Common Variants in Alzheimer's Disease
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Functional Screening of Alzheimer Risk Loci Identifies PTK2B
OPEN Molecular Psychiatry (2017) 22, 874–883 www.nature.com/mp ORIGINAL ARTICLE Functional screening of Alzheimer risk loci identifies PTK2B as an in vivo modulator and early marker of Tau pathology P Dourlen1,2,3, FJ Fernandez-Gomez4,5,6, C Dupont1,2,3, B Grenier-Boley1,2,3, C Bellenguez1,2,3, H Obriot4,5,6, R Caillierez4,5,6, Y Sottejeau1,2,3, J Chapuis1,2,3, A Bretteville1,2,3, F Abdelfettah1,2,3, C Delay1,2,3, N Malmanche1,2,3, H Soininen7, M Hiltunen7,8, M-C Galas4,5,6, P Amouyel1,2,3,9, N Sergeant4,5,6, L Buée4,5,6, J-C Lambert1,2,3,11 and B Dermaut1,2,3,10,11 A recent genome-wide association meta-analysis for Alzheimer’s disease (AD) identified 19 risk loci (in addition to APOE) in which the functional genes are unknown. Using Drosophila, we screened 296 constructs targeting orthologs of 54 candidate risk genes within these loci for their ability to modify Tau neurotoxicity by quantifying the size of 46000 eyes. Besides Drosophila Amph (ortholog of BIN1), which we previously implicated in Tau pathology, we identified p130CAS (CASS4), Eph (EPHA1), Fak (PTK2B) and Rab3-GEF (MADD) as Tau toxicity modulators. Of these, the focal adhesion kinase Fak behaved as a strong Tau toxicity suppressor in both the eye and an independent focal adhesion-related wing blister assay. Accordingly, the human Tau and PTK2B proteins biochemically interacted in vitro and PTK2B co-localized with hyperphosphorylated and oligomeric Tau in progressive pathological stages in the brains of AD patients and transgenic Tau mice. -
4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4). -
PILRA Antibody Cat
PILRA Antibody Cat. No.: 30-252 PILRA Antibody Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human Antibody produced in rabbits immunized with a synthetic peptide corresponding a region IMMUNOGEN: of human PILRA. TESTED APPLICATIONS: ELISA, WB PILRA antibody can be used for detection of PILRA by ELISA at 1:1562500. PILRA antibody APPLICATIONS: can be used for detection of PILRA by western blot at 0.5 μg/mL, and HRP conjugated secondary antibody should be diluted 1:50,000 - 100,000. POSITIVE CONTROL: 1) Cat. No. 1211 - HepG2 Cell Lysate PREDICTED MOLECULAR 18 kDa WEIGHT: Properties PURIFICATION: Antibody is purified by peptide affinity chromatography method. CLONALITY: Polyclonal CONJUGATE: Unconjugated PHYSICAL STATE: Liquid September 25, 2021 1 https://www.prosci-inc.com/pilra-antibody-30-252.html Purified antibody supplied in 1x PBS buffer with 0.09% (w/v) sodium azide and 2% BUFFER: sucrose. CONCENTRATION: batch dependent For short periods of storage (days) store at 4˚C. For longer periods of storage, store PILRA STORAGE CONDITIONS: antibody at -20˚C. As with any antibody avoid repeat freeze-thaw cycles. Additional Info OFFICIAL SYMBOL: PILRA ALTERNATE NAMES: PILRA, FDF03 ACCESSION NO.: NP_840057 PROTEIN GI NO.: 30179907 GENE ID: 29992 USER NOTE: Optimal dilutions for each application to be determined by the researcher. Background and References Cell signaling pathways rely on a dynamic interaction between activating and inhibiting processes. SHP-1-mediated dephosphorylation of protein tyrosine residues is central to the regulation of several cell signaling pathways. Two types of inhibitory receptor superfamily members are immunoreceptor tyrosine-based inhibitory motif (ITIM)-bearing receptors and their non-ITIM-bearing, activating counterparts. -
Mouse Cass4 Knockout Project (CRISPR/Cas9)
