites Found in Feces Internal Parasites of Dogs and Cats

Total Page:16

File Type:pdf, Size:1020Kb

Parasites Found in Feces Internal Parasites of Dogs and Cats PARASITES FOUND IN FECES INTERNAL PARASITES OF DOGS AND CATS Parasites of the GASTROINTESTINAL TRACT – NEMATODES SCALE Ancylostoma caninum Ancylostoma caninum 16 Egg of A. caninum Anterior end of adult A. caninum. Note the three pairs of ventral teeth. 41806_11_30.indd 16 12/12/09 12:14:01 AM Parasites of the GASTROINTESTINAL TRACT – NEMATODES SCALE Ancylostoma tubaeforme 17 Egg of A. tubaeforme INTERNAL PARASITES OF DOGS AND CATS 41806_11_30.indd 17 12/12/09 12:14:01 AM PARASITES FOUND IN FECES INTERNAL PARASITES OF DOGS AND CATS Parasites of the GASTROINTESTINAL TRACT – NEMATODES SCALE Uncinaria stenocephala Uncinaria stenocephala 18 Egg of U. stenocephala Note the differences in size between U. stenocephala (upper right) and A. caninum (lower left). 41806_11_30.indd 18 12/12/09 12:14:01 AM A. caninum C A N I N E HO O K W O R M S1,2 Ancylostoma Uncinaria Ancylostoma caninum stenocephala braziliense rd Ingestion of 3 stage larvae from contaminated environment Larval penetration of the skin Infection Ingestion of other vertebrate hosts with infective larvae in their tissues Transmammary transmission of larvae is an important route of infection for A. caninum Prepatent 14 to 21 days (nursing puppies may shed eggs in 13 to 27 days 13 to 27 days Period 10 to 12 days) Occurrence Common Uncommon (1%)3 Uncommon Warm, coastal 19 Locations Worldwide Colder climates areas (northern US, Canada, Europe) (also sub and tropical Central & South America & Caribbean Very pathogenic: Cutaneous larva Pathogenic Rarely pathogenic anemia migrans Blood per adult female: ~40ȝl; worm per 0.3ȝl 1 to 2ȝl day adult male: ~13ȝl 1 pair of large; Mouthparts 3 pairs of teeth cutting plates 1 pair of small 1 www.capcvet.org 2 Bowman, DD. Hookworm Parasites of Dogs and Cats. Compend Contin Educ #2. Vol 14, No. 5, May 1992 3 Prevalence of Canine Parasites Based on Fecal Flotation. Blagburn BL et al. Compend Contin Educ Pract Vet 18: 483-509, 1996 INTERNAL PARASITES OF DOGS AND CATS 41806_11_30.indd 19 12/12/09 12:14:02 AM PARASITES FOUND IN FECES INTERNAL PARASITES OF DOGS AND CATS Parasites of the GASTROINTESTINAL TRACT – NEMATODES SCALE Physaloptera spp. 20 Embryonated eggs of Physaloptera spp. (stomach worm) 41806_11_30.indd 20 12/12/09 12:14:03 AM Parasites of the GASTROINTESTINAL TRACT – NEMATODES SCALE 123 1: T. canis 2: T. leonina Toxascaris leonina Toxocara canis Toxocara cati 3: T. cati 21 Egg of T. leonina Egg of T. canis Egg of T. cati Note the size is about 10 percent smaller than the T. canis egg. INTERNAL PARASITES OF DOGS AND CATS 41806_11_30.indd 21 12/12/09 12:14:04 AM PARASITES FOUND IN FECES INTERNAL PARASITES OF DOGS AND CATS Parasites of the GASTROINTESTINAL TRACT – NEMATODES SCALE 12 1: B. procyonis Baylisascaris procyonis Toxocara canis 2: T. canis Note the similarities. Differentiation can be made based on size and color, as the egg of B. procyonis is roughly three-quarters the size of T. canis and typically appears darker. 22 Egg of B. procyonis Egg of T. canis 41806_11_30.indd 22 12/12/09 12:14:05 AM Parasites of the GASTROINTESTINAL TRACT – NEMATODES SCALE Trichuris vulpis Trichuris vulpis 23 Egg of T. vulpis Adults of T. vulpis Note how the whip-like anterior ends are laced through the mucosa. INTERNAL PARASITES OF DOGS AND CATS 41806_11_30.indd 23 12/12/09 12:14:06 AM.
