Standard Characterization of Soils Employed in the Fao/Iaea Phosphate Project

Total Page:16

File Type:pdf, Size:1020Kb

Standard Characterization of Soils Employed in the Fao/Iaea Phosphate Project XA0201061 STANDARD CHARACTERIZATION OF SOILS EMPLOYED IN THE FAO/IAEA PHOSPHATE PROJECT D. MONTANGE CIRAD-CA GEC, Montpellier, France F. ZAPATA International Atomic Energy Agency, Vienna Abstract In the frame of the FAO/IAEA networked research project, the agronomic effectiveness of natural and modified phosphate rock (PR) products was evaluated using nuclear and related techniques under a variety of soil, climate and management conditions. In addition to the local soil analyses, it was decided to make a standard characterization of the soils employed in the project to gather direct and comparable information on the relevant soil properties affecting the suitability of PRs for direct application and to better interpret the results from the agronomic evaluation, including the creation of a database for phosphate modelling. This paper describes the standard characterization of soils, that was mainly made at CIRAD, Montpellier, France. A total of 51 soil samples were analyzed froml5 countries including Belarus (1), Brazil (2), Chile (3), China (20), Cuba (2) Ghana (6), Hungary (2), Indonesia (3), Kenya (1), Malaysia (1), Poland (1), Romania (2), Russia (1), Thailand (3) and Venezuela (3). Methods of analyses used for the soil characterization included textural class, pH, chemical analysis for total N and P, and exchangeable elements (CEC, saturation). Available P was measured using 4 methods including Olsen, Bray n, Pi paper and Resin. Available P measurements using resin method were made at CENA, Piracicaba, Brazil. The soil P dynamics was described using the 32P isotope exchange kinetic method at CEN Cadarache, France with the same soil samples. As a result of the worldwide distribution of the soils employed hi the project, the results showed a very large diversity in each of the measured soil characteristics. The analysis of the data focused on the most representative tropical acid soils, i.e. Ultisols and Oxisols. Inceptisols have also been included because most of them were acid and located in the tropics and subtropics. Results are synthesized and analyzed with particular emphasis on: i) identification of the most relevant soil characteristics affecting PR dissolution and their agronomic potential in tropical acid soils; and ii) suitability of methods for routine testing of available P hi these soils. The study demonstrates that pH and soil P status parameters, in particular P fixation capacity index and P concentration in aqueous extract are the main soil properties affecting PR dissolution hi these tropical acid soils. Additional related characteristics are clay content, organic matter content, and % Ca saturation. In the case of high P fixing soils, it would be also useful to have information on total and extractable Fe and Al. The methods of determination of available P were only relatively compared. In order to compare the P measured by these methods (extracting solutions or isotopic method) and the P actually available to the crop, yield data of field experiments are needed, as well as the response of the crops to the P fertilization. Further studies are needed with PR application to tropical acid soils to: a) establish relationships between crop yields and soil P supply in field experiments, and ii) group soils P supply into categories based on the probability of crop response to P fertilization. 1. INTRODUCTION Phosphorus (P) deficiency is widespread in acid soils of the tropics and subtropics. Also, most of these soils have a high P sorption capacity. Thus, they require substantial inputs of P fertilizers for adequate crop growth and optimum production of food and fibre. Manufactured P fertilizers like super- phosphates are mostly imported and supplies to the resource-poor farmers are limited and expensive. Many phosphate-bearing mineral deposits exist worldwide. Phosphate rocks vary widely in mineralogical, chemical and physical properties, and consequently in their reactivity and agronomic potential. Under certain conditions, direct application of phosphate rocks (PRs) is an agronomic and economically attractive alternative to the use of manufactured phosphatic fertilizers. Upon application 24 of a PR to a soil, both the rate of P dissolution and fate of the released P are affected by the soil properties determining the chemical reactions and the P demand by the growing crops. Among the soil properties, soil pH, exchangeable Ca, P-sorption capacity and organic matter are reported to be the main factors affecting the agronomic potential of PRs [1]. Recognizing the importance of overcoming main constraints to agricultural production in the tropics and subtropics, the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture established a research network of 21 participating scientists from developing and industrialized countries and implemented a project during 1993-1998 with a main objective to evaluate the agro- nomic effectiveness of rock phosphates through the use of P-32 and related techniques [2] Participating scientists represented benchmark sites with regard to the worldwide distribution of chemical infertile acid soils especially in the