https://www.alphaknockout.com Mouse Cass4 Knockout Project (CRISPR/Cas9) Objective: To create a Cass4 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Cass4 gene (NCBI Reference Sequence: NM_001080820 ; Ensembl: ENSMUSG00000074570 ) is located on Mouse chromosome 2. 7 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 7 (Transcript: ENSMUST00000109136). Exon 2 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 2 starts from about 1.53% of the coding region. Exon 2 covers 17.54% of the coding region. The size of effective KO region: ~337 bp. The KO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 7 Legends Exon of mouse Cass4 Knockout region Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 423 bp section of Exon 2 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 423 bp section of Exon 2 is aligned with itself to determine if there are tandem repeats. -
Blood Flow Guides Sequential Support of Neutrophil Arrest and Diapedesis
RESEARCH ARTICLE Blood flow guides sequential support of neutrophil arrest and diapedesis by PILR-b 1 and PILR-a Yu-Tung Li, Debashree Goswami†, Melissa Follmer, Annette Artz, Mariana Pacheco-Blanco, Dietmar Vestweber* Vascular Cell Biology, Max Planck Institute of Molecular Biomedicine, Mu¨ nster, Germany Abstract Arrest of rapidly flowing neutrophils in venules relies on capturing through selectins and chemokine-induced integrin activation. Despite a long-established concept, we show here that gene inactivation of activating paired immunoglobulin-like receptor (PILR)-b1 nearly halved the efficiency of neutrophil arrest in venules of the mouse cremaster muscle. We found that this receptor binds to CD99, an interaction which relies on flow-induced shear forces and boosts chemokine-induced b2-integrin-activation, leading to neutrophil attachment to endothelium. Upon arrest, binding of PILR-b1 to CD99 ceases, shifting the signaling balance towards inhibitory PILR-a. This enables integrin deactivation and supports cell migration. Thus, flow-driven shear forces guide sequential signaling of first activating PILR-b1 followed by inhibitory PILR-a to prompt neutrophil arrest and then transmigration. This doubles the efficiency of selectin-chemokine driven neutrophil arrest by PILR-b1 and then supports transition to migration by PILR-a. DOI: https://doi.org/10.7554/eLife.47642.001 *For correspondence: [email protected] Present address: †Center for Global Infectious Disease Introduction Research, Seattle Childrens Host defense against pathogens depends on the recruitment of leukocytes to sites of infections Research Institute, Seattle, (Ley et al., 2007). Selectins capture leukocytes to the endothelial cell surface by binding to glyco- United States conjugates (McEver, 2015). -
Epistatic Interactions of Genetic Loci Associated with Age-Related
www.nature.com/scientificreports OPEN Epistatic interactions of genetic loci associated with age‑related macular degeneration Christina Kiel1,3, Christoph A. Nebauer1,3, Tobias Strunz1,3, Simon Stelzl1 & Bernhard H. F. Weber 1,2* The currently largest genome‑wide association study (GWAS) for age‑related macular degeneration (AMD) defnes disease association with genome‑wide signifcance for 52 independent common and rare genetic variants across 34 chromosomal loci. Overall, these loci contain over 7200 variants and are enriched for genes with functions indicating several shared cellular processes. Still, the precise mechanisms leading to AMD pathology are largely unknown. Here, we exploit the phenomenon of epistatic interaction to identify seemingly independent AMD‑associated variants that reveal joint efects on gene expression. We focus on genetic variants associated with lipid metabolism, organization of extracellular structures, and innate immunity, specifcally the complement cascade. Multiple combinations of independent variants were used to generate genetic risk scores allowing gene expression in liver to be compared between