PDF Full Text

Total Page:16

File Type:pdf, Size:1020Kb

PDF Full Text From www.bloodjournal.org by guest on October 10, 2018. For personal use only. Regular Article LYMPHOID NEOPLASIA North American ATLL has a distinct mutational and transcriptional profile and responds to epigenetic therapies Urvi A. Shah,1-3 Elaine Y. Chung,2 Orsi Giricz,3 Kith Pradhan,3 Keisuke Kataoka,4 Shanisha Gordon-Mitchell,3 Tushar D. Bhagat,3 Yun Mai,2 Yongqiang Wei,2,5 Elise Ishida,2 Gaurav S. Choudhary,3 Ancy Joseph,6 Ronald Rice,7 Nadege Gitego,3 Crystall Parrish,3 Matthias Bartenstein,3 Swati Goel,1 Ioannis Mantzaris,1 Aditi Shastri,1,3 Olga Derman,1 Adam Binder,1 Kira Gritsman,1,2 Noah Kornblum,1 Ira Braunschweig,1 Chirag Bhagat,8 Jeff Hall,8 Armin Graber,8 Lee Ratner,6 Yanhua Wang,9 Seishi Ogawa,4 Amit Verma,1,3 B. Hilda Ye,2 and Murali Janakiram1 1Department of Oncology, Montefiore Medical Center, Bronx, NY; 2Department of Cell Biology and 3Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY; 4Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; 5Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China; 6Division of Oncology, Washington University School of Medicine, St Louis, MO; 7Department of Pathology, Phelps Hospital, Northwell Health, Sleepy Hollow, NY; 8Genoptix, Carlsbad, CA; and 9Department of Pathology, Montefiore Medical Center, Bronx, NY KEY POINTS Adult T-cell leukemia lymphoma (ATLL) is a rare T cell neoplasm that is endemic in Japanese, Caribbean, and Latin American populations. Most North American ATLL patients are of l North American ATLL has a distinct genomic Caribbean descent and are characterized by high rates of chemo-refractory disease and landscape with a worse prognosis compared with Japanese ATLL. To determine genomic differences be- high frequency of tween these 2 cohorts, we performed targeted exon sequencing on 30 North American prognostic epigenetic ATLL patients and compared the results with the Japanese ATLL cases. Although the mutations, including EP300 mutations. frequency of TP53 mutations was comparable, the mutation frequency in epigenetic and histone modifying genes (57%) was significantly higher, whereas the mutation frequency l ATLL samples with in JAK/STAT and T-cell receptor/NF-kB pathway genes was significantly lower. The most mutated EP300 have compromised p53 common type of epigenetic mutation is that affecting EP300 (20%). As a category, epi- function and are genetic mutations were associated with adverse prognosis. Dissimilarities with the selectively sensitive to Japanese cases were also revealed by RNA sequencing analysis of 9 primary patient decitabine treatment. samples. ATLL samples with a mutated EP300 gene have decreased total and acetyl p53 protein and a transcriptional signature reminiscent of p53-mutated cancers. Most im- portantly, decitabine has highly selective single-agent activity in the EP300-mutated ATLL samples, suggesting that decitabine treatment induces a synthetic lethal phenotype in EP300-mutated ATLL cells. In conclusion, we demonstrate that North American ATLL has a distinct genomic landscape that is characterized by frequent epigenetic mutations that are targetable preclinically with DNA methyltransferase inhibitors. (Blood. 2018;132(14):1507-1518) Introduction of Caribbean/American ATLL (n 5 53), the median overall sur- vival (OS) was only 6.9 months,3,6 similar to other reported North Adult T-cell leukemia lymphoma (ATLL) is a rare aggressive T-cell American studies.2,7 The outcomes in Japanese cohorts of ATLL neoplasm, which is caused by a retrovirus (human T-cell lym- are more favorable, with median survival times for acute, lym- photropic virus [HTLV]-1), and carries a dismal prognosis. HTLV-1 phomatous, chronic, and smoldering subtypes of 8.3, 10.6, has low sequence variability, enabling its sequence to be used 31.5, and 55.0 months, respectively.8 The percentage of pa- as a molecular