Recommended publications
  • The Functional Parasitic Worm Secretome: Mapping the Place of Onchocerca Volvulus Excretory Secretory Products
    pathogens Review The Functional Parasitic Worm Secretome: Mapping the Place of Onchocerca volvulus Excretory Secretory Products Luc Vanhamme 1,*, Jacob Souopgui 1 , Stephen Ghogomu 2 and Ferdinand Ngale Njume 1,2 1 Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; [email protected] (J.S.); [email protected] (F.N.N.) 2 Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea P.O Box 63, Cameroon; [email protected] * Correspondence: [email protected] Received: 28 October 2020; Accepted: 18 November 2020; Published: 23 November 2020 Abstract: Nematodes constitute a very successful phylum, especially in terms of parasitism. Inside their mammalian hosts, parasitic nematodes mainly dwell in the digestive tract (geohelminths) or in the vascular system (filariae). One of their main characteristics is their long sojourn inside the body where they are accessible to the immune system. Several strategies are used by parasites in order to counteract the immune attacks. One of them is the expression of molecules interfering with the function of the immune system. Excretory-secretory products (ESPs) pertain to this category. This is, however, not their only biological function, as they seem also involved in other mechanisms such as pathogenicity or parasitic cycle (molting, for example). Wewill mainly focus on filariae ESPs with an emphasis on data available regarding Onchocerca volvulus, but we will also refer to a few relevant/illustrative examples related to other worm categories when necessary (geohelminth nematodes, trematodes or cestodes).
    [Show full text]
  • Combination Anthelmintic Treatment for Persistent Ancylostoma Caninum Ova Shedding in Greyhounds
    CASE SERIES Combination Anthelmintic Treatment for Persistent Ancylostoma caninum Ova Shedding in Greyhounds Lindie B. Hess, BS, Laurie M. Millward, DVM, Adam Rudinsky DVM, Emily Vincent, BS, Antoinette Marsh, PhD ABSTRACT Ancylostoma caninum is a nematode of the canine gastrointestinal tract commonly referred to as hookworm. This study involved eight privately owned adult greyhounds presenting with persistent A. caninum ova shedding despite previous deworming treatments. The dogs received a combination treatment protocol comprising topical moxidectin, followed by pyrantel/febantel/praziquantel within 24 hr. At 7–10 days posttreatment, a fecal examination monitored for parasite ova. Dogs remained on the monthly combination treatment protocol until they ceased shedding detectable ova. The dogs then received only the monthly topical moxidectin maintenance treatment. The dogs remained in the study for 5–14 mo with periodical fecal examinations performed. During the study, three dogs reverted to positive fecal ova status, with two being associated with client noncompliance. Reinstitution of the combination treatment protocol resulted in no detectable ova. Use of monthly doses of combination pyrantel, febantel and moxidectin appears to be an effective treatment for nonresponsive or persistent A. caninum ova shedding. Follow-up fecal examinations were important for verifying the presence or absence of ova shedding despite the use of anthelmintic treatment. Limitations of the current study include small sample size, inclusion of only privately owned greyhounds, and client compliance with fecal collection and animal care. (JAmAnimHospAssoc2019; 55:---–---. DOI 10.5326/ JAAHA-MS-6904) Introduction include the following: moxidectina,b, milbemycin oximec, fenben- Ancylostoma caninum is a nematode of the canine gastrointestinal dazoled, and/or pyrantel-containing productse,f.