tropics and subtropics in order to test the agronomic effectiveness of indigenous and imported PRs under a variety of soil and crop conditions. As part of the project, participating countries performed a characterization of the soils and PRs utilized in their research. In addition, a standard characterization of the soils and PRs employed in the project was made with financial support of the World Phosphate Institute (IMPHOS) to gather direct and comparable information on the factors affecting the suitability of PRs for direct application and to better interpret the results from the agronomic evaluation, including the creation of a database for phosphate modelling. This paper describes the standard characterization of the soils employed in the project. Results are synthesized and analysed with particular emphasis on: i) identification of the most relevant soil characteristics affecting PR dissolution and their agronomic potential in tropical acid soils; and ii) suitability of methods for routine P testing in these soils. 2. MATERIALS AND METHODS A total of 51 soil samples from 15 countries participating in the FAO/IAEA Co-ordinated Research Project on "The use of nuclear and related techniques for evaluating the agronomic effectiveness of P fertilizers, in particular rock phosphates" were collected for chemical and physical analyses. All samples were surface (topsoil) soil samples used for routine soil P testing. The full list of soil samples grouped according to the geographical region of origin is shown in Table I. Their worldwide distribution was as follows: 27 samples (53%) were from Asia, 10 (20%) from Latin America, 7 (14%) from Africa and 7 (14%) from Europe. The routine physical and chemical analyses of the soil samples were carried out at the "Unite Sols et Eaux, Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement" (CIRAD), Montpellier, France. All the analyses were performed on the "fine earth" fraction (samples passed through a 2 mm sieve). The determination of the physical and chemical properties was made following the French standard methods briefly described below [3]. 2.1. Particle size distribution Automatic granulometer GRANULOSTAT: Standard method AFNOR X 31-107. Destruction of the organic matter by wet digestion using hydrogen peroxide (H2O2). Soils were dispersed and suspended in sodium hexa-metaphosphate [40 g/1] and anhydrous sodium carbonate Na2CO3 [10 g/1]. Clay and silt particles were determined by sedimentation using a Robinson pipette. Sand particles separated from the clay and silt by a sieve and subsequently fractionated by wet sieving (rinsing the sample with water in a nest of sieves). The following particle size fractions were considered: Clay < 2 urn Fine silt (Silt F) 2 um-20 urn Coarse silt (Silt C) 20 um-50 urn Fine sand (Sand F) 50 |j.m-200 am Coarse sand (Sand C) 200 um-2000 u: 25 TABLE I. GEOGRAPHICAL DISTRIBUTION OF SOILS USED FOR FIELD EXPERIMENTS Geographical Country Location Soil Taxonomy Region Africa Ghana Abena Oxisol Typic Haplorthox Africa Ghana Ankasa Oxisol Typic Haplorthox Africa Ghana Ayinase Oxisol Typic Haplorthox Africa Ghana Boi Oxisol Plinthic Eutrodox Africa Ghana Kwaben Ultisol Typic Hapludult Africa Ghana Tikobo Ultisol Typic Hapludult Africa Kenya Kakamega Ultisol Typic Hapludult Asia China Changxing Inceptisol Typic Haplaquept Asia China Gaonan Aridisol Typic Calciorthid Asia China Guangzhou Inceptisol Typic Haplaquept Asia China Huazhou Ultisol Typic Hapludult Asia China Jingde Ultisol Typic Hapludult Asia China Jinhua Ultisol Typic Hapludult Asia China Jinxian Inceptisol Anthraquic Eutrocrept Asia China Kunming (red clay) Inceptisol Typic Eutrocrept Asia China Kunming (shale) Ultisol Typic Hapludult Asia China Liujiang Alfisol Typic Rhodudalf Asia China Taihe Inceptisol Anthraquic Eutrocrept Asia China Yangling Mollisol Typic Haplustoll Asia China Yingtan Ultisol Typic Hapludult Asia China Yiyang Ultisol Typic Hapludult Asia China Yongdeng Mollisol Typic Calciustoll Asia China Yuzhong Entisol Typic Ustipsamment Asia China Zhanjiang Inceptisol Typic Eutrocrept Asia China Zunyi 26 Ultisol Typic Hapludult Asia China Zunyi 27 Entisol Typic Udorthent Asia Indonesia Batu Marta Ultisol Typic Paleudult Asia Indonesia Pasar Jumat Ultisol Typic Kandiudult Asia Indonesia Pusaka Negara Inceptisol Endoaquept Asia Malaysia Rengam Ultisol Typic Paleudult Asia Thailand Kho
Recommended publications
  • Engineering Behavior and Classification of Lateritic Soils in Relation to Soil Genesis Erdil Riza Tuncer Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1976 Engineering behavior and classification of lateritic soils in relation to soil genesis Erdil Riza Tuncer Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Civil Engineering Commons Recommended Citation Tuncer, Erdil Riza, "Engineering behavior and classification of lateritic soils in relation to soil genesis " (1976). Retrospective Theses and Dissertations. 5712. https://lib.dr.iastate.edu/rtd/5712 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • Topic: Soil Classification