tool to follow migrations. The most common tients with aggressive subtypes (acute and lymphomatous) in the subtype of HTLV-1 is the cosmopolitan subtype A, which is American cohorts is ;91%,2,3,7 compared with 78% in the Japa- endemic to Japan, the Caribbean, Central and South America, nese population.8 Thus, despite a younger age at diagnosis, north and west Africa, and parts of the Middle East.1 Conse- NorthAmericanATLLpatientsappeartopresentwithsig- quently, ATLL is diagnosed most frequently in the Japanese and nificantly more aggressive subtypes of the disease than their Caribbean populations2,3 but is likely underreported in Africa, Japanese counterparts. The majority of research on this disease Latin America,4 and the Middle East.5 is from Japan, where it is endemic, and most preclinical models used in published ATLL studies are Japanese-derived cell lines Despite similar viral subtypes, the prognosis of ATLL is worse in and xenografts. It is not known whether North American ATLL is the Caribbean and American populations than in the Japanese genotypically distinct from the Japanese cases and whether such population. In our retrospective analysis of a single-center cohort differences, if present, can be correlated with clinical outcomes. © 2018 by The American Society of Hematology blood® 4 OCTOBER 2018 | VOLUME 132, NUMBER 14 1507 From www.bloodjournal.org by guest on October 10, 2018. For personal use only. A PATHWAY -catenin PI3K/AKT/mTOR signaling B cell receptor signaling Stress response Stress Receptor kinases tyrosine Other Notch signaling Epigenetic and histone modification Transcriptional regulation Cell death Jak/Stat signaling Ras signaling TCR signaling FGFR signaling Cell cycle and DNA maintenance Wnt/ signaling structure Chromatin VHL XPO1 ATLL PATIENTS ATLL AGE GENDER CYTOGENETICS Overall Survival KEAP1 CREBBP PBRM1 TET2 EZH2 MED12 SPEN HIST1H1E IDH1 KRAS HRAS POT1 SETBP1 CDKN2A BRCA1 PALB2 GATA3 TBL1XR1 AR BCL6 TCF3 MYC NOTCH2 CARD11 TNFAIP3 RHOA PLCG2 FGFR3 FGFR1 TSC1 AKT1 MCL1 RIPK1 ERBB3 ALK ERBB2 PDGFRB IGF1R DDR2 RET CD79A SYK SMC3 STAG2 STAT3 PTCH1 SPOP CDH1 FLT1 AXL MAP2K2 MDM4 NTRK1 FAS SUBTYPE TP53 EP300 DNMT3A KMT2A SMARCB1 ASXL1 NRAS BRCA2 PRDM1 GATA2 CEBPA BCOR NKX2-1 KLF2 FAT1 APC DDX3X NOTCH1 FBXW7 TRAF3 FGFR4 FGFR2 AKT2 RICTOR PIK3CD KDR KIT EGFR PDGFRA FLT3 JAK3 STAT5B ITPKB ZYMM3 P2RY8 ZFHX4 MAP3K9 ESR1 ATL 1 83 M 33 ATL 2 59 M 382 ATL 3 30 F 543 ATL 4 66 F 363 ATL 5 74 F 160 ATL 6 53 M88 ATL 7 48 F 225 ATL 8 64 F 215 ATL 9 63 F 739 ATL 10 36 M 52 ATL 11 70 F 451 ATL 12 54 F 23 ATL 13 37 F 17 ATL 14 41 M 771* ATL 15 51 M 312 ATL 16 57 F 2554* ATL 17 36 M 75 ATL 18 67 F 175 ATL 19 65 M 392 ATL 20 74 M 1191* ATL 21 37 F 6345* ATL 22 60 M 126 ATL 23 54 F 503* ATL 24 59 F 176 ATL 25 64 M 73 ATL 26 61 F 102 ATL 27 40 F 351* ATL 28 40 M 322 ATL 29 63 F 192 ATL 30 70 F 153* ATL55T(+) Su9T01 ATL43T(+) ATL43Tb(-) ED40515(+) ED40515(-) ED41214(+) ED41214(-) Japanese ATL 1-30: North American ATLL Patients ATL55T(+) to ED41214(-) are 8 Japanese derived cell lines Japanese: Mutations also seen in Japanese patients Subtype: Acute Lymphomatous Chronic/Smoldering Cytogenetics: Normal Complex Unknown Overall Survival: Number of days from diagnosis to death *: Alive B p53 TAD DNABD TM 0 100 200 300 393 aa C p300 TAZ Z TAZ 1 KIX BD HAT Z 2 IBiD 0 400 800 1200 1600 2000 2414 aa D E 60% 50% 25% 40% 20% 30% 15% Frequency (%) Frequency 20% 10% Frequency (%) Frequency 5% 10% 0% 0% IDH1 IDH2 TP53 TET2 TET2 JAK3 JAK1 EZH2 SPEN POT1 STAT3 EP300 EP300 RHOA ASXL1 GATA3 PBRM1 MED12 KMT2A PIK3CD CARD11 TNFAIP3 TBL1XR1 CDKN2A NOTCH1 DNMT3A DNMT3A HIST1H1E SMARCB1 All epigenetic Mutated genes Mutated genes North American (n=30) Japanese (n=370) North American (n = 30) Japanese (n = 81) Figure 1. North American ATLL has a distinct mutational landscape. (A) North American ATLL samples (n 5 30) and Japanese ATLL cell lines (n 5 8) were sequenced by