    [Show full text]
  • Agent for Expelling Parasites in Humans, Animals Or Birds
    (19) TZZ Z_T (11) EP 2 496 089 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A01N 65/00 (2009.01) A01N 65/10 (2009.01) 22.02.2017 Bulletin 2017/08 A61K 36/23 (2006.01) A01P 5/00 (2006.01) (21) Application number: 10803029.7 (86) International application number: PCT/BE2010/000077 (22) Date of filing: 05.11.2010 (87) International publication number: WO 2011/054066 (12.05.2011 Gazette 2011/19) (54) AGENT FOR EXPELLING PARASITES IN HUMANS, ANIMALS OR BIRDS MITTEL ZUR ABWEISUNG VON PARASITEN BEI MENSCHEN, TIEREN ODER VÖGELN AGENT POUR EXPULSER DES PARASITES CHEZ DES HUMAINS, DES ANIMAUX OU DES OISEAUX (84) Designated Contracting States: (56) References cited: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • RAMADAN NASHWA I ET AL: "The in vitro effect GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO of assafoetida on Trichomonas vaginalis", PL PT RO RS SE SI SK SM TR JOURNAL OF THE EGYPTIAN SOCIETY OF PARASITOLOGY, EGYPTIAN SOCIETY OF (30) Priority: 06.11.2009 BE 200900689 PARAS1TOLOGY, CAIRO, EG, vol. 33, no. 2, 1 August 2003 (2003-08-01) , pages 615-630, (43) Date of publication of application: XP009136264, ISSN: 1110-0583 12.09.2012 Bulletin 2012/37 • DATABASE MEDLINE [Online] US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, (73) Proprietors: US; December 2004 (2004-12), RAMADAN • MEIJS, Maria Wilhelmina NASHWA I ET AL: "Effect of Ferula assafoetida 4852 Hombourg (BE) on experimental murine Schistosoma mansoni • VAESSEN, Jan Jozef infection.", XP002592455, Database accession 4852 Hombourg (BE) no.
    [Show full text]
  • Lecture 5: Emerging Parasitic Helminths Part 2: Tissue Nematodes
    Readings-Nematodes • Ch. 11 (pp. 290, 291-93, 295 [box 11.1], 304 [box 11.2]) • Lecture 5: Emerging Parasitic Ch.14 (p. 375, 367 [table 14.1]) Helminths part 2: Tissue Nematodes Matt Tucker, M.S., MSPH [email protected] HSC4933 Emerging Infectious Diseases HSC4933. Emerging Infectious Diseases 2 Monsters Inside Me Learning Objectives • Toxocariasis, larva migrans (Toxocara canis, dog hookworm): • Understand how visceral larval migrans, cutaneous larval migrans, and ocular larval migrans can occur Background: • Know basic attributes of tissue nematodes and be able to distinguish http://animal.discovery.com/invertebrates/monsters-inside- these nematodes from each other and also from other types of me/toxocariasis-toxocara-roundworm/ nematodes • Understand life cycles of tissue nematodes, noting similarities and Videos: http://animal.discovery.com/videos/monsters-inside- significant difference me-toxocariasis.html • Know infective stages, various hosts involved in a particular cycle • Be familiar with diagnostic criteria, epidemiology, pathogenicity, http://animal.discovery.com/videos/monsters-inside-me- &treatment toxocara-parasite.html • Identify locations in world where certain parasites exist • Note drugs (always available) that are used to treat parasites • Describe factors of tissue nematodes that can make them emerging infectious diseases • Be familiar with Dracunculiasis and status of eradication HSC4933. Emerging Infectious Diseases 3 HSC4933. Emerging Infectious Diseases 4 Lecture 5: On the Menu Problems with other hookworms • Cutaneous larva migrans or Visceral Tissue Nematodes larva migrans • Hookworms of other animals • Cutaneous Larva Migrans frequently fail to penetrate the human dermis (and beyond). • Visceral Larva Migrans – Ancylostoma braziliense (most common- in Gulf Coast and tropics), • Gnathostoma spp. Ancylostoma caninum, Ancylostoma “creeping eruption” ceylanicum, • Trichinella spiralis • They migrate through the epidermis leaving typical tracks • Dracunculus medinensis • Eosinophilic enteritis-emerging problem in Australia HSC4933.
    [Show full text]
  • Visceral and Cutaneous Larva Migrans PAUL C
    Visceral and Cutaneous Larva Migrans PAUL C. BEAVER, Ph.D. AMONG ANIMALS in general there is a In the development of our concepts of larva II. wide variety of parasitic infections in migrans there have been four major steps. The which larval stages migrate through and some¬ first, of course, was the discovery by Kirby- times later reside in the tissues of the host with¬ Smith and his associates some 30 years ago of out developing into fully mature adults. When nematode larvae in the skin of patients with such parasites are found in human hosts, the creeping eruption in Jacksonville, Fla. (6). infection may be referred to as larva migrans This was followed immediately by experi¬ although definition of this term is becoming mental proof by numerous workers that the increasingly difficult. The organisms impli¬ larvae of A. braziliense readily penetrate the cated in infections of this type include certain human skin and produce severe, typical creep¬ species of arthropods, flatworms, and nema¬ ing eruption. todes, but more especially the nematodes. From a practical point of view these demon¬ As generally used, the term larva migrans strations were perhaps too conclusive in that refers particularly to the migration of dog and they encouraged the impression that A. brazil¬ cat hookworm larvae in the human skin (cu¬ iense was the only cause of creeping eruption, taneous larva migrans or creeping eruption) and detracted from equally conclusive demon¬ and the migration of dog and cat ascarids in strations that other species of nematode larvae the viscera (visceral larva migrans). In a still have the ability to produce similarly the pro¬ more restricted sense, the terms cutaneous larva gressive linear lesions characteristic of creep¬ migrans and visceral larva migrans are some¬ ing eruption.