    Programme: M.Sc.(Environmental Science) Course: Soil Science Semester: IV Code: MSESC4007E04 Topic: Soil Classification Prof. Umesh Kumar Singh Department of Environmental Science School of Earth, Environmental and Biological Sciences Central University of South Bihar, Gaya Note: These materials are only for classroom teaching purpose at Central University of South Bihar. All the data/figures/materials are taken from several research articles/e-books/text books including Wikipedia and other online resources. 1 • Pedology: The origin of the soil , its classification, and its description are examined in pedology (pedon-soil or earth in greek). Pedology is the study of the soil as a natural body and does not focus primarily on the soil’s immediate practical use. A pedologist studies, examines, and classifies soils as they occur in their natural environment. • Edaphology (concerned with the influence of soils on living things, particularly plants ) is the study of soil from the stand point of higher plants. Edaphologist considers the various properties of soil in relation to plant production. • Soil Profile: specific series of layers of soil called soil horizons from soil surface down to the unaltered parent material. 2 • By area Soil – can be small or few hectares. • Smallest representative unit – k.a. Pedon • Polypedon • Bordered by its side by the vertical section of soil …the soil profile. • Soil profile – characterize the pedon. So it defines the soil. • Horizon tell- soil properties- colour, texture, structure, permeability, drainage, bio-activity etc. • 6 groups of horizons k.a. master horizons. O,A,E,B,C &R. 3 Soil Sampling and Mapping Units 4 Typical soil profile 5 O • OM deposits (decomposed, partially decomposed) • Lie above mineral horizon • Histic epipedon (Histos Gr.
    [Show full text]
  • Soils Section
    Soils Section 2003 Florida Envirothon Study Sections Soil Key Points SOIL KEY POINTS • Recognize soil as an important dynamic resource. • Describe basic soil properties and soil formation factors. • Understand soil drainage classes and know how wetlands are defined. • Determine basic soil properties and limitations, such as mottling and permeability by observing a soil pit or soil profile. • Identify types of soil erosion and discuss methods for reducing erosion. • Use soil information, including a soil survey, in land use planning discussions. • Discuss how soil is a factor in, or is impacted by, nonpoint and point source pollution. Florida’s State Soil Florida has the largest total acreage of sandy, siliceous, hyperthermic Aeric Haplaquods in the nation. This is commonly called Myakka fine sand. It does not occur anywhere else in the United States. There are more than 1.5 million acres of Myakka fine sand in Florida. On May 22, 1989, Governor Bob Martinez signed Senate Bill 525 into law making Myakka fine sand Florida’s official state soil. iii Florida Envirothon Study Packet — Soils Section iv Contents CONTENTS INTRODUCTION .........................................................................................................................1 WHAT IS SOIL AND HOW IS SOIL FORMED? .....................................................................3 SOIL CHARACTERISTICS..........................................................................................................7 Texture......................................................................................................................................7
    [Show full text]
  • Subsurface Stratigraphy and Genesis of Pre-Wisconsin Paleosols in Whitebreast Creek Watershed, South-Central Iowa
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1995 Subsurface stratigraphy and genesis of pre- Wisconsin paleosols in Whitebreast Creek Watershed, south-central Iowa Amir Hossein Charkhabi Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons, Geology Commons, and the Mineral Physics Commons Recommended Citation Charkhabi, Amir Hossein, "Subsurface stratigraphy and genesis of pre-Wisconsin paleosols in Whitebreast Creek Watershed, south- central Iowa " (1995). Retrospective Theses and Dissertations. 10887. https://lib.dr.iastate.edu/rtd/10887 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfihn master. UMI filmc the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in ^pewriter face, while others may be from any type of computer printer. The qnalify of this reprodnction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and inqjroper aligmnent can adversefy affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps
    ISSN 0532-0488 WORLD SOIL RESOURCES REPORTS 106 World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps Update 2015 Cover photographs (left to right): Ekranic Technosol – Austria (©Erika Michéli) Reductaquic Cryosol – Russia (©Maria Gerasimova) Ferralic Nitisol – Australia (©Ben Harms) Pellic Vertisol – Bulgaria (©Erika Michéli) Albic Podzol – Czech Republic (©Erika Michéli) Hypercalcic Kastanozem – Mexico (©Carlos Cruz Gaistardo) Stagnic Luvisol – South Africa (©Márta Fuchs) Copies of FAO publications can be requested from: SALES AND MARKETING GROUP Information Division Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00100 Rome, Italy E-mail: [email protected] Fax: (+39) 06 57053360 Web site: http://www.fao.org WORLD SOIL World reference base RESOURCES REPORTS for soil resources 2014 106 International soil classification system for naming soils and creating legends for soil maps Update 2015 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2015 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.