targeted deep next-generation sequencing. Identified mutations are grouped into various functional categories. Corresponding mutations reported in Japanese ATLL are marked in the last row. (B) Location of point mutations in the p53 protein structure. (C) Location of point mutations in the p300 protein structure. Green, blue, and black circles 1508 blood® 4 OCTOBER 2018 | VOLUME 132, NUMBER 14 SHAH et al From www.bloodjournal.org by guest on October 10, 2018. For personal use only. Furthermore, understanding the mutational landscape of North genes is determined through bioinformatic analysis and com- American ATLL is critical in an effort to develop new targeted parison with databases (eg, COSMIC and dbSNP). Quality-control therapies for these patients. metrics included a minimum of 200 ng of genomic DNA and average mean sequencing depth of 5003 coverage to give a limit Epidemiology of ATLL in the United States reflects emigration of detection of 5% for SNVs, 10% for insertions/deletions patterns from endemic areas, especially the Caribbean region, and translocation fusions, gene amplifications $ 6 copies, and and is characterized by an increasing incidence in New York City homozygous gene deletions , 0.3 copies. These mutational data and Miami.9,10 Montefiore Medical Center treats a significant were compared with clinical characteristics and patient out- proportion of ATLL patients in the United States as a result of comes to determine the prognostic impact of particular mutations. the large number of Caribbean immigrants in the Bronx, NY.3,6 Here, we present the mutational and transcriptional landscape of Patient records were queried using Clinical Looking Glass soft- Caribbean ATLL and demonstrate that it is characterized by a distinct ware to identify all cases of HTLV positivity and ATLL by searching mutation pattern that targets epigenetic pathways more frequently pathology and laboratory reports of patients who presented than that reported for Japanese ATLL.
Recommended publications
  • Human Periprostatic Adipose Tissue: Secretome from Patients With
    CANCER GENOMICS & PROTEOMICS 16 : 29-58 (2019) doi:10.21873/cgp.20110 Human Periprostatic Adipose Tissue: Secretome from Patients With Prostate Cancer or Benign Prostate Hyperplasia PAULA ALEJANDRA SACCA 1, OSVALDO NÉSTOR MAZZA 2, CARLOS SCORTICATI 2, GONZALO VITAGLIANO 3, GABRIEL CASAS 4 and JUAN CARLOS CALVO 1,5 1Institute of Biology and Experimental Medicine (IBYME), CONICET, Buenos Aires, Argentina; 2Department of Urology, School of Medicine, University of Buenos Aires, Clínical Hospital “José de San Martín”, Buenos Aires, Argentina; 3Department of Urology, Deutsches Hospital, Buenos Aires, Argentina; 4Department of Pathology, Deutsches Hospital, Buenos Aires, Argentina; 5Department of Biological Chemistry, School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina Abstract. Background/Aim: Periprostatic adipose tissue Prostate cancer (PCa) is the second most common cancer in (PPAT) directs tumour behaviour. Microenvironment secretome men worldwide. While most men have indolent disease, provides information related to its biology. This study was which can be treated properly, the problem consists in performed to identify secreted proteins by PPAT, from both reliably distinguishing between indolent and aggressive prostate cancer and benign prostate hyperplasia (BPH) disease. Evidence shows that the microenvironment affects patients. Patients and Methods: Liquid chromatography-mass tumour behavior. spectrometry-based proteomic analysis was performed in Adipose tissue microenvironment is now known to direct PPAT-conditioned media (CM) from patients with prostate tumour growth, invasion and metastases (1, 2). Adipose cancer (CMs-T) (stage T3: CM-T3, stage T2: CM-T2) or tissue is adjacent to the prostate gland and the site of benign disease (CM-BPH). Results: The highest number and invasion of PCa.