    [Show full text]
  • Epidemiology of Angiostrongylus Cantonensis and Eosinophilic Meningitis
    Epidemiology of Angiostrongylus cantonensis and eosinophilic meningitis in the People’s Republic of China INAUGURALDISSERTATION zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Shan Lv aus Xinyang, der Volksrepublik China Basel, 2011 Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakult¨at auf Antrag von Prof. Dr. Jürg Utzinger, Prof. Dr. Peter Deplazes, Prof. Dr. Xiao-Nong Zhou, und Dr. Peter Steinmann Basel, den 21. Juni 2011 Prof. Dr. Martin Spiess Dekan der Philosophisch- Naturwissenschaftlichen Fakultät To my family Table of contents Table of contents Acknowledgements 1 Summary 5 Zusammenfassung 9 Figure index 13 Table index 15 1. Introduction 17 1.1. Life cycle of Angiostrongylus cantonensis 17 1.2. Angiostrongyliasis and eosinophilic meningitis 19 1.2.1. Clinical manifestation 19 1.2.2. Diagnosis 20 1.2.3. Treatment and clinical management 22 1.3. Global distribution and epidemiology 22 1.3.1. The origin 22 1.3.2. Global spread with emphasis on human activities 23 1.3.3. The epidemiology of angiostrongyliasis 26 1.4. Epidemiology of angiostrongyliasis in P.R. China 28 1.4.1. Emerging angiostrongyliasis with particular consideration to outbreaks and exotic snail species 28 1.4.2. Known endemic areas and host species 29 1.4.3. Risk factors associated with culture and socioeconomics 33 1.4.4. Research and control priorities 35 1.5. References 37 2. Goal and objectives 47 2.1. Goal 47 2.2. Objectives 47 I Table of contents 3. Human angiostrongyliasis outbreak in Dali, China 49 3.1. Abstract 50 3.2.
    [Show full text]
  • Small Animal Intestinal Parasites
    Small Animal Intestinal Parasites Parasite infections are commonly encountered in veterinary medicine and are often a source of zoonotic disease. Zoonosis is transmission of a disease from an animal to a human. This PowerPage covers the most commonly encountered parasites in small animal medicine and discusses treatments for these parasites. It includes mostly small intestinal parasites but also covers Trematodes, which are more common in large animals. Nematodes Diagnosed via a fecal flotation with zinc centrifugation (gold standard) Roundworms: • Most common roundworm in dogs and cats is Toxocara canis • Causes the zoonotic disease Ocular Larval Migrans • Treated with piperazine, pyrantel, or fenbendazole • Fecal-oral, trans-placental infection most common • Live in the small intestine Hookworms: • Most common species are Ancylostoma caninum and Uncinaria stenocephala • Causes the zoonotic disease Cutaneous Larval Migrans, which occurs via skin penetration (often seen in children who have been barefoot in larval-infected dirt); in percutaneous infection, the larvae migrate through the skin to the lung where they molt and are swallowed and passed into the small intestine • Treated with fenbendazole, pyrantel • Can cause hemorrhagic severe anemia (especially in young puppies) • Fecal-oral, transmammary (common in puppies), percutaneous infections Whipworms: • Trichuris vulpis is the whipworm • Fecal-oral transmission • Severe infection may lead to hyperkalemia and hyponatremia (similar to what is seen in Addison’s cases) • Trichuris vulpis is the whipworm • Large intestinal parasite • Eggs have bipolar plugs on the ends • Treated with fenbendazole, may be prevented with Interceptor (milbemycin) Cestodes Tapeworms: • Dipylidium caninum is the most common tapeworm in dogs and cats and requires a flea as the intermediate host; the flea is usually inadvertently swallowed during grooming • Echinococcus granulosus and Taenia spp.