    [Show full text]
  • Phosphorus Adsorption of Some Brazilian Soils in Relations to Selected Soil Properties
    Open Journal of Soil Science, 2015, 5, 101-109 Published Online May 2015 in SciRes. http://www.scirp.org/journal/ojss http://dx.doi.org/10.4236/ojss.2015.55010 Phosphorus Adsorption of Some Brazilian Soils in Relations to Selected Soil Properties Valdinar Ferreira Melo1*, Sandra Cátia Pereira Uchôa1, Zachary N. Senwo2*, Ronilson José Pedroso Amorim3 1Department of Soil and Agricultural Engineering, Federal University of Roraima, Boa Vista, Brazil 2Department of Biological & Environmental Sciences, Alabama A&M University, Huntsville, USA 3Agronomy, Federal University of Roraima, Boa Vista, Brazil Email: *[email protected], *[email protected] Received 3 April 2015; accepted 17 May 2015; published 20 May 2015 Copyright © 2015 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract A major nutritional problem to crops grown in highly weathered Brazilian soils is phosphorus (P) deficiencies linked to their low availability and the capacity of the soils to fix P in insoluble forms. Our studies examined factors that might influence P behavior in soils of the Amazon region. This study was conducted to evaluate the maximum phosphate adsorption capacity (MPAC) of the soils developed from mafic rocks (diabase), their parent materials and other factors resulting in the formation of eutrophic soils having A chernozemic horizon associated with Red Nitosols (Alfisol) and Red Latosols (Oxisol) of the Amazonian environment. The MPAC was determined in triplicates as a function of the remnant P values. The different concentrations used to determine the MPAC allowed maximum adsorption values to be reached for all soils.
    [Show full text]
  • Diagnostic Horizons
    Exam III Wednesday, November 7th Study Guide Posted Tomorrow Review Session in Class on Monday the 4th Soil Taxonomy and Classification Diagnostic Horizons Epipedons Subsurface Mollic Albic Umbric Kandic Ochric Histic Argillic Melanic Spodic Plaggen Anthropic Oxic 1 Surface Horizons: Mollic- thick, dark colored, high %B.S., structure Umbric – same, but lower B.S. Ochric – pale, low O.M., thin Histic – High O.M., thick, wet, dark Sub-Surface Horizons: Argillic – illuvial accum. of clay (high activity) Kandic – accum. of clay (low activity) Spodic – Illuvial O.M. accumulation (Al and/or Fe) Oxic – highly weathered, kaolinite, Fe and Al oxides Albic – light colored, elluvial, low reactivity Elluviation and Illuviation Elluviation (E horizon) Organic matter Clays A A E E Bh horizon Bt horizon Bh Bt Spodic horizon Argillic horizon 2 Soil Taxonomy Diagnostic Epipedons Diagnostic Subsurface horizons Moisture Regimes Temperature Regimes Age Texture Depth Soil Taxonomy Soil forming processes, presence or Order Absence of major diagnostic horizons 12 Similar genesis Suborder 63 Grasslands – thick, dark Great group 250 epipedons High %B.S. Sub group 1400 Family 8000 Series 19,000 Soil Orders Entisols Histosols Inceptisols Andisols Gelisols Alfisols Mollisols Ultisols Spodosols Aridisols Vertisols Oxisols 3 Soil Orders Entisol Ent- Recent Histosol Hist- Histic (organic) Inceptisol Incept- Inception Alfisol Alf- Nonsense Ultisol Ult- Ultimate Spodosol Spod- Spodos (wood ash) Mollisol Moll- Mollis (soft) Oxisol Ox- oxide Andisol And- Ando (black) Gelisol
    [Show full text]
  • A Mathematical Representation of Microalgae
    Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-359 Manuscript under review for journal Biogeosciences Discussion started: 14 September 2017 c Author(s) 2017. CC BY 4.0 License. A mathematical representation of microalgae distribution in aridisol and water scarcity Abdolmajid Lababpour1 1Department of Mechanical Engineering, Shohadaye Hoveizeh University of Technology, Dasht-e Azadeghan, 64418-78986, 5 Iran Correspondence to: Abdolmajid Lababpour ([email protected]) Abstract. The restoration technologies of biological soil crust (BSC) in arid and semi-arid areas can be supported by simulations performed by mathematical models. The present study represents a mathematical model to describe behaviour of the complex microalgae development on the soil surface. A diffusion-reaction system was used in the model formulation which 10 incorporating parameters of photosynthetic organisms, soil water content and physical parameter of soil porosity, extendable for substrates and exchanged gases. For the photosynthetic microalgae, the dynamic system works as a batch mode, while input and output are accounted for soil water-limited substrate. The coupled partial differential equations (PDEs) of model were solved by numerical finite-element method (FEM) after determining model parameters, initial and boundary conditions. The MATLAB features, were used in solving and simulation of model equations. The model outputs reveals that soil water 15 balance shift in microalgae inoculated lands compare to bare lands. Refining and application of the model for the biological soil stabilization and the biocrust restoration process will provide us with an optimized mean for biocrust restoration activities and success in the challenge with land degradation, regenerating a favourable ecosystem state, and reducing dust emission- related problems in the arid and semi-arid areas of the world.
    [Show full text]
  • Sustaining the Pedosphere: Establishing a Framework for Management, Utilzation and Restoration of Soils in Cultured Systems
    Sustaining the Pedosphere: Establishing A Framework for Management, Utilzation and Restoration of Soils in Cultured Systems Eugene F. Kelly Colorado State University Outline •Introduction - Its our Problems – Life in the Fastlane - Ecological Nexus of Food-Water-Energy - Defining the Pedosphere •Framework for Management, Utilization & Restoration - Pedology and Critical Zone Science - Pedology Research Establishing the Range & Variability in Soils - Models for assessing human dimensions in ecosystems •Studies of Regional Importance Systems Approach - System Models for Agricultural Research - Soil Water - The Master Variable - Water Quality, Soil Management and Conservation Strategies •Concluding Remarks and Questions Living in a Sustainable Age or Life in the Fast Lane What do we know ? • There are key drivers across the planet that are forcing us to think and live differently. • The drivers are influencing our supplies of food, energy and water. • Science has helped us identify these drivers and our challenge is to come up with solutions Change has been most rapid over the last 50 years ! • In last 50 years we doubled population • World economy saw 7x increase • Food consumption increased 3x • Water consumption increased 3x • Fuel utilization increased 4x • More change over this period then all human history combined – we are at the inflection point in human history. • Planetary scale resources going away What are the major changes that we might be able to adjust ? • Land Use Change - the world is smaller • Food footprint is larger (40% of land used for Agriculture) • Water Use – 70% for food • Running out of atmosphere – used as as disposal for fossil fuels and other contaminants The Perfect Storm Increased Demand 50% by 2030 Energy Climate Change Demand up Demand up 50% by 2030 30% by 2030 Food Water 2D View of Pedosphere Hierarchal scales involving soil solid-phase components that combine to form horizons, profiles, local and regional landscapes, and the global pedosphere.