    [Show full text]
  • Functional Screening of Alzheimer Risk Loci Identifies PTK2B
    OPEN Molecular Psychiatry (2017) 22, 874–883 www.nature.com/mp ORIGINAL ARTICLE Functional screening of Alzheimer risk loci identifies PTK2B as an in vivo modulator and early marker of Tau pathology P Dourlen1,2,3, FJ Fernandez-Gomez4,5,6, C Dupont1,2,3, B Grenier-Boley1,2,3, C Bellenguez1,2,3, H Obriot4,5,6, R Caillierez4,5,6, Y Sottejeau1,2,3, J Chapuis1,2,3, A Bretteville1,2,3, F Abdelfettah1,2,3, C Delay1,2,3, N Malmanche1,2,3, H Soininen7, M Hiltunen7,8, M-C Galas4,5,6, P Amouyel1,2,3,9, N Sergeant4,5,6, L Buée4,5,6, J-C Lambert1,2,3,11 and B Dermaut1,2,3,10,11 A recent genome-wide association meta-analysis for Alzheimer’s disease (AD) identified 19 risk loci (in addition to APOE) in which the functional genes are unknown. Using Drosophila, we screened 296 constructs targeting orthologs of 54 candidate risk genes within these loci for their ability to modify Tau neurotoxicity by quantifying the size of 46000 eyes. Besides Drosophila Amph (ortholog of BIN1), which we previously implicated in Tau pathology, we identified p130CAS (CASS4), Eph (EPHA1), Fak (PTK2B) and Rab3-GEF (MADD) as Tau toxicity modulators. Of these, the focal adhesion kinase Fak behaved as a strong Tau toxicity suppressor in both the eye and an independent focal adhesion-related wing blister assay. Accordingly, the human Tau and PTK2B proteins biochemically interacted in vitro and PTK2B co-localized with hyperphosphorylated and oligomeric Tau in progressive pathological stages in the brains of AD patients and transgenic Tau mice.
    [Show full text]
  • Heterotrimeric Go Protein Links Wnt-Frizzled Signaling with Ankyrins to Regulate the Neuronal Microtubule Cytoskeleton Anne-Marie Lüchtenborg1,2, Gonzalo P
    © 2014. Published by The Company of Biologists Ltd | Development (2014) 141, 3399-3409 doi:10.1242/dev.106773 RESEARCH ARTICLE Heterotrimeric Go protein links Wnt-Frizzled signaling with ankyrins to regulate the neuronal microtubule cytoskeleton Anne-Marie Lüchtenborg1,2, Gonzalo P. Solis1, Diane Egger-Adam2, Alexey Koval1, Chen Lin1,2, Maxime G. Blanchard1, Stephan Kellenberger1 and Vladimir L. Katanaev1,2,* ABSTRACT The evolutionarily conserved Wg pathway is important for Drosophila neuromuscular junctions (NMJs) represent a powerful numerous developmental programs and cellular processes (Logan model system with which to study glutamatergic synapse formation and Nusse, 2004). In the nervous system of Drosophila,Wg and remodeling. Several proteins have been implicated in these signaling is involved in the formation of neuromuscular junctions processes, including components of canonical Wingless (Drosophila (NMJs) (Packard et al., 2002; Miech et al., 2008). Being a Wnt1) signaling and the giant isoforms of the membrane-cytoskeleton glutamatergic synapse, the Drosophila NMJ provides a useful linker Ankyrin 2, but possible interconnections and cooperation experimental model with which to study mammalian central between these proteins were unknown. Here, we demonstrate that nervous system synapses, their formation and remodeling (Collins the heterotrimeric G protein Go functions as a transducer of Wingless- and DiAntonio, 2007). The Drosophila NMJ is a beads-on-a-string- Frizzled 2 signaling in the synapse. We identify Ankyrin 2 as a target like structure that is formed at the axon terminus and is composed of – – of Go signaling required for NMJ formation. Moreover, the Go-ankyrin distinct circular structures the synaptic boutons which contain interaction is conserved in the mammalian neurite outgrowth pathway.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • A De Novo ANK1 Mutation Associated to Hereditary Spherocytosis: a Case Report
    Huang et al. BMC Pediatrics (2019) 19:62 https://doi.org/10.1186/s12887-019-1436-4 CASEREPORT Open Access A de novo ANK1 mutation associated to hereditary spherocytosis: a case report Ti-Long Huang1, Bao-Hua Sang1, Qing-Ling Lei1, Chun-Yan Song1, Yun-Bi Lin1,YuLv1, Chun-Hui Yang1,NaLi1, Yue-Huang Yang1, Xian-Wen Zhang2* and Xin Tian1* Abstract Background: Hereditary spherocytosis (HS) is a type of hemolytic anemia caused by abnormal red cell membrane skeletal proteins with few unique clinical manifestations in the neonate and infant. An ANK1 gene mutation is the most common cause of HS. Case presentation: The patient was a 11-month-old boy who suffered from anemia and needed a regular transfusion therapy at an interval of 2–3 months. Hematological investigations showed moderate anemia (Hb80 g/L). Red cells