    [Show full text]
  • Hookworm-Related Cutaneous Larva Migrans
    326 Hookworm-Related Cutaneous Larva Migrans Patrick Hochedez , MD , and Eric Caumes , MD Département des Maladies Infectieuses et Tropicales, Hôpital Pitié-Salpêtrière, Paris, France DOI: 10.1111/j.1708-8305.2007.00148.x Downloaded from https://academic.oup.com/jtm/article/14/5/326/1808671 by guest on 27 September 2021 utaneous larva migrans (CLM) is the most fre- Risk factors for developing HrCLM have specifi - Cquent travel-associated skin disease of tropical cally been investigated in one outbreak in Canadian origin. 1,2 This dermatosis fi rst described as CLM by tourists: less frequent use of protective footwear Lee in 1874 was later attributed to the subcutane- while walking on the beach was signifi cantly associ- ous migration of Ancylostoma larvae by White and ated with a higher risk of developing the disease, Dove in 1929. 3,4 Since then, this skin disease has also with a risk ratio of 4. Moreover, affected patients been called creeping eruption, creeping verminous were somewhat younger than unaffected travelers dermatitis, sand worm eruption, or plumber ’ s itch, (36.9 vs 41.2 yr, p = 0.014). There was no correla- which adds to the confusion. It has been suggested tion between the reported amount of time spent on to name this disease hookworm-related cutaneous the beach and the risk of developing CLM. Consid- larva migrans (HrCLM).5 ering animals in the neighborhood, 90% of the Although frequent, this tropical dermatosis is travelers in that study reported seeing cats on the not suffi ciently well known by Western physicians, beach and around the hotel area, and only 1.5% and this can delay diagnosis and effective treatment.
    [Show full text]
  • Endoparasites of Arctic Wolves in Greenland ULF MARQUARD-PETERSEN1
    ARCTIC VOL. 50, NO. 4 (DECEMBER 1997) P. 349– 354 Endoparasites of Arctic Wolves in Greenland ULF MARQUARD-PETERSEN1 (Received 20 February 1997; accepted in revised form 12 August 1997) ABSTRACT. Fecal flotation was used to evaluate the presence of intestinal parasites in 423 wolf feces from Nansen Land, North Greenland (82˚55'N, 41˚30'W) and Hold with Hope, East Greenland (73˚40'N, 21˚00'W), collected from 1991 to 1993. The species diversity of the endoparasitic fauna of wolves at this high latitude was depauperate relative to that at lower latitudes. Eggs and larvae of intestinal parasites were recorded in 60 feces (14%): Nematoda (roundworms) in 11%; Cestoda (flatworms of the family Taeniidae) in 3%. Four genera were recorded: Toxascaris, Uncinaria, Capillaria, and Nematodirus. Eggs of taeniids were not identifiable to genus, but likely represented Echinococcus granulosus and Taenia hydatigena. The high prevalence of nematode larvae may be a consequence of free-living species’ invading the feces. The occurrence of taeniids likely reflects the reliance of wolves on muskoxen for primary prey. This is the first quantitative study of the endoparasites of wolves in the High Arctic. Key words: arctic wolves, endoparasites, Greenland, helminths, High Arctic, muskoxen RÉSUMÉ. On a utilisé la flottation coproscopique afin d’évaluer la présence de parasites intestinaux dans 423 excréments de loups prélevés de 1991 à 1993 à Nansen Land dans le Groenland septentrional (82˚55'de latit. N., 41˚30' de latit. O.) et à Hold with Hope dans le Groenland oriental (73˚40' de latit. N, 21˚00' de latit.