    [Show full text]
  • Redalyc.CONTAMINATION POTENTIAL of SPECIFIC IONS IN
    Revista Caatinga ISSN: 0100-316X [email protected] Universidade Federal Rural do Semi- Árido Brasil PAIVA DE OLIVEIRA, ANDLER MILTON; MEDEIROS REBOUÇAS, CEZAR AUGUSTO; DA SILVA DIAS, NILDO; CRUZ PORTELA, JEANE; ARAÚJO DINIZ, ADRIANA CONTAMINATION POTENTIAL OF SPECIFIC IONS IN SOIL TREATED WITH REJECT BRINE FROM DESALINATION PLANTS Revista Caatinga, vol. 29, núm. 3, julio-septiembre, 2016, pp. 569-577 Universidade Federal Rural do Semi-Árido Mossoró, Brasil Available in: http://www.redalyc.org/articulo.oa?id=237146823005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Universidade Federal Rural do Semi-Árido ISSN 0100-316X (impresso) Pró-Reitoria de Pesquisa e Pós-Graduação ISSN 1983-2125 (online) http://periodicos.ufersa.edu.br/index.php/sistema CONTAMINATION POTENTIAL OF SPECIFIC IONS IN SOIL TREATED WITH REJECT BRINE FROM DESALINATION PLANTS1 ANDLER MILTON PAIVA DE OLIVEIRA2, CEZAR AUGUSTO MEDEIROS REBOUÇAS2, NILDO DA SILVA DIAS2*, JEANE CRUZ PORTELA2, ADRIANA ARAÚJO DINIZ2 ABSTRACT - Percolation columns constructed in the Laboratory can predict the degree of contamination in soil due to reject brine disposal and can be a tool for reducing environmental impacts. This study aim to evaluate the mobilization of ions in reject brine from desalination process by reverse osmosis. The mobilization of the contaminant ions in the saline waste was studied in glass percolation columns, which were filled with soil of contrasting textures (eutrophic CAMBISOL, typic dystrophic Red OXISOL, ENTISOL Quartzipsamment).
    [Show full text]
  • Stone to Soil Elemental Flux Rates During Pedogenesis
    2010 GSA Denver Annual Meeting (31 October –3 November 2010) Paper No. 146-3 Presentation Time: 2:20 PM-2:35 PM STONE TO SOIL: ELEMENTAL FLUX RATES DURING PEDOGENESIS ON THE SOUTH CAROLINA PIEDMONT BACON, Allan Roy1, RICHTER, Daniel deB.1, BIERMAN, Paul R.2, and ROOD, Dylan H.3, (1) University Program in Ecology and Nicholas School of Environment and Earth Sciences, Duke University, Durham, NC 27708, [email protected], (2) Department of Geology, University of Vermont, Delehanty Hall, 180 Colchester Ave, Burlington, VT 05405, (3) Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550-9234 Opportunities to investigate pedogenic processes in undisturbed soil-bedrock profiles on the southern Piedmont are rare. Historic agriculture was widespread, physically and chemically altering most southern Piedmont soils. We sampled the granitic gneiss parent material and the overlying 6m soil profile from a historically uncultivated, stable, Ultisol located on the Calhoun Experimental Forest in Union County, SC. Our objectives were 3-fold: (1) to quantify flux rates of 8 elements (Si, Al, Fe, Mg, Ca, Na, K, and Mn) during in-situ soil formation on the southern Piedmont using chemical mass balance equations that reference soil horizons to parent material and meteoric 10Be soil residence times, (2) to characterize the distribution of meteoric 10Be in a highly-weathered Ultisol profile through measurement of other soil properties (including pH, %C, exchangeable cations, KCl acidity, texture, and effective CEC and base saturation) and multivariate analysis, and (3) to estimate Be mobility in soil during granitic gneiss weathering in the southern Piedmont using the mass balance approach described above.
    [Show full text]
  • Response of Soil Respiration to Drying and Rewetting
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Biogeosciences Discuss., 12, 8723–8745, 2015 www.biogeosciences-discuss.net/12/8723/2015/ doi:10.5194/bgd-12-8723-2015 BGD © Author(s) 2015. CC Attribution 3.0 License. 12, 8723–8745, 2015 This discussion paper is/has been under review for the journal Biogeosciences (BG). Response of soil Please refer to the corresponding final paper in BG if available. respiration to drying and rewetting Response of respiration and nutrient Q. Sun et al. availability to drying and rewetting in soil from a semi-arid woodland depends on Title Page vegetation patch and a recent wild fire Abstract Introduction Conclusions References 1 1 1 2 Q. Sun , W. S. Meyer , G. Koerber , and P. Marschner Tables Figures 1Department of Ecology and Environmental Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia J I 2 Soils, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, J I Australia Back Close Received: 16 April 2015 – Accepted: 23 May 2015 – Published: 12 June 2015 Full Screen / Esc Correspondence to: Q. Sun ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. Printer-friendly Version Interactive Discussion 8723 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract BGD Semi-arid woodlands, which are characterised by patchy vegetation interspersed with bare, open areas, are frequently exposed to wild fire. During summer, long dry peri- 12, 8723–8745, 2015 ods are occasionally interrupted by rainfall events. It is well-known that rewetting of dry 5 soil induces a flush of respiration.
    [Show full text]