low and high‑risk AMD. We identifed genetic variant combinations correlating signifcantly with expression of 26 genes, of which 19 have not been associated with AMD before. This study defnes novel targets and allows prioritizing further functional work into AMD pathobiology. A frst successful genome-wide association study (GWAS) was reported in 2005 and identifed with genome- wide signifcance genetic variants at the CFH locus associated with age-related macular degeneration (AMD), a complex disease which is a frequent cause of progressive vision loss in the elderly population 1. Since then, the list of AMD-associated genetic variation has grown exponentially, presently bringing the total to 52 independent common and rare variants across 34 chromosomal loci2. -
Alzheimer Risk Loci and Associated Neuropathology in a Population-Based Study (Vantaa 85+)
ARTICLE OPEN ACCESS Alzheimer risk loci and associated neuropathology in a population-based study (Vantaa 85+) Mira M¨akel¨a, MD,* Karri Kaivola, BM,* Miko Valori, MSc, Anders Paetau, MD, PhD, Tuomo Polvikoski, MD, PhD, Correspondence Andrew B. Singleton, PhD, Bryan J. Traynor, MD, PhD, David J. Stone, PhD, Terhi Peuralinna, PhD, Dr. Myllykangas [email protected] Pentti J. Tienari, MD, PhD, Maarit Tanskanen, MD, PhD, and Liisa Myllykangas, MD, PhD Neurol Genet 02 2018 vol. 4 no. 1 e211. doi:10.1212/NXG.0000000000000211 Abstract Objective To test the association of distinct neuropathologic features of Alzheimer disease (AD) with risk loci identified in genome-wide association studies. Methods Vantaa 85+ is a population-based study that includes 601 participants aged ≥85 years, of which 256 were neuropathologically examined. We analyzed 29 AD risk loci in addition to APOE e4, which was studied separately and used as a covariate. Genotyping was performed using a single nucleotide polymorphism (SNP) array (341 variants) and imputation (6,038 variants). Par- ticipants with Consortium to Establish a Registry for Alzheimer Disease (CERAD) (neuritic Aβ plaques) scores 0 (n = 65) vs score M + F (n = 171) and Braak (neurofibrillary tangle pathology) stages 0–II (n = 74) vs stages IV–VI (n = 119), and with capillary Aβ (CapAβ, n = 77) vs without (n = 179) were compared. Cerebral amyloid angiopathy (CAA) percentage was analyzed as a continuous variable. Results Altogether, 24 of the 29 loci were associated (at p < 0.05) with one or more AD-related neuropathologic features in either SNP array or imputation data. -
Functional Screening of Alzheimer Risk Loci Identifies PTK2B As An
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Ghent University AcademicOPEN Bibliography Molecular Psychiatry (2017) 22, 874–883 www.nature.com/mp ORIGINAL ARTICLE Functional screening of Alzheimer risk loci identifies PTK2B as an in vivo modulator and early marker of Tau pathology P Dourlen1,2,3, FJ Fernandez-Gomez4,5,6, C Dupont1,2,3, B Grenier-Boley1,2,3, C Bellenguez1,2,3, H Obriot4,5,6, R Caillierez4,5,6, Y Sottejeau1,2,3, J Chapuis1,2,3, A Bretteville1,2,3, F Abdelfettah1,2,3, C Delay1,2,3, N Malmanche1,2,3, H Soininen7, M Hiltunen7,8, M-C Galas4,5,6, P Amouyel1,2,3,9, N Sergeant4,5,6, L Buée4,5,6, J-C Lambert1,2,3,11 and B Dermaut1,2,3,10,11 A recent genome-wide association meta-analysis for Alzheimer’s disease (AD) identified 19 risk loci (in addition to APOE) in which the functional genes are unknown. Using Drosophila, we screened 296 constructs targeting orthologs of 54 candidate risk genes within these loci for their ability to modify Tau neurotoxicity by quantifying the size of 46000 eyes. Besides Drosophila Amph (ortholog of BIN1), which we previously implicated in Tau pathology, we identified p130CAS (CASS4), Eph (EPHA1), Fak (PTK2B) and Rab3-GEF (MADD) as Tau toxicity modulators. Of these, the focal adhesion kinase Fak behaved as a strong Tau toxicity suppressor in both the eye and an independent focal adhesion-related wing blister assay. Accordingly, the human Tau and PTK2B proteins biochemically interacted in vitro and PTK2B co-localized with hyperphosphorylated and oligomeric Tau in progressive pathological stages in the brains of AD patients and transgenic Tau mice. -