displayed microcytosis (MCV76.4 fl, MCH25.6 pg, MCHC335 g/L). The reticulocytes were elevated (4.8%) and the spherocytes were increased (10%). Direct antiglobulin test was negative. Biochemical test indicated a slight elevation of bilirubin, mainly indirect reacting (TBIL32.5 μmol/L, IBIL24 μmol/L). The neonatal HS ratio is 4.38, obviously up the threshold. Meanwhile, adenovoANK1 mutation (exon 25:c.2693dupC:p.A899Sfs*11) was identified by next-generation sequencing (NGS). Thus, hereditary spherocytosis was finally diagnosed. Conclusions: Gene detection should be considered in some hemolytic anemia which is difficult to diagnose by routine means. We identified a novel de novo ANK1 heterozygous frameshift mutation in a Yi nationality patient while neither of his parents carried this mutation. Keywords: Hereditary spherocytosis- ANK1- frameshift mutation Background (erythrocyte membrane protein band 4.2) are associated Hereditary spherocytosis (HS) results from defects in with HS [5].
    [Show full text]
  • Mouse Cass4 Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Cass4 Knockout Project (CRISPR/Cas9) Objective: To create a Cass4 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Cass4 gene (NCBI Reference Sequence: NM_001080820 ; Ensembl: ENSMUSG00000074570 ) is located on Mouse chromosome 2. 7 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 7 (Transcript: ENSMUST00000109136). Exon 2 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 2 starts from about 1.53% of the coding region. Exon 2 covers 17.54% of the coding region. The size of effective KO region: ~337 bp. The KO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 7 Legends Exon of mouse Cass4 Knockout region Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 423 bp section of Exon 2 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 423 bp section of Exon 2 is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • The Structure-Function Relationship of Angular Estrogens and Estrogen Receptor Alpha to Initiate Estrogen-Induced Apoptosis in Breast Cancer Cells S
    Supplemental material to this article can be found at: http://molpharm.aspetjournals.org/content/suppl/2020/05/03/mol.120.119776.DC1 1521-0111/98/1/24–37$35.00 https://doi.org/10.1124/mol.120.119776 MOLECULAR PHARMACOLOGY Mol Pharmacol 98:24–37, July 2020 Copyright ª 2020 The Author(s) This is an open access article distributed under the CC BY Attribution 4.0 International license. The Structure-Function Relationship of Angular Estrogens and Estrogen Receptor Alpha to Initiate Estrogen-Induced Apoptosis in Breast Cancer Cells s Philipp Y. Maximov, Balkees Abderrahman, Yousef M. Hawsawi, Yue Chen, Charles E. Foulds, Antrix Jain, Anna Malovannaya, Ping Fan, Ramona F. Curpan, Ross Han, Sean W. Fanning, Bradley M. Broom, Daniela M. Quintana Rincon, Jeffery A. Greenland, Geoffrey L. Greene, and V. Craig Jordan Downloaded from Departments of Breast Medical Oncology (P.Y.M., B.A., P.F., D.M.Q.R., J.A.G., V.C.J.) and Computational Biology and Bioinformatics (B.M.B.), University of Texas, MD Anderson Cancer Center, Houston, Texas; King Faisal Specialist Hospital and Research (Gen.Org.), Research Center, Jeddah, Kingdom of Saudi Arabia (Y.M.H.); The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois (R.H., S.W.F., G.L.G.); Center for Precision Environmental Health and Department of Molecular and Cellular Biology (C.E.F.), Mass Spectrometry Proteomics Core (A.J., A.M.), Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Mass Spectrometry Proteomics Core (A.M.), and Dan L. Duncan molpharm.aspetjournals.org
    [Show full text]
  • GATA3 Acts Upstream of FOXA1 in Mediating ESR1 Binding by Shaping Enhancer Accessibility
    Downloaded from genome.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Research GATA3 acts upstream of FOXA1 in mediating ESR1 binding by shaping enhancer accessibility Vasiliki Theodorou,1 Rory Stark,2 Suraj Menon,2 and Jason S. Carroll1,3,4 1Nuclear Receptor Transcription Lab, 2Bioinformatics Core, Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge CB2 0RE, United Kingdom; 3Department of Oncology, University of Cambridge, Cambridge CB2 OXZ, United Kingdom Estrogen receptor (ESR1) drives growth in the majority of human breast cancers by binding to regulatory elements and inducing transcription events that promote tumor growth. Differences in enhancer occupancy by ESR1 contribute to the diverse expression profiles and clinical outcome observed in breast cancer patients. GATA3 is an ESR1-cooperating transcription factor mutated in breast tumors; however, its