    [Show full text]
  • The Prevalence of Endoparasites of Free Ranging Cats (Felis Catus) from Urban Habitats in Southern Poland
    animals Article The Prevalence of Endoparasites of Free Ranging Cats (Felis catus) from Urban Habitats in Southern Poland Izabela A. Wierzbowska 1 , Sławomir Korna´s 2, Aleksandra M. Piontek 1,* and Kaja Rola 3 1 Institute of Environmental Sciences, Faculty of Biology of Jagiellonian University, 7 Gronostajowa Str., 30-387 Kraków, Poland; [email protected] 2 Faculty of Animal Breeding and Biology, University of Agriculture in Kraków, 24/28 Mickiewicza Av., 30-059 Kraków, Poland; [email protected] 3 Institute of Botany, Faculty of Biology of Jagiellonian University, 3 Gronostajowa str., 30-387 Kraków, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-012-664-5157 Received: 29 March 2020; Accepted: 21 April 2020; Published: 24 April 2020 Simple Summary: Free ranging domestic cats are common in urban and suburban habitats and may cause a threat of disease transmission to other pets, wildlife and humans. We investigated the occurrence of endoparasites in cats in Kraków city, Southern Poland, based on examination of road-killed individuals. More than half of the cats were infected with at least one of seven identified parasites. Cats from suburban areas were more likely to be infected than cats from the city core. Our study supports the results from other studies, showing that cats may serve as a significant source of zoonotic transmission. Abstract: Growing urbanization leads to an increased risk of parasite spread in densely inhabited areas. Free-ranging cats can be locally numerous and come into frequent contact with both wildlife and humans. Cats are thus expected to contribute to parasitic disease transmission.
    [Show full text]
  • Canine Worm Educational Manual
    ALL YOU EVER NEEDED TO KNOW ABOUT WORMS! By Dr. Jonathan Smith, VMD Identifying, Preventing & Treating the Most Common Parasites in Dogs & Cats General Themes: • Always wash your hands! • Always clean up poop immediately! • Sanitation and clean environments for puppies and kittens. • Follow treatment (de-worming) protocols and routine fecal testing. • Always wash your hands! Public Health Concerns: • Many of the common intestinal parasites of dogs and cats can easily be spread to people. Children are especially prone to acquiring these parasites because they tend to spend more time with their hands in their mouths. Many can cause gastrointestinal problems; others can migrate through the skin and organs of people. • It important to be aware of the possible human health implications of our pets, and always do as much as possible to prevent infestations of our animals and our environment. Prevention Treatment, and Control Guidelines: • Importance of guidance by veterinarians for diagnosis and treatment: o Puppies and kittens: § Deworming at 2, 4, 6, 8 weeks of age then placed on a monthly heartworm preventative § Fecal testing 2-4 times in the first year of life o Adult dogs and cats: § Monthly heartworm preventative § Fecal testing every 6-12 months. • Testing: o Fecal flotation: Feces is placed within a solution and either allowed to sit for a period of time or spun down via centrifuge. Eggs will float to the top and can be evaluated on a slide. Most intestinal parasites including hookworms, roundworms and coccidia are diagnosed this way. o Giardia is difficult to diagnose, and a direct smear for cysts or an ELISA test may be required.
    [Show full text]
  • 1 on a Dead Female Hookworm, Probably Ancylostoma Tubaeforme
    1 http://doi.org/10.4038/cjms.v43i2.4871 On a dead female hookworm, probably Ancylostoma tubaeforme, from the vitreous of a patient in Sri Lanka A. S. Dissanaike1, R. L. Ihalamulla2, Daya de Silva3, Saliya Pathirana4, Udaya Weerakoon3, M. S. Amaratunga3 and T. de S. Naotunna2'. The Ceylon Journal of Medical Science 2000; 43:25-30 Summary Case Report A portion of a female hookworm identified as a In January 2000, a 46 year old man from Panadura, species of Ancylostoma was recovered from the in the Western Province of Sri Lanka, presented vitreous of a patient in Sri Lanka. The worm was to the Eye Hospital, Colombo with a history of dead with a cellular tissue reaction around the floaters of two months duration and gradually anterior part of the body. The internal structure deteriorating vision for one month. His right eye of the worm, which was severed at the anterior vision was positive only for perception of light, end, was not clearly discernible but the charac­ and his left eye vision was 6/6. teristic mucron at the tip of the tail confirmed that it is an Ancylostoma sp. In the absence of the mouth end it is not possible to clearly identify it to the On examination the right eye showed signs of species, but it is believed to be A tubaeforme based panuveitis with redness and ciliary injection with on its width, short tail, thicker cuticle, and the keraric precipitates, inflammatory cells in the an­ space between transverse striations. terior chamber, posterior synechiae with a small pupil and many inflammatory cells and opacities The probable mode of infection of the patient is in the vitreous.
    [Show full text]