Distribution of Cellular HSV-1 Receptor Expression in Human Brain
J. Neurovirol. DOI 10.1007/s13365-016-0504-x Distribution of cellular HSV-1 receptor expression in human brain Richard Lathe1 & Juergen G. Haas1 Received: 7 September 2016 /Revised: 23 November 2016 /Accepted: 1 December 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Herpes simplex virus type 1 (HSV-1) is a neuro- hippocampus are likely to underlie the susceptibility of this tropic virus linked to a range of acute and chronic neurological brain region to HSV-1 infection. disorders affecting distinct regions of the brain. Unusually, HSV-1 entry into cells requires the interaction of viral proteins Keywords HSV-1 . Brain . Hippocampus . Virus receptor . glycoprotein D (gD) and glycoprotein B (gB) with distinct Glycoprotein D . Glycoprotein B . MAG . MYH9 . PILRA . cellular receptor proteins. Several different gD and gB recep- PVRL1/nectin 1 . TNFRSF14/HVEM tors have been identified, including TNFRSF14/HVEM and PVRL1/nectin 1 as gD receptors and PILRA, MAG, and MYH9 as gB receptors. We investigated the expression of Introduction these receptor molecules in different areas of the adult and developing human brain using online transcriptome data- Infection with herpes simplex virus type 1 and 2 (HSV-1/2) bases. Whereas all HSV-1 receptors showed distinct expres- causes orofacial, genital, cerebral, and ocular disorders. In sion patterns in different brain areas, the Allan Brain Atlas particular, HSV-1 has been implicated in diverse acute and (ABA) reported increased expression of both gD and gB re- chronic neurological diseases including meningitis, encepha- ceptors in the hippocampus. Specifically, for PVRL1, litis, and epilepsy (Gilden et al. -
Functionalization of Brain Region-Specific Spheroids With
www.nature.com/scientificreports OPEN Functionalization of Brain Region- specifc Spheroids with Isogenic Microglia-like Cells Received: 5 February 2019 Liqing Song1,6, Xuegang Yuan1, Zachary Jones2, Cynthia Vied 3, Yu Miao1, Mark Marzano1, Accepted: 15 July 2019 Thien Hua4, Qing-Xiang Amy Sang4,5, Jingjiao Guan1, Teng Ma1, Yi Zhou2 & Yan Li1,5 Published: xx xx xxxx Current brain spheroids or organoids derived from human induced pluripotent stem cells (hiPSCs) still lack a microglia component, the resident immune cells in the brain. The objective of this study is to engineer brain region-specifc organoids from hiPSCs incorporated with isogenic microglia- like cells in order to enhance immune function. In this study, microglia-like cells were derived from hiPSCs using a simplifed protocol with stage-wise growth factor induction, which expressed several phenotypic markers, including CD11b, IBA-1, CX3CR1, and P2RY12, and phagocytosed micron-size super-paramagnetic iron oxides. The derived cells were able to upregulate pro-infammatory gene (TNF-α) and secrete anti-infammatory cytokines (i.e., VEGF, TGF-β1, and PGE2) when stimulated with amyloid β42 oligomers, lipopolysaccharides, or dexamethasone. The derived isogenic dorsal cortical (higher expression of TBR1 and PAX6) and ventral (higher expression of NKX2.1 and PROX1) spheroids/ organoids displayed action potentials and synaptic activities. Co-culturing the microglia-like cells (MG) with the dorsal (D) or ventral (V) organoids showed diferential migration ability, intracellular Ca2+ signaling, and the response to pro-infammatory stimuli (V-MG group had higher TNF-α and TREM2 expression). Transcriptome analysis exhibited 37 microglia-related genes that were diferentially expressed in MG and D-MG groups. -