genomic properties are not fully defined. In order to investigate the composition of enhancers involved in estrogen-induced transcription and the potential role of GATA3, we performed extensive ChIP-sequencing in unstimulated breast cancer cells and following estrogen treatment. We find that GATA3 is pivotal in mediating enhancer accessibility at regulatory regions involved in ESR1-mediated transcription. GATA3 silencing resulted in a global redistribution of cofactors and active histone marks prior to estrogen stimulation. These global genomic changes altered the ESR1-binding profile that subsequently occurred following estrogen, with events exhibiting both loss and gain in binding affinity, implying a GATA3-mediated redistribution of ESR1 binding. The GATA3-mediated redistributed ESR1 profile correlated with changes in gene expression, suggestive of its functionality. Chromatin loops at the TFF locus involving ESR1-bound enhancers occurred independently of ESR1 when GATA3 was silenced, indicating that GATA3, when present on the chromatin, may serve as a licensing factor for estrogen–ESR1-mediated interactions between cis-regulatory elements.
    [Show full text]
  • Review Article Mouse Homologues of Human Hereditary Disease
    I Med Genet 1994;31:1-19 I Review article J Med Genet: first published as 10.1136/jmg.31.1.1 on 1 January 1994. Downloaded from Mouse homologues of human hereditary disease A G Searle, J H Edwards, J G Hall Abstract involve homologous loci. In this respect our Details are given of 214 loci known to be genetic knowledge of the laboratory mouse associated with human hereditary dis- outstrips that for all other non-human mam- ease, which have been mapped on both mals. The 829 loci recently assigned to both human and mouse chromosomes. Forty human and mouse chromosomes3 has now two of these have pathological variants in risen to 900, well above comparable figures for both species; in general the mouse vari- other laboratory or farm animals. In a previous ants are similar in their effects to the publication,4 102 loci were listed which were corresponding human ones, but excep- associated with specific human disease, had tions include the Dmd/DMD and Hprt/ mouse homologues, and had been located in HPRT mutations which cause little, if both species. The number has now more than any, harm in mice. Possible reasons for doubled (table 1A). Of particular interest are phenotypic differences are discussed. In those which have pathological variants in both most pathological variants the gene pro- the mouse and humans: these are listed in table duct seems to be absent or greatly 2. Many other pathological mutations have reduced in both species. The extensive been detected and located in the mouse; about data on conserved segments between half these appear to lie in conserved chromo- human and mouse chromosomes are somal segments.
    [Show full text]
  • A Knowledge-Guided Mechanistic Model of Synthetic Lethality in The
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.22.449530; this version posted June 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A Knowledge-guided Mechanistic Model of Synthetic Lethality in the HCT116 Vorinostat-resistant Colon Cancer Xenograft Model Cell-line Paul Aiyetan June 22, 2021 Abstract With an overall lifetime risk of about 4.3% and 4.0%, in men and women respectively, colorectal cancer remains the third leading cause of cancer-related deaths in the United States. In persons aged 55 and below, its rate increased at 1% per year in the years 2008 to 2017 despite the steady decline associated with improved screening, early diagnosis and treatment in the general population. Besides standardized therapeutic regimen, many trials continue to evaluate the potential benefits of vorinostat, mostly in combination with other anti-neoplastic agents for its treatment. Vorinostat, an FDA approved anti-cancer drug known as suberoylanilide hydroxamic acid (SAHA), an histone deacylase (HDAC) inhibitor, through many mechanisms, causes cancer cell arrest and death. However, like many other anti-neoplastic agents, resistance and or failures have been observed. In the HCT116 colon cancer cell line xenograft model, exploiting potential lethal molecular interactions by additional gene knockouts restored vorinotat sensitivity. This phenomenon, known as synthetic lethality, offers a promise to selectively target cancer cells. Although without clearly delineated understanding of underlying molecular processes, it has been demonstrated as an effective cancer-killing mechanism.
