THE ORGANIZATION of MONOAMINE NEURONS WITHIN the BRAIN of a GENERALIZED MARSUPIAL, Didelphis Marsupial Is Virginiana
Total Page:16
File Type:pdf, Size:1020Kb
I 77-24,614 CRUTCHER, Keith Alan, 1953- THE ORGANIZATION OF MONOAMINE NEURONS WITHIN THE BRAIN OF A GENERALIZED MARSUPIAL, Didelphis marsupial is virginiana. The Ohio State University, Ph.D., 1977 Anatomy Xerox University MicrofilmsAnn , Arbor, Michigan 48106 THE ORGANIZATION OF MONOAMINE NEURONS WITHIN THE BRAIN OF A GENERALIZED MARSUPIAL, Didelphls marsupialis virginiana DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Keith Alan Crutcher, B.A. ***** The Ohio State University 1977 Reading Committee: Approved By Albert 0. Humbertson, Jr. George F. Martin George E. Goode Department of Anatomy This work is dedicated to my family and to the animals from which the results were obtained. ii ACKNOWLEDGMENTS I would like to acknowledge the advice and encouragement of Albert Humbertson and the many faculty members who have devoted their time to my education including George Bingham, George Martin, Jim King, George Goode, and David Clark. The secretarial assistance provided by Malinda Amspaugh and the photographic assistance of Gabe Palkuti are greatly appreciated. Special thanks to Michael and Marty for being there and of course none of this would have been possible,or worth it, without Jennifer, Tara, and the mystery child. ili VITA May 29, 1953 Born - Fort Lauderdale, Florida 1974 B.A., Pt. Loma College San Diego, California 1974-1976 Research Associate, Division of Neurosurgery, Department of Surgery The Ohio State University, Columbus Ohio 1976-1977 Teaching Assistant, Department of Anatomy, The Ohio State University Columbus, Ohio PUBLICATIONS Martin, G.F., J. Andrezik, K. Crutcher and M. Unauts. The lateral reticular nucleus of the opossum (Didelphis virginiana). II. Connec tions. Journal of Comparative Neurology (in press). FIELDS OF STUDY Maj or Field: Anatomy Studies in Neuroanatomy. Dr. Albert 0. Humbertson, Jr. Studies in Brainstem Morphology. Dr. George F. Martin Studies in CNS Ultrastructure. Dr. James S. King Neurosurgical Research. Dr. W. George Bingham, Jr. iv TABLE OF CONTENTS Page DEDICATION.................................................... ii ACKNOWLEDGMENTS..................................................... ill VITA .......................................................... iv LIST OF FIGURES..................................................... vi LIST OF ABBREVIATIONS............................................ vili INTRODUCTION . .............................................. 1 METHODS........................................................... 3 RESULTS........................................................... 6 M e d u l l a ................... « . • ............................ 6 Pons......................................................... 8 Midbrain........................................................ 11 Diencephalon. ............................................... 13 Small Intensely Fluorescent Cells ........................... 13 DISCUSSION .......................................................... 15 ILLUSTRATIONS........................................................ 25 LIST OF REFERENCES ................................................. 43 v LIST OF FIGURES Figure Page 1 Catecholamine (CA) neurons in the region of the lateral reticular nucleus (fluorescence micrograph) ................................. 26 2 Indoleamine (IA) neurons within the caudal raphe nuclei (fluorescence micrograph)...................... 26 3 Drawing of CA and IA neurons within the medulla and caudal p o n s ........................................ 28 4 CA neurons within locus coeruleus (fluorescence micrograph) ............................................ 30 5 IA neurons within nucleus raphe magnus (fluorescence micrograph) ............................................ 30 6 CA neurons within the substantia nigra (fluorescence micrograph) ........ ......... 30 7 Drawing of CA and IA neurons within the rostral pons..................................................... 32 8 IA neurons within the dorsal raphe nucleus (f.m.). ................... 34 9 IA neurons within the superior central nucleus (f.m.)................................................... 34 10 CA neurons within the ventrolateral midbrain tegmentum (f.m.)........................ 34 11 IA neurons within nucleus linearis (f.m.) ............ 34 12 Drawing of CA and IA neurons within the caudal midbrain and rostral pons .................... 36 vi Figures Page 13 CA neurons medial to the mesencephalic tract of the trigeminal nucleus (Nissl stain and f.m.) ........... 38 14 Small intensely fluorescent cells (f.m.).............. 38 15 CA neurons within ventral tegmental area (f.m.) . 38 16 CA neurons within the hypothalamus (f.m.) ............ 