Epigenetic Mechanisms Are Involved in the Oncogenic Properties of ZNF518B in Colorectal Cancer
Epigenetic mechanisms are involved in the oncogenic properties of ZNF518B in colorectal cancer Francisco Gimeno-Valiente, Ángela L. Riffo-Campos, Luis Torres, Noelia Tarazona, Valentina Gambardella, Andrés Cervantes, Gerardo López-Rodas, Luis Franco and Josefa Castillo SUPPLEMENTARY METHODS 1. Selection of genomic sequences for ChIP analysis To select the sequences for ChIP analysis in the five putative target genes, namely, PADI3, ZDHHC2, RGS4, EFNA5 and KAT2B, the genomic region corresponding to the gene was downloaded from Ensembl. Then, zoom was applied to see in detail the promoter, enhancers and regulatory sequences. The details for HCT116 cells were then recovered and the target sequences for factor binding examined. Obviously, there are not data for ZNF518B, but special attention was paid to the target sequences of other zinc-finger containing factors. Finally, the regions that may putatively bind ZNF518B were selected and primers defining amplicons spanning such sequences were searched out. Supplementary Figure S3 gives the location of the amplicons used in each gene. 2. Obtaining the raw data and generating the BAM files for in silico analysis of the effects of EHMT2 and EZH2 silencing The data of siEZH2 (SRR6384524), siG9a (SRR6384526) and siNon-target (SRR6384521) in HCT116 cell line, were downloaded from SRA (Bioproject PRJNA422822, https://www.ncbi. nlm.nih.gov/bioproject/), using SRA-tolkit (https://ncbi.github.io/sra-tools/). All data correspond to RNAseq single end. doBasics = TRUE doAll = FALSE $ fastq-dump -I --split-files SRR6384524 Data quality was checked using the software fastqc (https://www.bioinformatics.babraham. ac.uk /projects/fastqc/). The first low quality removing nucleotides were removed using FASTX- Toolkit (http://hannonlab.cshl.edu/fastxtoolkit/). -
Engineered Type 1 Regulatory T Cells Designed for Clinical Use Kill Primary
ARTICLE Acute Myeloid Leukemia Engineered type 1 regulatory T cells designed Ferrata Storti Foundation for clinical use kill primary pediatric acute myeloid leukemia cells Brandon Cieniewicz,1* Molly Javier Uyeda,1,2* Ping (Pauline) Chen,1 Ece Canan Sayitoglu,1 Jeffrey Mao-Hwa Liu,1 Grazia Andolfi,3 Katharine Greenthal,1 Alice Bertaina,1,4 Silvia Gregori,3 Rosa Bacchetta,1,4 Norman James Lacayo,1 Alma-Martina Cepika1,4# and Maria Grazia Roncarolo1,2,4# Haematologica 2021 Volume 106(10):2588-2597 1Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA; 2Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA; 3San Raffaele Telethon Institute for Gene Therapy, Milan, Italy and 4Center for Definitive and Curative Medicine, Stanford School of Medicine, Stanford, CA, USA *BC and MJU contributed equally as co-first authors #AMC and MGR contributed equally as co-senior authors ABSTRACT ype 1 regulatory (Tr1) T cells induced by enforced expression of interleukin-10 (LV-10) are being developed as a novel treatment for Tchemotherapy-resistant myeloid leukemias. In vivo, LV-10 cells do not cause graft-versus-host disease while mediating graft-versus-leukemia effect against adult acute myeloid leukemia (AML). Since pediatric AML (pAML) and adult AML are different on a genetic and epigenetic level, we investigate herein whether LV-10 cells also efficiently kill pAML cells. We show that the majority of primary pAML are killed by LV-10 cells, with different levels of sensitivity to killing. Transcriptionally, pAML sensitive to LV-10 killing expressed a myeloid maturation signature.