    [Show full text]
  • Genetic Cardiomyopathies: the Lesson Learned from Hipscs
    Journal of Clinical Medicine Review Genetic Cardiomyopathies: The Lesson Learned from hiPSCs Ilaria My 1,2 and Elisa Di Pasquale 2,3,* 1 Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy; [email protected] 2 Humanitas Clinical and Research Center—IRCCS, Rozzano, 20089 Milan, Italy 3 Institute of Genetic and Biomedical Research (IRGB)—UOS of Milan, National Research Council (CNR), 20138 Milan, Italy * Correspondence: [email protected] Abstract: Genetic cardiomyopathies represent a wide spectrum of inherited diseases and constitute an important cause of morbidity and mortality among young people, which can manifest with heart failure, arrhythmias, and/or sudden cardiac death. Multiple underlying genetic variants and molecular pathways have been discovered in recent years; however, assessing the pathogenicity of new variants often needs in-depth characterization in order to ascertain a causal role in the disease. The application of human induced pluripotent stem cells has greatly helped to advance our knowledge in this field and enabled to obtain numerous in vitro patient-specific cellular models useful to study the underlying molecular mechanisms and test new therapeutic strategies. A milestone in the research of genetically determined heart disease was the introduction of genomic technologies that provided unparalleled opportunities to explore the genetic architecture of cardiomyopathies, thanks to the generation of isogenic pairs. The aim of this review is to provide an overview of the main research that helped elucidate the pathophysiology of the most common genetic cardiomyopathies: hypertrophic, dilated, arrhythmogenic, and left ventricular noncompaction cardiomyopathies. A special focus is provided on the application of gene-editing techniques in understanding key disease characteristics and on the therapeutic approaches that have been tested.
    [Show full text]
  • Alzheimer Risk Loci and Associated Neuropathology in a Population-Based Study (Vantaa 85+)
    ARTICLE OPEN ACCESS Alzheimer risk loci and associated neuropathology in a population-based study (Vantaa 85+) Mira M¨akel¨a, MD,* Karri Kaivola, BM,* Miko Valori, MSc, Anders Paetau, MD, PhD, Tuomo Polvikoski, MD, PhD, Correspondence Andrew B. Singleton, PhD, Bryan J. Traynor, MD, PhD, David J. Stone, PhD, Terhi Peuralinna, PhD, Dr. Myllykangas [email protected] Pentti J. Tienari, MD, PhD, Maarit Tanskanen, MD, PhD, and Liisa Myllykangas, MD, PhD Neurol Genet 02 2018 vol. 4 no. 1 e211. doi:10.1212/NXG.0000000000000211 Abstract Objective To test the association of distinct neuropathologic features of Alzheimer disease (AD) with risk loci identified in genome-wide association studies. Methods Vantaa 85+ is a population-based study that includes 601 participants aged ≥85 years, of which 256 were neuropathologically examined. We analyzed 29 AD risk loci in addition to APOE e4, which was studied separately and used as a covariate. Genotyping was performed using a single nucleotide polymorphism (SNP) array (341 variants) and imputation (6,038 variants). Par- ticipants with Consortium to Establish a Registry for Alzheimer Disease (CERAD) (neuritic Aβ plaques) scores 0 (n = 65) vs score M + F (n = 171) and Braak (neurofibrillary tangle pathology) stages 0–II (n = 74) vs stages IV–VI (n = 119), and with capillary Aβ (CapAβ, n = 77) vs without (n = 179) were compared. Cerebral amyloid angiopathy (CAA) percentage was analyzed as a continuous variable. Results Altogether, 24 of the 29 loci were associated (at p < 0.05) with one or more AD-related neuropathologic features in either SNP array or imputation data.
    [Show full text]