38 17 Drawing of CA neurons within the rostral midbrain and hypothalamus............................................ 40 18 Illustration of CA and IA distribution within opossum b r a i n s t e m .............................................. 42 vii LIST OF ABBREVIATIONS ACf nuclei areae cuneiformis A1 nucleus alaris CA catecholamine neurons CcD 9 nucleus cochlearis dorsalis CcV nucleus cochlearis ventralis CeS nucleus centralis superior CF campi Forelli Cl colliculus inferior Coe nucleus coeruleus (Coe a = nucleus coeruleus, pars a) CS colliculus superior CuL nucleus cuneatus lateralis DLL nucleus dorsalis lemnisci lateralis Fac nucleus n. facialis GCc substantia grisea centralis: pars caudalis GCd substantia grisea centralis: pars dorsalis GCv substantia grisea centralis: pars ventralis GM nucleus corporis geniculati medialis GrP griseum pontis HDM nucleus dorsalis hypothalami medialis Hg nucleus n. hypoglossi HVM nucleus ventralis hypothalami medialis HYD area hypothalamica dorsalis HYL area hypothalamica lateralis IA indoleamine neurons IP nucleus interpeduncularis Lg lingula cerebelli LP nucleus lateralis thalami posterior Lr nucleus linearis LRC nucleus lateralis reticularis caudalis LRO nucleus lateralis reticularis oralis M nucleus mamillaris 01 nucleus olivarls inferior OcM nucleus n. oculomotor! OcMR nucleus n. oculomotor! rostralis OS nucleus olivaris superior PBr nucleus parabrachialis PHD nucleus paraventricularis hypothalami dorsalis PHg nucleus prepositus hypoglossi RaD nucleus dorsalis raphae viii RaM nucleus magnus raphae RaO nucleus obscurus raphae RaPa nucleus pallidus raphae Rb nucleus ruber RGcv nucleus reticularis gigantocellularis pars ventralis RTg nucleus reticularis tegmenti pontis SNc substantia nigra: pars compacts SN1 substantia nigra: pars lateralis SNr substantia nigra: pars reticulata TgV area ventralis tegmenti TrMo nucleus motorius n. trigemini TrSD nucleus sensorius n. trigemini dorsalis TrSi nucleus tractus spinalis n. trigemini: pars interpolaris TrSo nucleus tractus spinalis n. trigemini: pars oralis TrsV nucleus sensorius n. trigemini ventralis Tz nucleus corporis trapezoidei VLLd nucleus ventralis lemnisci lateralis: pars dorsolateralis VLLv nucleus ventralis lemnisci lateralis: pars ventromedialis VstI nucleus vestibularis inferior VstL nucleus vestibularis lateralis VstM nucleus vestibularis medialis ZI zona incerta aq aqueductus Sylvii be brachium conjunctivum bp brachium pontis ccs commissura colliculi superiorls cp commissura posterior cr corpus restiformis dbc decussatio brachium conjunctivum flm fasciculus longitudinalis medialis 11 lemniscus lateralis ml lemniscus medialis osc organum subcommissurale ped pedunculus cerebri pyr tractus pyramidalis rfl fasciculus retroflexus ix rV radix mesencephalica n. trigemini Trs tractus spinalis n. trigemini HI oculomotor nerve VII facial nerve VIII vestibulocochlear nerve x INTRODUCTION The Falck-Hillarp histochemical technique for visualizing biogenic amines (Carlsson et al., f62; Falck, ’62; Falck et al., ’62) provides a powerful tool for bridging the narrowing gap between the anatomy and chemistry of the nervous system. This comparatively simple procedure has already been utilized to map specific monoamine systems in the brain of the rat (Dahlstrom and Fuxe, f64; Jacobowitz and Palkovits, '74; Palkovits and Jacobowitz, '74), cat (Chu and Bloom, *74; Jones and Moore, *74; Pin et al., *68; Maeda et al., '73), dog (Ishikawa et al., ’75; Shimada et al., ’76), chicken (Ikeda and Gotoh, ’71), turtle (Parent, *73), salamander (Simms, '77), monkey (Battista et al., ’72; DiCarlo et al., '73; Felten et al., '74; Garver and Sladek, ’75; Hubbard and DiCarlo, '73, ’74a, ’74b), human (de la Torre, ’72; Nobin and Bjorklund, '73; Olson et al., ’73), and in several invertebrate species (Aramont and Elofsson, '76; Elofsson et al., '66; Goldstone and Cooke, ’73; Osborne and Dardo, '70; Welsh, ’72; Welsh and Williams, ’70). The North American opossum, a generalized marsupial, has main tained a certain popularity for neuroanatomical research, not only for its significance from a comparative point of view, but also for its early availability in an external pouch, providing a unique opportunity for developmental studies (Martin et al., ’75). The distribution of 1 2 monoamine neurons in the opossum brain was studied and the results are described herein. To our knowledge, this is the first such description ? for any representative of the marsupial radiation. Spectrophotofluorometric analysis supports the generalization that the green and orange-yellow fluorescence, induced by exposure to formaldehyde vapors, represent catecholamine (CA) and indoleamine (IA) fluorophors respectively (Corrodi and Jonsson, ' 67). Although such a designation will be followed